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Background

• An influence diagram (ID) is a graphical representation of an

uncertain decision problem. Ovals are chance nodes, rectangles

are decision nodes, and the diamond is the utility node.

• IDs were initially developed as a more compact version of a

decision tree.

• The numerical specification of an ID requires conditional prob-

ability distributions for chance nodes and a joint utility function.

• A recent paper describes an ID model that accommodates

continuous decision variables and non-Gaussian chance variables

(Cobb 2007).
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Background

• This paper provides an efficiency measurement that can be
used to compare ID models and solution techniques.

• Potential benefits:

�→ 1. Determining whether the additional accuracy gained by
using an ID model that accommodates continuous decision vari-
ables is worth the incremental computational complexity (as
compared to making all decision variables discrete).

�→ 2. Aiding in the design of a decision support system by iden-
tifying an ID model that is consistent with a decision maker’s
desire for more accurate versus less complex (and less costly)
solutions.
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Example — Capacity Planning and Pricing
under Uncertainty (Göx 2002)

Shock (Z)

u0

Capacity (K)

Price (P)

Capacity (K) and price (P ) are decision variables, the random

demand “shock” (Z) is a chance variable, and u0 is the joint

utility function.
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Example—Numerical Details

• Product demand is determined as Q(p, z) = 12 − p + z.

• The firm’s utility (profit) function is

u0(k, p, z) =

{
(p − 1) · (12 − p + z) − k if (12 − p + z) ≤ k
(p − 1) · k − k if (12 − p + z) > k .

• Unit variable cost: v = 1; unit capacity cost: r = 1.

• K and P are continuous decision variables with state spaces:
ΩK = {k : 0 ≤ k ≤ 14} and ΩP = {p : 1 ≤ p ≤ 9}.

• Assume Z ∼ N(0,1)
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Example — Analytical Solution

• Firm knows the true value, Z = z, of the demand shock Z

when it chooses capacity, so it sets K = 12 − P + z.

• Göx (2002) finds an analytical solution to the problem with

optimal values for P and K of

p∗ = Θ∗
1(z) = 2 +

10 + z

2
and k∗ = Θ∗

2(z) =
10 + z

2
.

• The accuracy of the ID solution can be judged in comparison

to the analytical solution.
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Measuring Accuracy

• Mean squared error (MSE) is a measure of the difference be-

tween the analytical and ID decision rules.

• Θ2 is a decision rule for K = f(Z) determined using an ID.

The MSE of Θ2 is

MSE = E
[(

Θ2(z) − Θ∗
2(z)

)2
]
=

∫
ΩZ

φ(z) · (
Θ2(z) − Θ∗

2(z)
)2 dz

�→ φ is the density function for Z
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Measuring Accuracy

• MSE between the ID decision rule Θ1 for P = f(K, Z) and the

analytical decision rule Θ∗
1 is

MSE = E

[(
Θ1(Θ2(z), z) −Θ∗

1(z)
)2

]

=
∫
ΩZ

φ(z) · (
Θ1(Θ2(z), z) −Θ∗

1(z)
)2 dz .

• The accuracy of an ID model, A, is defined as the sum of the

MSEs.
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Measuring Complexity

• ID models in this paper are solved using Mathematica software
(www.wolfram.com).

• LeafCount that gives the total “size” of an expression de-
fined using the Piecewise representation, based on applying the
FullForm function.

• LeafCount (denoted by L) will be used to measure complexity
by tracking the size of the potentials stored in memory after
each combination or marginalization operation (or sub-operation
thereof) for the ID solution.

�→ LeafCount of the potentials affects both the storage required
and the subsequent number of calculations.
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Measuring Complexity — Example

• Consider the expression

f(z) =
{
−84.0 + 81.1exp {0.0119(z + 3)} if − 3 ≤ z ≤ 3 .

• Applying the Piecewise and FullForm functions in Mathematica
to this expression yields

Piecewise[List[List[ Plus[-84, Times[81.1, Power[E, Times[
0.0119, Plus[3, z]]]]], LessEqual[-3, z, 3]]], 0] .

�→ Each word, number, or variable in the FullForm expression
increases the LeafCount of the expression by one. In this case,
L{f} = 19.
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Normalized Measurements

• A and C will be normalized onto a common scale to determine

the trade-off between accuracy and complexity. Assume Nmin =

1 and Nmax = 2.

• The normalized accuracy and complexity measurements are

Â = Nmin +
(Nmax −Nmin) · (A−A)

A−A .

Ĉ = Nmin +
(Nmax −Nmin) · (C − C)

C − C .

12



Measuring Efficiency

• The efficiency of the model is calculated as

E = Âα · Ĉ1−α.

�→ α is assigned by the decision maker to convey an individual
preference for solutions that are either more accurate or less
complex.

�→ If α > 0.5, the decision maker values accuracy over complexity,
and vice versa.

