MEASURING EFFICIENCY IN INFLUENCE DIAGRAM MODELS

Barry R. Cobb

Virginia Military Institute

PGM -2008

Outline

- Background
- Example—Representation
- Measuring Accuracy, Complexity, and Efficiency
- Description of Experiment
- Example—Solution
- Results
- Summary

Background

• An *influence diagram* (ID) is a graphical representation of an uncertain decision problem. Ovals are chance nodes, rectangles are decision nodes, and the diamond is the utility node.

• IDs were initially developed as a more compact version of a decision tree.

• The numerical specification of an ID requires conditional probability distributions for chance nodes and a joint utility function.

• A recent paper describes an ID model that accommodates continuous decision variables and non-Gaussian chance variables (Cobb 2007).

Background

• This paper provides an efficiency measurement that can be used to compare ID models and solution techniques.

• Potential benefits:

 \mapsto 1. Determining whether the additional accuracy gained by using an ID model that accommodates continuous decision variables is worth the incremental computational complexity (as compared to making all decision variables discrete).

 \mapsto 2. Aiding in the design of a decision support system by identifying an ID model that is consistent with a decision maker's desire for more accurate versus less complex (and less costly) solutions.

Example — Capacity Planning and Pricing under Uncertainty (Göx 2002)

Capacity (K) and price (P) are decision variables, the random demand "shock" (Z) is a chance variable, and u_0 is the joint utility function.

Example—Numerical Details

- Product demand is determined as Q(p, z) = 12 p + z.
- The firm's utility (profit) function is

$$u_0(k, p, z) = \begin{cases} (p-1) \cdot (12 - p + z) - k & \text{if } (12 - p + z) \le k \\ (p-1) \cdot k - k & \text{if } (12 - p + z) > k \end{cases}$$

- Unit variable cost: v = 1; unit capacity cost: r = 1.
- K and P are continuous decision variables with state spaces: $\Omega_K = \{k : 0 \le k \le 14\}$ and $\Omega_P = \{p : 1 \le p \le 9\}.$
- Assume $Z \sim N(0, 1)$

Example — Analytical Solution

• Firm knows the true value, Z = z, of the demand shock Z when it chooses capacity, so it sets K = 12 - P + z.

• Göx (2002) finds an analytical solution to the problem with optimal values for P and K of

$$p^* = \Theta_1^*(z) = 2 + \frac{10+z}{2}$$
 and $k^* = \Theta_2^*(z) = \frac{10+z}{2}$

• The accuracy of the ID solution can be judged in comparison to the analytical solution.

Measuring Accuracy

• Mean squared error (MSE) is a measure of the difference between the analytical and ID decision rules.

• Θ_2 is a decision rule for K = f(Z) determined using an ID. The MSE of Θ_2 is

$$MSE = E\left[\left(\Theta_2(z) - \Theta_2^*(z)\right)^2\right] = \int_{\Omega_Z} \phi(z) \cdot \left(\Theta_2(z) - \Theta_2^*(z)\right)^2 dz$$

 $\mapsto \phi$ is the density function for Z

Measuring Accuracy

• MSE between the ID decision rule Θ_1 for P = f(K, Z) and the analytical decision rule Θ_1^* is

$$MSE = E\left[\left(\Theta_1(\Theta_2(z), z) - \Theta_1^*(z)\right)^2\right]$$
$$= \int_{\Omega_Z} \phi(z) \cdot \left(\Theta_1(\Theta_2(z), z) - \Theta_1^*(z)\right)^2 dz.$$

 \bullet The accuracy of an ID model, $\mathcal{A},$ is defined as the sum of the MSEs.

Measuring Complexity

• ID models in this paper are solved using Mathematica software (www.wolfram.com).

• LeafCount that gives the total "size" of an expression defined using the Piecewise representation, based on applying the FullForm function.

• LeafCount (denoted by \mathcal{L}) will be used to measure complexity by tracking the size of the potentials stored in memory after each combination or marginalization operation (or sub-operation thereof) for the ID solution.

 \mapsto LeafCount of the potentials affects both the storage required and the subsequent number of calculations.

