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Background

e An influence diagram (ID) is a graphical representation of an
uncertain decision problem. Ovals are chance nodes, rectangles
are decision nodes, and the diamond is the utility node.

e IDs were initially developed as a more compact version of a
decision tree.

e [ he numerical specification of an ID requires conditional prob-
ability distributions for chance nodes and a joint utility function.

e A recent paper describes an ID model that accommodates
continuous decision variables and non-Gaussian chance variables
(Cobb 2007).



Background

e [ his paper provides an efficiency measurement that can be
used to compare ID models and solution techniques.

e Potential benefits:

— 1. Determining whether the additional accuracy gained by
using an ID model that accommodates continuous decision vari-
ables is worth the incremental computational complexity (as
compared to making all decision variables discrete).

— 2. Aiding in the design of a decision support system by iden-
tifying an ID model that is consistent with a decision maker’s
desire for more accurate versus less complex (and less costly)
solutions.



Example — Capacity Planning and Pricing
under Uncertainty (Gox 2002)

Shock (2)

Capacity (K)

\ 4
Price (P)

Capacity (K) and price (P) are decision variables, the random
demand “shock” (Z) is a chance variable, and ug is the joint
utility function.



Example—Numerical Detalls

e Product demand is determined as Q(p,z) = 12 —p + =.

e The firm’'s utility (profit) function is

wo(bipz) =] @=1-A2-p+z)—k if 12-p+z) <k
s (p—1)-k—k if (12—-p+2)>k.

e Unit variable cost: v = 1; unit capacity cost: r = 1.

e K and P are continuous decision variables with state spaces:
Qr={k:0<k<14} and Qp={p: 1 <p <9}

e Assume Z ~ N(0,1)



Example — Analytical Solution

e Firm knows the true value, Z = z, of the demand shock Z
when it chooses capacity, so it sets K =12 — P + z.

e GOx (2002) finds an analytical solution to the problem with

optimal values for P and K of

10+ = 10+ =
5 :

pr=07(z)=2+ and k* = 05(z) =

e [ he accuracy of the ID solution can be judged in comparison
to the analytical solution.



Measuring Accuracy

e Mean squared error (MSE) is a measure of the difference be-
tween the analytical and ID decision rules.

e ©5 is a decision rule for K = f(Z) determined using an ID.
The MSE of ©5 is

MSE = E [(eg(z) _ eg(z)ﬂ — /QZ 8(2) - (O(2) — ©5(2))2 d2

— ¢ IS the density function for Z



Measuring Accuracy

e MSE between the ID decision rule ©; for P = f(K,Z) and the
analytical decision rule ©7 is

MSE = B [(el(eg(z), 2) — @’{(z))Ql
= J, $()+ (©1(82(2),2) — ©1(2))° d=.

e T he accuracy of an ID model, A, is defined as the sum of the
MSEs.



Measuring Complexity

e ID models in this paper are solved using Mathematica software
(www.wolfram.com).

e LeafCount that gives the total ‘size” of an expression de-
fined using the Piecewise representation, based on applying the
FullForm function.

e LeafCount (denoted by L) will be used to measure complexity
by tracking the size of the potentials stored in memory after
each combination or marginalization operation (or sub-operation
thereof) for the ID solution.

— LeafCount Of the potentials affects both the storage required
and the subsequent number of calculations.
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Measuring Complexity — Example

e Consider the expression

f(2) = { —84.04+81.1exp{0.0119(2+3)} if —3<2<3.

e Applying the Piecewise and FullForm functions in Mathematica
to this expression vields

Piecewise[List|[List[ Plus[-84, Times[81.1, Power|[E, Times|
0.0119, Plus[3, z]]]]], LessEquall[-3, z, 3]]], O] .

— Each word, number, or variable in the FullForm expression
increases the LeafCount of the expression by one. In this case,

£{f} = 10.
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Normalized Measurements

e A and C will be normalized onto a common scale to determine
the trade-off between accuracy and complexity. Assume N, =

e [ he normalized accuracy and complexity measurements are

T _ (Nmail?_Nmin) - (A—-A)
A = Nimin + A— A :

(Nmaa: — Nmzn) ' (C - Q)
C-C '
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Measuring Efficiency

e [ he efficiency of the model is calculated as
£ = A>.Cl-

— « IS assigned by the decision maker to convey an individual
preference for solutions that are either more accurate or less
complex.

— If « > 0.5, the decision maker values accuracy over complexity,
and vice versa.

e If two ID models have equivalent accuracy, the model with
a better complexity score will have greater efficiency, and vice
versa. Also, there is a diminishing marginal rate of substitution
between accuracy and complexity.
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Experiment

e [ he example will be solved with three types of IDs using a com-
mon solution algorithm (the fusion algorithm of Shenoy (1993)):

— 1. Discrete influence diagram

— 2. Mixtures of Truncated Exponentials (MTEID) influence
diagram (Cobb and Shenoy 2008)

— 3. Continuous Decision Mixtures of Truncated Exponentials
(CDMTEID) influence diagram (Cobb 2007)

e In each method, the number of discrete states used can improve
accuracy while increasing complexity. Several alternatives will be
considered.
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Example — Representation

e Capacity (K) is limited to discrete outcomes in all models. In
the CDMTEID model, price (P) is maintained as a continuous
variables (K is still discrete because continuous decision variables
are limited to one continuous parent).

