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Def. A Bayesian network is a pair (G, P) where G is a directed acyclic graph (DAG), where

nodes represent random variables X={X,...X,} and edges represent probabilistic
dependences, and 2 ={p(x,|pa(x))),..., p(x,|pa(x,))} is a set of conditional probability
distributions (one for each variable) where pa(x;) is the set of parents of node X; in G.

The set_P defines the associated joint probability density as

P)=[ ot | pet)

Def. A Gaussian Bayesian network is a Bayesian network over X={X,,....X,} where the
joint probability density is a multivariate normal distribution N(x|p,X), with p the n-

dimensional mean vector and X the n x n positive definite covariance matrix, with the
dependence structure of &.

SENSITIVITY ANALYSIS
- This sensitivity analysis is based on the comparison between two different models:
- The original model X~N(x|p,Z)

- The perturbed model X~N(x|u8Z8), obtained after adding a mean vector
perturbations § or a covariance matrix perturbations A to the inaccurate elements

of the parameters p and X, respectively.

- With these two models the evidence propagation is performed, obtaining the networks
outputs as the conditional distributions of the set of variables of interest Y given E=e.

- Both networks outputs are compared by computing the Kullback-Leibler divergence.

KULLBACK-LEIBLER DIVERGENCE

To compare the networks outputs obtained for the original model and for the perturbed
model, this expression for the Kullback-Leibler (KL) divergence is used
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If there is any information about the state of a variable, the evidence propagation updates
the probability distribution of the rest of variables with this information or evidence.

In Gaussian Bayesian networks the evidence propagation is performed by computing the
conditional probability density of a multivariate normal distribution given the set of]
evidential variable E=e. Then, considering the partition X=(Y,E)’ where Y is the set of non-
evidential variables, the conditional probability distribution of Y, given the evidence E=e,
is a multivariate normal distribution, given by

Y|E=e= N(y|p¥=, V5 where e s oS (e i)
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PERTURBED MODELS

Five different perturbed models are going to be compared with the original model. Those
perturbed models are obtained by considering the partition of the mean vector perturbations
& and the covariance matrix perturbations A as
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Therefore, there can be uncertainty about

-The means of the variables of interest, being the perturbed model X~N(x|u®Y,X), or about
the means of the evidential variables, with the perturbed model X~N(x|u%%,X), where
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-The variances-covariances between the variables of interest, being the perturbed model
X~N(x|u,ZAYY), or about the variances-covariances between the evidential variables, where

‘E [Ep, o o the perturbed model is given by X~N(x|u,ZAFF), or about the covariances between the
= ln ‘ZY‘E‘ +tr():.‘{‘E (EY‘E"”) j+(u“E"”' —p,Y‘E)T(EY‘E’p’) (IJY‘E"”' = Y‘E) dim(Y) variables of interest and the evidential variables, being the perturbed model X~N(x|u,ZAYE),
where
being f the conditional probability density obtained for the original model after the A :[Z\'\' FAwy ZYEJ ¥ :[Z\'\' Ty J A :[ Ty Ty +AYEJ
evidence propagation and f® the conditional probability density obtained for the Zey T Zov Tpe tAg ey *Apy Tee
perturbed model, after the evidence propagation.
RESULTS

Prop 1. Let (G.P) be a Gaussian Bayesian network with X~N(x|p,X), where X={Y,E}, being Y the set of variables of interest and E the set of evidential variables. Giving values to the

perturbations of the mean vector 8, the following results are obtained

(1)When the perturbation 8y is added to the mean of the variables of interest the KL divergence is given by

KLM (f, ™) = 1[65(2“ )'s,]
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(2) When the perturbation &, is added to the mean of the variables of interest the KL divergence is given by

Prop 2. Let (G,P) be a Gaussian Bayesian network with X~N(x|p,X), where X={Y,E}, being Y the set of variables of interest and E the set of evidential variables. Giving values to the

Ay

2 , the following results are obtained

perturbations of the covariance matrix A =
-

(1) When the perturbation Ay is added to the variances-covariances between variables in Y, the KL divergence is

(2) When the perturbation Agg is added to the variances-covariances between variables in E, the KL divergence is
1
IQEEE (f’fzu ) = 2|:ln

(3) When the perturbation Ay is added to the covariances between variables in Y and variables in E, the obtained K divergence is given by
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Where M(AYE) = AYEZ;_‘IF_‘EiE + ZYEEEEAE\ +AYEZ;_‘1EAEY

The Gaussian Bayesian network of the example shows the duration
of the different components of a 7-elements machine

X ={X),X;, X3, Xy, X5, X, Xo} = N(x | 14, 2)
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EXAMPLE

After quantifying the uncertainty of the parameters, it
could be concluded the mean vector perturbations &
and the covariance matrix perturbations A are given

Then we obtain that the network is sensitive to the
perturbations proposed for the mean vector u and for
2y by computing the values of the KL divergence
from the expressions in Prop 1 and Prop 2
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