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Motivation

We often worry about convergence of samplers etc. in a Bayesian
analysis. How precise does the the prior on a BN have to be?

In particular what is the overall e¤ect of local and global
independence assumptions on a given model?

What are the overall inferential implications of using standard priors
like product Dirichlets or product logistics?

In general how hard do I need to think about these issues a priori
when I know I will collect a large sample?
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Messy Analyses

Large BN - some expert knowledge incorporated.

Nodes in our graph are systematically missing/ sample not random.
Possible unidenti�ablity even taking account of aliasing as n! ∞
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The Problems

For a given prior only a numerical or algebraic approximation of
posterior density. Just have approximate summary statistics (e.g.
means, variances, sampled low dimensional margins, ...)

Robustness issues: even for complete sampling. Variation distance
dV (f , g) =

R
jf � g j between two posteriors can diverge quickly

as sample size increases, especially when the parameter space is
large with outliers (Dawid, 1973) and more generally (Gustafson and
Wasserman,1995).

So when and how are posterior inferences strongly in�uenced by prior?

Local De Robertis separations the key to addressing this issue!
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About LDR

Local De Robertis (LDR) separations are easy to calculate and
extend natural parametrizations in exponential families.

Have an intriguing prior to posterior invariance property.
BN factorization of a density implies linear relationships between
clique marginal separations and joint.
Bounds on the variation distance between two posterior
distributions associated with di¤erent priors calculated explicitly as
a function of prior LDR bounds and posterior statistics associated
with the functioning prior.

Bounds apply posterior to an observed likelihood, even when the
sample density is misspeci�ed.
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The Setting

Let g0, (gn) our genuine prior (posterior) density :f0, (fn) our
functioning prior (posterior) density
Default for Bayes f0 often products of Dirichlets

xn = (x1, x2, . . . xn), n � 1. with observed sample densities
fpn(xn jθ)gn�1,

With missing data, typically these sample densities are typically
fpn(xn jθ)gn�1 (and hence fn and gn) intractable
fn therefore approximated either by drawing samples or algebraically.
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A Bayes Rule Identity

Let Θ(n) = fθ 2 Θ : p(xn jθ) > 0g For all θ 2 Θ(n) then

log gn(θ) = log g0(θ) + log pn(xn jθ)� log pg (xn)
log fn(θ) = log f0(θ) + log pn(xn jθ)� log pf (xn)

where
pg (xn) =

R
θ2Θ(n) p(xn jθ)g0(θ)dθ, pf (xn) =

R
θ2Θ(n) p(xn jθ)f0(θ)dθ,

(When θ 2 ΘnΘ(n) set gn(θ) = fn(θ) = 0)
So

log fn(θ)� log gn(θ) = log f0(θ)� log g0(θ) + log pg (xn)� log pf (xn)
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From Bayes Rule to LDR

For any subset A � Θ(n) let

dLA(f , g) , sup
θ2A

(log f (θ)� log g(θ))� inf
φ2A

(log f (φ)� log g(φ))

Then since

log fn(θ)� log gn(θ) = log f0(θ)� log g0(θ) + log pg (xn)� log pf (xn)

for any sequence fp(xn jθ)gn�1 - however complicated -

dLA(fn, gn) = d
L
A(f0, g0)
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Isoseparation

dLA(fn, gn) = d
L
A(f0, g0)

So for A � Θ(n) the posterior approximation of fn to gn is identical
in quality to that of f0 to g0.

When A = Θ(n) this property (De Robertis,1978) used for density
ratio metrics and the speci�cation of neighbourhoods.

Trivially posterior distances between densities can be calculated
e¤ortlessly from priors.

Separation of two priors lying in standard families can usually be
expressed explicitly and always explicitly bounded.
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Some notation

We will be especially interested in small sets A.

Let B(µ; ρ) denote the open ball centred at µ = (µ1, µ2, . . . , µk ) and
of radius ρ

Let
dLµ;ρ(f , g) , dLB (µ;ρ)(f , g)

For any subset Θ0 � Θ, let

dLΘ0;ρ
(f , g) = sup

µ2Θ0

dLµ;ρ(f , g)

Obviously for any A � B(µ; ρ), µ 2 Θ0 � Θ,

dLA(f , g) � dLΘ0;ρ
(f , g)
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Separation of two Dirichlets

.

