| Dependency networks | Mixtures of Dependency Networks | Experimental evaluation | Conclusions |
|---------------------|---------------------------------|-------------------------|-------------|
|                     |                                 |                         |             |

# Robust Classification using Mixtures of Dependency Networks

#### José A. Gámez Juan L. Mateo Thomas D. Nielsen José M. Puerta

University of Castilla-La Mancha and Aalborg University

PGM - September 2008

|              | 0000 | 00000 | Conclusions |
|--------------|------|-------|-------------|
| Introduction |      |       |             |

- Dependency networks (DNs) have been used as probabilistic models in several fields, mainly due to their ease of learning.
- In this work we consider the use of DNs for classification. In particular,
  - we focus on mixtures of DNs (multinets).
  - we investigate the possibility of reusing learning results across classes in order to reduce complexity and improve robustness.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

| Dependency networks | Mixtures of Dependency Networks | Experimental evaluation | Conclusions |
|---------------------|---------------------------------|-------------------------|-------------|
| Dependency ne       | etworks                         |                         |             |

- A DN is a pair (G, P), where G is a directed graph, potentially cyclic, and P is a set of local probability distributions, one for each variable (Heckerman et al., 2000).
- The parent set for a variable X is the MB for X.



• We focus on *general* DNs, which are suitable for automatic learning:

$$P(\mathbf{X}) \approx \prod_{i} P(X_i | Pa_i).$$

Note that in these networks we may have to deal with inconsistencies.

Mixtures of Dependency Networks

Experimental evaluation

Conclusions

# Mixtures of Dependency Networks

Multinets are widely used in classification, especially due to their ability to represent *contextual* relationships.

• We propose to use the same idea, but with DNs instead of BNs.



- We need to learn a DN for every class value (note that each model can be learned independently)
- Assuming that the data is faithful to a graph we can use a Markov blanket learner to establish the parent sets.

| Dependency networks | Mixtures of Dependency Networks | Experimental evaluation | Conclusions |
|---------------------|---------------------------------|-------------------------|-------------|
| Motivation for      | or re-usability                 |                         |             |

Assuming that the independence statements are not disjoint between the different class conditional DNs we may be able to **reuse** previous learned structures/MBs.



We hypothesize two advantages

- we may speed up learning.
- we may obtain a more robust classifier when data is scarce for some of the classes.

Mixtures of Dependency Networks

Experimental evaluation

# Learning Markov blankets

We use the IAMB algorithm for learning the Markov blankets.

```
// Phase I (forward)1 MB = \emptyset2 while MB has changed do3 \begin{bmatrix} Y = \arg \max_{X \in U \setminus (MB \cup \{T\})} dep(X, T | MB) \\ if Y \not \perp T | MB then \\ & & & \\ MB = MB \cup \{Y\} \\ // Phase II (backwards) \\ 6 foreach X \in MB do \\ 7 & & & \\ If X \perp T | (MB \setminus X) then \\ 8 & & & \\ MB = MB \setminus \{X\} \\ 9 return MB \\ \hline
```

IAMB was chosen over e.g. PCMB due to ease of implementation, tendency to generate smaller MBs, and immediate support for re-usability.

Mixtures of Dependency Networks

Experimental evaluation

# Learning Markov blankets

We use the IAMB algorithm for learning the Markov blankets.

```
// Phase I (forward)
1 MB = \emptyset
2 while MB has changed do
        Y = \arg \max_{X \in U \setminus (\mathsf{MB} \cup \{T\})} dep(X, T | \mathsf{MB})
3
4 if Y \not\perp T | MB then
5 MB = MB \cup \{Y\}
   // Phase II (backwards)
6 foreach X \in MB do
7 | if X \perp T | (\mathbf{MB} \setminus X) then
8 | \mathbf{MB} = \mathbf{MB} \setminus \{X\}
9 return MB
```

IAMB was chosen over e.g. PCMB due to ease of implementation, tendency to generate smaller MBs, and immediate support for re-usability.

| Dependency networks                                                                                                                             | Mixtures of Dependency Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Experimental evaluation                  | Conclusions |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|
| SeededIAMB                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |             |
| // Phase<br>1 MB = Sec<br>2 while MB<br>3 $Y = ar$<br>4 $if Y \neq$<br>5 $U$ ME<br>7 // Phase<br>6 foreach $\lambda$<br>7 $if X \perp$<br>8 $M$ | I (forward)<br>I (forward)<br>ed // Seeded with previously for the set of the se | ous learned structures<br>T  <b>MB</b> ) |             |

9 return MB

#### Theorem

If the independence tests are correct and that the database D is an iid. sample from a probability distribution P faithful to a DAG G, then SeededIAMB identifies the true MB for the target variable T.