Measuring Complexity — Example

• Consider the expression

 $f(z) = \{ -84.0 + 81.1 \exp\{0.0119(z+3)\} \quad \text{if } -3 \le z \le 3.$

• Applying the Piecewise and FullForm functions in Mathematica to this expression yields

 \mapsto Each word, number, or variable in the FullForm expression increases the LeafCount of the expression by one. In this case, $\mathcal{L}{f} = 19$.

Normalized Measurements

- \mathcal{A} and \mathcal{C} will be normalized onto a common scale to determine the trade-off between accuracy and complexity. Assume $\mathcal{N}_{min} =$ 1 and $\mathcal{N}_{max} = 2$.
- The normalized accuracy and complexity measurements are

$$\widehat{\mathcal{A}} = \mathcal{N}_{min} + \frac{(\mathcal{N}_{max} - \mathcal{N}_{min}) \cdot (\mathcal{A} - \underline{\mathcal{A}})}{\overline{\mathcal{A}} - \underline{\mathcal{A}}}$$

$$\widehat{\mathcal{C}} = \mathcal{N}_{min} + \frac{(\mathcal{N}_{max} - \mathcal{N}_{min}) \cdot (\mathcal{C} - \underline{\mathcal{C}})}{\overline{\mathcal{C}} - \underline{\mathcal{C}}} \,.$$

Measuring Efficiency

• The *efficiency* of the model is calculated as

 $\mathcal{E} = \hat{\mathcal{A}}^{\alpha} \cdot \hat{\mathcal{C}}^{1-\alpha}.$

 $\mapsto \alpha$ is assigned by the decision maker to convey an individual preference for solutions that are either more accurate or less complex.

 \mapsto If α > 0.5, the decision maker values accuracy over complexity, and vice versa.

• If two ID models have equivalent accuracy, the model with a better complexity score will have greater efficiency, and vice versa. Also, there is a diminishing marginal rate of substitution between accuracy and complexity.

Experiment

• The example will be solved with three types of IDs using a common solution algorithm (the fusion algorithm of Shenoy (1993)):

 \mapsto 1. Discrete influence diagram

 \mapsto 2. Mixtures of Truncated Exponentials (MTEID) influence diagram (Cobb and Shenoy 2008)

 \mapsto 3. Continuous Decision Mixtures of Truncated Exponentials (CDMTEID) influence diagram (Cobb 2007)

• In each method, the number of discrete states used can improve accuracy while increasing complexity. Several alternatives will be considered.

Example — Representation

• Capacity (K) is limited to discrete outcomes in all models. In the CDMTEID model, price (P) is maintained as a continuous variables (K is still discrete because continuous decision variables are limited to one continuous parent).

• Use discrete state space $\Omega_K^{(k)} = \{k_1, k_2, \dots, k_6\}$, i.e. six possible values will be considered for K.

• The function $f_1(p) = p$ on the interval [1,9] is modeled by the MTE potential

 $u_P(p) = -107.056144 + 108.102960 \exp\{0.0089234(p-1)\}$

Example — Representation

• The function $f_2(z) = z$ on the interval [-3,3] is modeled by a similar MTE approximation.

• With K assigned six discrete values, the MTE utility function is defined as

$$u_1(k_t, p, z) = \begin{cases} (u_P(p) - 1) \cdot \\ (12 - u_P(p) + u_Z(z)) - k_t & \text{if } (12 - p + z) \le k_t \\ (u_P(p) - 1) \cdot k_t - k_t & \text{if } (12 - p + z) > k_t , \end{cases}$$

for t = 1, ..., 6. The result is an MTE potential.

Example — Representation

• The MTE potential ϕ that approximates the distribution (as defined by Cobb and Shenoy (2006)) for the demand shock (Z) overlaid on the actual N(0, 1) distribution.

• The CDMTEID solution has initial complexity $C_0 = \mathcal{L}\{\phi\} + \mathcal{L}\{u_1\} = 517$. Other models have different C_0 values.

•The elimination sequence employed in the fusion algorithm is P, K, Z.

• Price (P) is a continuous decision variable; however, the first step in marginalizing this variable is accomplished by using the discrete approximation $\Omega_P^{(d)}$.