Let θ = (θ1, θ2, . . . , θk ) α = (α1, α2, . . . , αk ), θi , αi > 0,∑k
i=1 θi = 1

Let f0(θjαf ) and g0(θjαg ) be Dirichlet(α) so that

f0(θjαf ) _
k

∏
i=1

θ
αi ,f �1
i , g0(θjαg ) _

k

∏
i=1

θ
αi ,g�1
i

Let µn = (µ1,n, µ2,n, . . . , µk ,n) be the mean of fn If
ρn < µ0n = min fµn : 1 � i � kg

dLµ;ρn (f0, g0) � 2kρn
�
µ0n � ρn

��1
α(f0, g0)

where

α(f0, g0) = k�1
k

∑
i=1
jαi ,f � αi ,g j

is the average distance between hyperparameters of f0 and g0.
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Where Separations might be large

dLµ;ρn (f0, g0) � 2ρn
�
µ0n � ρn

��1 k

∑
i=1
jαi ,f � αi ,g j

So dLµ;ρn (f0, g0) is uniformly bounded whenever µn all away from 0
and converging approximately linearly in n.

OTOH if fn tends to mass near a zero probability, then even when
α(f , g) is small, it can be shown that at least some likelihoods will
force the variation distance between the posterior densities to stay
large for increasing n: Smith(2007). The smaller the smallest
probability tended to the slower any convergence.
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BN�s with local and global independence

If functioning prior f (θ) and genuine prior g(θ) factorize on subvectors
fθ1, θ2, . . . θkg so that

f (θ) =
k

∏
i=1
fi (θi ), g(θ) =

k

∏
i=1
gi (θi )

where fi (θi ) (gi (θi )) are the functioning (genuine) margin onθi ,
1 � i � k, then (like K-L separations)

dLA(f , g) =
k

∑
i=1
dLAi (fi , gi )

So local prior distances grow linearly with no. of de�ning conditional
probability vectors.
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Some conclusions

BN�s with larger nos of edges intrinsically less stable
However - like K-L - marginal densities are never more separated than
their joint densities - so if a utility is only on a particular margin then
these distances may be much less.

Bayes Factors automatically select simpler models but note also
inferences of a more complex model tends to be more sensitive to
wrongly speci�ed priors.
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Disaster?

There are certain features in the prior which will always endure.

If there is a point where locally LDR diverges - in a sense which
violates the condition above then it is possible to construct a
"regular" likelihood such that the variation distance between
posteriors remains bounded away from zero as n! ∞.
However if the mass is converging on to a small set because then we
can focus on a small set A

Usually dLA(f0, g0) is small when A lies in a small ball.
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Salvation!

When n is large A will lie in a small ball with high probability

it is usually reasonable to assume that f0 and g0 for A lying in a small
ball dLA(f0, g0) is small.

Can usually assume for open balls B(µ; ρ) centred at µ and of radius
ρ, f0, g0 2 F (Θ0,M(Θ0), p(Θ0)) meaning

sup
θ,φ2B (µ;ρ))

jlog f0(θ)� log f0(φ)j � M(Θ0)ρ
0.5p(Θ0)

sup
θ,φ2B (µ;ρ))

jlog g0(θ)� log g0(φ)j � M(Θ0)ρ
0.5p(Θ0)
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A simple smoothness/roughness condition

When p(Θ0) = 2 just demands that log f0 and log g0 both have
bounded derivatives within the set Θ0 - used to determine where fn
concentrates its mass. Then it is easily shown (see Smith and
Rigat,2008) that

dLΘ0,ρ
(f , g) � 2M(Θ0)ρ

1/2p(Θ0)

So rate of convergence to zero of dLΘ0,ρ
(f , g) governed by the

"roughness" parameter p(Θ0).

This is the always true for densities with inverse polynomial tails like
the Student t density. If densities have tighter tails than this then is
also true provided continuously di¤erentiable on a closed bounded
interval Θ0.

For continuous f , g when Θ0 closed and bounded ( so no divergence
due to outliers) dLΘ0,ρ

(f , g) converges to zero.
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Introducing smoothness accidentally

Consider the typical hierarchical models used in e.g. BUGS

X1 X2
" "
θ1  θ ! θ2

e.g. i = 1, 2 , θi = θ � εi where εi is an independent error term,
(Gaussian, Student t) etc. provided the error term is smooth then this
automatically forces the prior margin g0(θ1, θ2) to be smooth (even if θ if
discrete) regardless of the smoothness of θ.
Moral: nearly all conventional hierarchical BN�s with enough depth have
implicit priors on parameters of the likelihood are smooth in the sense
above (making them robust in the sense below).
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But why worry about LDR separation?

Without the LDR condition above large sample variation convergence
cannot hold in general.

Conversely with a regularity condition and a technical devise
convergence will happen. .

Regularity Condition. Call a genuine prior c-rejectable if the ratio of
marginal likelihood pg (x)

pf (x)
< c .

If f0 does not explain the data much better than g0 we would expect this
ratio to be small - certainly not c- rejectable for a moderately large values
of c � 1.
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A Second Tail convergence condition

Say density f Λ�tail dominates a density g if

sup
θ2Θ

g(θ)
f (θ)

= Λ < ∞

When g(θ) is bounded then this condition requires that the tail
convergence of g is no slower than f .