Dependency networks Mixtures of Dependency Networks Experimental evaluation Conclusions

# Re-usability: What to reuse?

More data yields more reliable MB estimates, so we first order the classes according to the number of instances.

Selecting what to reuse:

• We use the local log-likelihood

$$\frac{1}{N_j}\sum_{l=1}^{N_j}\log P(X|MB(X)_i,DN_i)(\mathbf{d}_l),$$

as an indication of how well  $MB(X)_i$  predicts X in  $\mathcal{D}_{c_i}$ .

- We use the empty network as threshold for the two strategies:
  - *BESTlogL* uses only the best structure above the threshold.
  - *THRESHOLDlogL* uses the union of all local structures above the threshold.
- Three other "blind" strategies:
  - First uses the first model as seed.
  - Intersection and Union uses the intersection and union, respectively, of the MBs for all the previously learned models.

| Dependency networks |
|---------------------|
|---------------------|

Mixtures of Dependency Networks

Experimental evaluation

#### Datasets

| dataset       | insts. | vars. | class | dataset     | insts. | vars. | class |
|---------------|--------|-------|-------|-------------|--------|-------|-------|
| australian    | 690    | 14    | 2     | labor       | 57     | 12    | 2     |
| autos         | 205    | 23    | 7     | mushroom    | 8124   | 23    | 2     |
| balance       | 625    | 5     | 3     | nursery     | 12960  | 9     | 5     |
| breast-cancer | 286    | 10    | 2     | page-blocks | 5473   | 11    | 5     |
| breast-w      | 699    | 10    | 2     | post-op     | 90     | 9     | 3     |
| car           | 1728   | 7     | 4     | segment     | 2310   | 20    | 7     |
| cmc           | 1473   | 10    | 3     | soybean     | 683    | 36    | 19    |
| diabetes      | 768    | 7     | 2     | spambase    | 4601   | 56    | 2     |
| ecoli         | 336    | 7     | 8     | vehicle     | 846    | 19    | 4     |
| heart         | 270    | 14    | 2     | vote        | 435    | 17    | 2     |
| hepatitis     | 155    | 20    | 2     | vowel       | 990    | 14    | 11    |
| ionosphere    | 351    | 34    | 2     | waveform    | 5000   | 20    | 3     |
| iris          | 150    | 5     | 3     | wine        | 178    | 14    | 3     |
| kr-vs-kp      | 3196   | 37    | 2     | Z00         | 101    | 17    | 7     |

Datasets from the UCI repository.

| Dependency networks | Mixtures of Dependency Networks | Experimental evaluation | Conclusions |
|---------------------|---------------------------------|-------------------------|-------------|
| Algorithms          |                                 |                         |             |

- Algorithms selected for comparison:
  - J48
  - Multilayer perceptron (NN)
  - k-nearest neigbours (kNN); k = 1 and k = 3, inverse distance weighted
  - Support vector machine (SVM)
  - Naive Bayes (NB)
  - k-dependence Bayesian classifier (kDB); k = 1, 2, 3, 4
  - Tree augmented naive Bayes (TAN)
  - Multinet with Bayesian networks (MultiBN); independence tests (PC) and score metric (BIC, K2)
  - Another DN-based classifier (ChiSqDN)
- In the proposed algorithm we performed independence tests based on standard statistical tests as well as by comparing BIC scores.