e Use discrete state space Q%) = {k1,ko,...,kg}, i.e. six possible
values will be considered for K.

e The function f1(p) = p on the interval [1,9] is modeled by the
MTE potential

up(p) = —107.056144 + 108.102960 exp {0.0089234(p — 1)}
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Example — Representation

e The function f>(z) = z on the interval [—3,3] is modeled by a
similar MTE approximation.

e With K assigned six discrete values, the MTE utility function
is defined as

[ (up(p) — 1)
uy(ke,p,z) =4 (12 —up(p) +uz(2)) — k if (12—-p+2) <k

| (up(p) —1) ke —ke If (12—p+2) >k,

fort=1,...,6. The result is an MTE potential.
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Example — Representation

e The MTE potential ¢ that approximates the distribution (as
defined by Cobb and Shenoy (2006)) for the demand shock (Z)
overlaid on the actual N(0, 1) distribution.

-3 -2 -1 0 1 2 3

e The CDMTEID solution has initial complexity Co = L{¢} +
L{u1} = 517. Other models have different Cgy values.
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Example — CDMTEID Solution

e [ he elimination sequence employed in the fusion algorithm is
P, K, Z.

e Price (P) is a continuous decision variable; however, the first
step in marginalizing this variable is accomplished by using the
discrete approximation Qggd).

— Step 1. Thevaluesp,, u=1,...,6 are used to form the utility
functions uq1(k¢, p1,2), ..., ui(ks, pg,2) fort =1,...,6. After this
step, both these new potentials and the existing MTE utility
function w1 remain, so the complexity is

6 6
Ci=Co+ > > L{ui(kspu,z)} =1313.
t=1u=1

18



Example — CDMTEID Solution

Step 2: (for marginalizing P) Create a piecewise linear decision
rule for P = f(Z) for each value k¢, t =1,...,6. For K = k3 =
5.83, the utility functions uq1(k3,pu,z) foru=1,...,6.

Utility P=§.33
35+ P=7
30 | l
25 |
P=5.67 S5
/ 15
10 |
—
3 2 1 1 2 3
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Example — CDMTEID Solution

Step 2: (for marginalizing P) We can conclude that P = 5.67
is optimal over [—3,—-0.45), P =7 is optimal over [-0.45,1.15),
and P = 8.33 is optimal over [1.15,3]. These values are used to
create the piecewise linear decision rule

6.775100 4+ 0.642570z if —3 <2< -0.35

P(z) = ©13(2) = 6.729469 + 0.772947z if 0.35 <2 <2.9375
9 if 29375 <2<3.

Similar decision rules ©1 1, ..., ©1 6 are determined correspond-

ing to values ki, t = 1,...,6. When combined, these func-

tions form ©1 with £{©1} = 259. Since ¢ and w7 also remain,
Co =517 + 259 = 776.
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Example — CDMTEID Solution

Step 3: (for marginalizing P) Substitute ©1 into uy1 to form
up(kt, z) = uy(ke, ©14(2),2), for t =1,...,6. With ¢ and up as
the remaining potentials in the network, the complexity stands
at

6
C3 = L{o}+ > L{up(k,z)} =61+ 530 =591
t=1

e The variables remaining in the model are K (a discrete decision
variable) and Z (a continuous chance variable).
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Example — CDMTEID Solution

e The decision rule ©1 for P = f(K, Z).

K=8.17,10.5,0r 12.83
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Example — CDMTEID Solution

Marginalizing K (Step 1): A plot of us(kqy,2), ..
shows that u>(3.5,2) =~ u>(5.83,

Uti

40
35
30
25

9 u2(k672)
2) at Z = —1.25.

lity

The resulting decision rule ©-
z < —1.25 and K = 5.83 if -1
decision rule, the complexity of

W

specifies that K = 3.5 if -3 <

25 < z < 3. After creating this

the model is

Cq = L{¢} + L{un} + L{O2} = 610
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Example — CDMTEID Solution

Marginalizing K (Step 2): Calculate uz(z) = us (©2(2),2).
T he resulting complexity is Cg = 278.

e TO remove Z, combine ¢ and w3, with the resulting complexity
Ce = L{(¢p ®u3z)} = 569. Integrating the result over the state
space of Z completes the solution. The total complexity of the
ID model is

6
C=)> C; =4654.
1=0

e The MSE of the CDMTEID solution is calculated as A =

0.7760
24



Results

e Efficiency scores with aa = 0.1.

Efficiency

1.95 7

1.9

1.85
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1.55

6 7 8 9 10 11
Pieces
| -+-CDMTEID =+MTEID -4 Discrete ID |

12
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Results

e Efficiency scores with a = 0.9.

Efficiency

1 1 I 1 1
6 7 8 9
Pieces

10 11 12

I --CDMTEID -+ MTEID

-+ Discrete 1D |
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Efficiency
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192 |

—
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Results

Model (States, MSE, Complexity) J
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Summary

e When accuracy is a low priority (e.g., a« = 0.1), efficiency
decreases with additional discrete states.

— MTEID and CDMTEID provide similar efficiency.

e When accuracy is a low priority (e.g., a« = 0.9), efficiency
increases with additional discrete states.

— CDMTEID provides the best model.

e Using an ID that creates continuous decision rules can be worth
the additional complexity, subject to decision maker preferences.
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