Condition met provided f0 is chosen to have a �atter tail than g0.

Note: �at tailed priors recommended for robustness on other grounds
e.g. O�Hagan and Forster (2003)
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A typical result(Smith and Rigat(2007)

Theorem
If the genuine prior g0 is not c rejectable with respect to f0 , f0 Λ�tail
dominates g0 and f0, g0 2 F (Θ0,M(Θ0), p(Θ0)).then

dV (fn, gn) � inf
ρ>0
fTn(1, ρn) + 2Tn(2, ρn) : B(µn, ρn) � Θ0g (1)

where
Tn(1, ρn) = exp d

L
µ,ρ(f , g)� 1 � exp

n
2Mρp/2

n

o
� 1

and
Tn(2, ρn) = (1+ cΛ)Fn (θ /2 B(µn; ρn))

Easy to bound Fn (θ /2 B(µn; ρn)) in many ways explicitly using
Chebychev type inequalities: Smith (2007). Example of bound is given
below, speci�ed in terms of the posterior means and variances of the
vector of parameters under fn routinely approximated.
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An Example of an Explicit Bound

Let θ = (θ1, θ2, . . . , θk ) and µj ,n, σ
2
jj ,n denote the mean and variance of θj ,

1 � j � k under fn. Using Chebychev bounds in Tong (1980), p153),
writing µn = (µ1,n, µ2,n, . . . µk ,n)

Fn (θ /2 B(µn; ρn)) � kρ�2n

k

∑
j=1

σ2jj ,n

where writing σ2n = k max1�j�k σ2j ,n this implies

Tn(2, ρn) � cΛσ2nρ�2n

e.g. if σ2n � n�1σ2 for some value σ2, Tn(2, ρn)! 0 provided
ρ2n � nr ρ2 where 0 < r < 1.
In practice for a given data set we just have an approximate value of
σ2n we can plug in.
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Inference on margins separation

When A1is a restriction of A to θ1, θ = (θ1, θ2) and f1(θ1), g1(θ1) contin.
margins of f (θ) and g(θ), resp. then

dLA1(f1, g1) � d
L
A(f , g)

If fn converges on a margin, then even if the model is unidenti�ed,
provided f0, g0 2 F (Θ0,M(Θ0), p(Θ0)), then for large n, fn will be a
good surrogate for gn.

BN�s with interior systematically hidden variables are unidenti�ed.
However if a utility function is only on manifest variables, in standard
scenarios under above conditions dV (f1,n, g1,n)! 0 at a rate of at
least 3

p
n .

Instability only on posteriors of functions of probabilities associated
with the hidden variables conditional on the manifest variables.
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A Simple Example: The Star tree

θ5 �! � �  � θ6
# #

θ2 �! � θ1 �  θ3
# - # % #

θ7 �! � � �  θ8
#
�

. " &
θ9 ! � θ4 �  θ10

d -sep. tells us θ1 äX jθn1. So what we put in as a prior for θjθn1 is
what we get out

However model ) θ1 a function of θn1 (up to aliasing), so actually
no deviation consistent with the model.
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Departures from Parameter Independence

f (θ) = f1(θ1)
k

∏
i=2
fi j.(θi jθpai )

g(θ) = g1(θ1)
k

∏
i=2
gi j.(θi jθpai )

we then have the inequality

dLA(f , g) �
k

∑
i=2
dLA[i ](f[i ], g[i ])

where f[i ], g[i ] are respectively the margin of f and g on the space Θ[i ] of
the i th variable and its parents. So distances bounded by sums on
distances on cliques margins.
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Uniformly A Uncertain

Suppose g is uniformly A uncertain and factorises as f and

sup
g

sup
θi ,φi2A[i ]

�
log fi j (θ)� log gi j (θ)� log fi j (φ) + log gi j(φ)

	
is not a function of θpai 2 � i � n, then we can write

dLA(f , g) =
k

∑
i=1
dL�A[i ](fi j, gi j)

Separation between the joint densities f and g sum of the separation
between its component conditionals fi j and gi j 1 � i � k.
Bounds can be calculated even when the likelihood destroys the
factorisation of the prior. So the critical property we assume here is
the fact that we believe a priori that f respects the same factorisation
as g .
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Conclusions

Bayesian inference on BN�s is most stable to prior settings the simpler
the model

For large samples general total variation robustness is lost when
posterior masses concentrate near a zero probability.

However robustness can sometimes be retrieved if that probability is
not appear in a utility function.

Even for moderate sized samples, explicit bounds on the e¤ects of
priors can be calculated on line.

In regular problems, these bounds usually contract surprisingly quickly
as data increases.
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