| Dependency networks |
|---------------------|
|---------------------|

Mixtures of Dependency Networks

Experimental evaluation

### Accuracy

|               | kDB   | MultiBN      | MultiDN      | SVM   |            | kDB   | MultiBN | MultiDN | SVM   |
|---------------|-------|--------------|--------------|-------|------------|-------|---------|---------|-------|
| australian    | 84.64 | 85.42        | 86.35        | 84.93 | labor      | 89.8  | 92.22   | 94.72   | 92.29 |
| autos         | 79.02 | 79.81        | 73.27        | 82.14 | mushroom   | 99.87 | 100.00  | 99.95   | 99.99 |
| balance       | 74.05 | 73.82        | 74.08        | 74.11 | nursery    | 93.26 | 95.57   | 93.73   | 93.06 |
| breast-cancer | 70.28 | 69.79        | 70.49        | 71.12 | page-block | 95.75 | 96.42   | 96.24   | 96.81 |
| breast-w      | 96.22 | 96.57        | 97.34        | 96.68 | post-op    | 66.22 | 66.89   | 66.89   | 69.56 |
| car           | 93.26 | 91.68        | 91.01        | 92.45 | segment    | 94.17 | 94.94   | 91.36   | 95.56 |
| cmc           | 53.96 | 52.49        | 53.29        | 53.96 | soybeam    | 91.6  | 94.00   | 93.35   | 92.5  |
| diabetes      | 77.47 | 77.68        | 79.27        | 76.77 | spam-base  | 92.73 | 93.65   | 92.58   | 93.81 |
| ecoli         | 84.82 | 85.12        | <u>82.26</u> | 83.87 | vehicle    | 71.23 | 71.28   | 70.33   | 73.14 |
| heart         | 81.63 | 80.3         | 82.37        | 83.7  | vote       | 93.75 | 93.89   | 94.16   | 95.22 |
| hepatitis     | 87.88 | 86.45        | 85.81        | 85.55 | vowel      | 73.17 | 69.82   | 64.99   | 79.07 |
| ionosphere    | 91.97 | 92.65        | 92.19        | 90.48 | waveform   | 82.25 | 81.79   | 81.26   | 84.86 |
| iris          | 95.07 | <u>94.53</u> | 96.27        | 96.40 | wine       | 97.08 | 97.98   | 98.31   | 97.87 |
| kr-vs-kp      | 94.22 | 96.49        | 95.27        | 95.24 | Z00        | 94.65 | 94.26   | 94.06   | 94.26 |
|               |       |              |              |       | aver.      | 85.72 | 85.91   | 85.4    | 86.62 |

The best classifier on average is SVM. Only kDB (with k = 1), MultiBN, and MultiDN (with BIC) are comparable.

Experimental evaluation

# Learning Time

|               | kDB   | MultiBN      | MultiDN | SVM        |            | kDB    | MultiBN         | MultiDN | SVM        |
|---------------|-------|--------------|---------|------------|------------|--------|-----------------|---------|------------|
| australian    | 543   | 1036         | 249     | 174        | labor      | 41     | 75              | 62      | 29         |
| autos         | 711   | 3226         | 951     | 268        | mushroom   | 25730  | <u>93243</u>    | 13727   | 3792       |
| balance       | 30    | 46           | 37      | <u>85</u>  | nursery    | 2481   | 2087            | 1285    | 17293      |
| breast-cancer | 89    | <u>372</u>   | 94      | 72         | page-block | 1960   | <u>4760</u>     | 1443    | 2763       |
| breast-w      | 196   | 228          | 130     | 68         | post-op    | 29     | 58              | 37      | 61         |
| car           | 173   | 166          | 114     | 352        | segment    | 4875   | <u>14380</u>    | 2343    | 2863       |
| cmc           | 396   | 428          | 281     | <u>653</u> | soybeam    | 8425   | 4374            | 4383    | 2651       |
| diabetes      | 83    | <u>96</u>    | 67      | 81         | spam-base  | 217476 | <u>79629796</u> | 39136   | 8311       |
| ecoli         | 42    | 59           | 63      | 325        | vehicle    | 1557   | <u>15215</u>    | 1428    | 653        |
| heart         | 213   | 256          | 129     | 40         | vote       | 573    | <u>847</u>      | 389     | 49         |
| hepatitis     | 348   | <u>433</u>   | 254     | 33         | vowel      | 792    | 8088            | 994     | 1582       |
| ionosphere    | 3995  | <u>5716</u>  | 1849    | 105        | waveform   | 10810  | 6131            | 3815    | 10478      |
| iris          | 14    | 22           | 17      | <u>60</u>  | wine       | 144    | <u>148</u>      | 122     | 66         |
| kr-vs-kp      | 47422 | <u>63283</u> | 18906   | 1545       | Z00        | 157    | 166             | 217     | <u>303</u> |

SVM and MultiDN are significantly faster than the other two methods and there is no significant difference between them.