 \mapsto **Step 1:** The values p_u , u = 1, ..., 6 are used to form the utility functions $u_1(k_t, p_1, z), ..., u_1(k_t, p_6, z)$ for t = 1, ..., 6. After this step, both these new potentials and the existing MTE utility function u_1 remain, so the complexity is

$$C_1 = C_0 + \sum_{t=1}^6 \sum_{u=1}^6 \mathcal{L}\{u_1(k_t, p_u, z)\} = 1313.$$

Step 2: (for marginalizing *P*) Create a piecewise linear decision rule for P = f(Z) for each value k_t , t = 1, ..., 6. For $K = k_3 = 5.83$, the utility functions $u_1(k_3, p_u, z)$ for u = 1, ..., 6.

Step 2: (for marginalizing *P*) We can conclude that P = 5.67 is optimal over [-3, -0.45), P = 7 is optimal over [-0.45, 1.15), and P = 8.33 is optimal over [1.15, 3]. These values are used to create the piecewise linear decision rule

$$P(z) = \Theta_{1,3}(z) = \begin{cases} 6.775100 + 0.642570z & \text{if } -3 \le z < -0.35 \\ 6.729469 + 0.772947z & \text{if } 0.35 \le z < 2.9375 \\ 9 & \text{if } 2.9375 \le z \le 3 \end{cases}.$$

Similar decision rules $\Theta_{1,1}, \ldots, \Theta_{1,6}$ are determined corresponding to values k_t , $t = 1, \ldots, 6$. When combined, these functions form Θ_1 with $\mathcal{L}\{\Theta_1\} = 259$. Since ϕ and u_1 also remain, $C_2 = 517 + 259 = 776$.

Step 3: (for marginalizing *P*) Substitute Θ_1 into u_1 to form $u_2(k_t, z) = u_1(k_t, \Theta_{1,t}(z), z)$, for t = 1, ..., 6. With ϕ and u_2 as the remaining potentials in the network, the complexity stands at

$$C_3 = \mathcal{L}\{\phi\} + \sum_{t=1}^6 \mathcal{L}\{u_2(k_t, z)\} = 61 + 530 = 591$$

• The variables remaining in the model are K (a discrete decision variable) and Z (a continuous chance variable).

• The decision rule Θ_1 for P = f(K, Z).

Marginalizing K (Step 1): A plot of $u_2(k_1, z)$, ..., $u_2(k_6, z)$ shows that $u_2(3.5, z) \approx u_2(5.83, z)$ at Z = -1.25.

The resulting decision rule Θ_2 specifies that K = 3.5 if $-3 \le z < -1.25$ and K = 5.83 if $-1.25 \le z \le 3$. After creating this decision rule, the complexity of the model is

$$\mathcal{C}_4 = \mathcal{L}\{\phi\} + \mathcal{L}\{u_2\} + \mathcal{L}\{\Theta_2\} = 610$$

Marginalizing K (Step 2): Calculate $u_3(z) = u_2(\Theta_2(z), z)$. The resulting complexity is $C_5 = 278$.

• To remove Z, combine ϕ and u_3 , with the resulting complexity $C_6 = \mathcal{L}\{(\phi \otimes u_3)\} = 569$. Integrating the result over the state space of Z completes the solution. The total complexity of the ID model is

$$\mathcal{C} = \sum_{i=0}^{6} \mathcal{C}_i = 4654 \; .$$

 \bullet The MSE of the CDMTEID solution is calculated as \mathcal{A} = 0.7760

Results

• Efficiency scores with $\alpha = 0.1$.

Results

• Efficiency scores with $\alpha = 0.9$.

Results

Summary

• When accuracy is a low priority (e.g., $\alpha = 0.1$), efficiency decreases with additional discrete states.

 \mapsto MTEID and CDMTEID provide similar efficiency.

• When accuracy is a low priority (e.g., $\alpha = 0.9$), efficiency increases with additional discrete states.

 \mapsto CDMTEID provides the best model.

• Using an ID that creates continuous decision rules can be worth the additional complexity, subject to decision maker preferences.