Mixtures of Dependency Networks

Experimental evaluation

Conclusions

# Computational savings

|               | Complexity <sup>1</sup> | Time |
|---------------|-------------------------|------|
| NOREUSE       | 2045                    | 3303 |
| BESTlogL      | 1920                    | 3671 |
| TRHESHOLDlogL | 1925                    | 3861 |
| First         | 1915                    | 3201 |
| Intersection  | 1899                    | 3136 |
| Union         | 1945                    | 3400 |

<sup>1</sup>Complexity is equal to the number of calls to the score function (or statistical tests made) times the number of variables involved in those calls.

- In all cases reusability reduce the complexity.
- Only First and Intersection employ less time than the baseline.
- The overhead for *BESTlogL* and *THRESHOLDlogL* is due to the computation of likelihood.

Experimental evaluation

#### Robustness on scarce data

Difference in accuracy relative to learning without reusability.

|               | BESTlogL | THRESHOLDlogL | First | Intersection | Union |
|---------------|----------|---------------|-------|--------------|-------|
| autos         | 1.17     | 1.07          | 1.07  | -0.20        | 0.87  |
| balance       | 0.00     | 0.00          | -0.03 | -0.03        | 0.00  |
| breast-cancer | 0.28     | 0.28          | 0.28  | 0.28         | 0.28  |
| breast-w      | 0.00     | 0.00          | 0.00  | 0.00         | 0.00  |
| car           | 0.00     | 0.00          | 0.00  | 0.00         | 0.00  |
| cmc           | 0.19     | 0.20          | 0.20  | 0.11         | 0.29  |
| diabetes      | 0.03     | 0.03          | 0.08  | 0.08         | 0.08  |
| ecoli         | 0.00     | 0.00          | 0.00  | 0.00         | 0.00  |
| hepatitis     | 0.26     | 0.26          | 0.65  | 0.65         | 0.65  |
| ionosphere    | -0.11    | -0.11         | -0.17 | -0.17        | -0.17 |
| nursery       | 0.00     | 0.00          | 0.00  | 0.00         | -0.58 |
| page-block    | 0.04     | 0.04          | 0.05  | 0.04         | 0.05  |
| post-op       | 0.00     | 0.00          | 0.00  | 0.00         | 0.00  |
| soybeam       | -0.09    | 0.03          | -0.03 | 0.06         | -0.70 |
| spam-base     | 0.36     | 0.36          | 0.13  | 0.13         | 0.13  |
| vote          | 0.09     | 0.09          | 0.23  | 0.23         | 0.23  |
| Z00           | 0.00     | 0.00          | 0.00  | 0.00         | 0.20  |
| average       | 0.13     | 0.13          | 0.14  | 0.07         | 0.08  |

BESTlogL, THRESHOLDlogL, and First improve significantly the accuracy.

Mixtures of Dependency Networks

Experimental evaluation  $0000 \bullet$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Where does the improvement happen?



- Instance distribution in hepatitis dataset: 32,123
- With reusability the overall accuracy is increased but specially in the class with less data

| Dependency networks | Mixtures of Dependency Networks | Experimental evaluation | Conclusions |
|---------------------|---------------------------------|-------------------------|-------------|
| Conclusions         |                                 |                         |             |

- A mixture of DNs based classifier seems to hold some potential wrt. accuracy and computational cost.
- As expected, reusability can lead to a reduction in the number of computations required.
  - This saving can result in a reduced learning time; mainly for the uninformed selection strategies.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• The idea of reusability appears interesting, but further investigation is needed!