• If two ID models have equivalent accuracy, the model with
a better complexity score will have greater efficiency, and vice
versa. Also, there is a diminishing marginal rate of substitution
between accuracy and complexity.
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Experiment

• The example will be solved with three types of IDs using a com-
mon solution algorithm (the fusion algorithm of Shenoy (1993)):

�→ 1. Discrete influence diagram

�→ 2. Mixtures of Truncated Exponentials (MTEID) influence
diagram (Cobb and Shenoy 2008)

�→ 3. Continuous Decision Mixtures of Truncated Exponentials
(CDMTEID) influence diagram (Cobb 2007)

• In each method, the number of discrete states used can improve
accuracy while increasing complexity. Several alternatives will be
considered.
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Example — Representation

• Capacity (K) is limited to discrete outcomes in all models. In

the CDMTEID model, price (P ) is maintained as a continuous

variables (K is still discrete because continuous decision variables

are limited to one continuous parent).

• Use discrete state space Ω(k)
K = {k1, k2, . . . , k6}, i.e. six possible

values will be considered for K.

• The function f1(p) = p on the interval [1,9] is modeled by the

MTE potential

uP(p) = −107.056144 + 108.102960exp {0.0089234(p− 1)}
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Example — Representation

• The function f2(z) = z on the interval [−3,3] is modeled by a

similar MTE approximation.

• With K assigned six discrete values, the MTE utility function

is defined as

u1(kt, p, z) =

⎧⎪⎪⎨
⎪⎪⎩

(uP (p) − 1)·
(12 − uP (p) + uZ(z)) − kt if (12 − p + z) ≤ kt

(uP (p) − 1) · kt − kt if (12 − p + z) > kt ,

for t = 1, . . . ,6. The result is an MTE potential.
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Example — Representation

• The MTE potential φ that approximates the distribution (as
defined by Cobb and Shenoy (2006)) for the demand shock (Z)
overlaid on the actual N(0,1) distribution.

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

• The CDMTEID solution has initial complexity C0 = L{φ} +
L{u1} = 517. Other models have different C0 values.
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Example — CDMTEID Solution

•The elimination sequence employed in the fusion algorithm is
P , K, Z.

• Price (P ) is a continuous decision variable; however, the first
step in marginalizing this variable is accomplished by using the
discrete approximation Ω(d)

P .

�→ Step 1: The values pu, u = 1, . . . ,6 are used to form the utility
functions u1(kt, p1, z), . . ., u1(kt, p6, z) for t = 1, . . . ,6. After this
step, both these new potentials and the existing MTE utility
function u1 remain, so the complexity is

C1 = C0 +
6∑

t=1

6∑
u=1

L{u1(kt, pu, z)} = 1313 .
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Example — CDMTEID Solution

Step 2: (for marginalizing P ) Create a piecewise linear decision

rule for P = f(Z) for each value kt, t = 1, . . . ,6. For K = k3 =

5.83, the utility functions u1(k3, pu, z) for u = 1, . . . ,6.

3 2 1 1 2 3
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Z

Utility

P=5.67

P=7

P=8.33
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Example — CDMTEID Solution

Step 2: (for marginalizing P ) We can conclude that P = 5.67

is optimal over [−3,−0.45), P = 7 is optimal over [−0.45,1.15),

and P = 8.33 is optimal over [1.15,3]. These values are used to

create the piecewise linear decision rule

P (z) = Θ1,3(z) =

⎧⎪⎨
⎪⎩

6.775100 + 0.642570z if − 3 ≤ z < −0.35
6.729469 + 0.772947z if 0.35 ≤ z < 2.9375
9 if 2.9375 ≤ z ≤ 3 .

Similar decision rules Θ1,1, . . ., Θ1,6 are determined correspond-

ing to values kt, t = 1, . . . ,6. When combined, these func-

tions form Θ1 with L{Θ1} = 259. Since φ and u1 also remain,

C2 = 517 + 259 = 776.
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Example — CDMTEID Solution

Step 3: (for marginalizing P ) Substitute Θ1 into u1 to form

u2(kt, z) = u1(kt,Θ1,t(z), z), for t = 1, . . . ,6. With φ and u2 as

the remaining potentials in the network, the complexity stands

at

C3 = L{φ} +
6∑

t=1

L{u2(kt, z)} = 61 + 530 = 591

• The variables remaining in the model are K (a discrete decision

variable) and Z (a continuous chance variable).
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Example — CDMTEID Solution

• The decision rule Θ1 for P = f(K, Z).

3 2 1 1 2 3

6

7

8

9

- - -

Z

P=f(Z)

K=1.17

K=3.5

K=5.83

K=8.17, 10.5, or 12.83
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Example — CDMTEID Solution

Marginalizing K (Step 1): A plot of u2(k1, z), . . ., u2(k6, z)
shows that u2(3.5, z) ≈ u2(5.83, z) at Z = −1.25.

3 2 1 1 2 3
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40
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Z

Utility

K=3.5

K=5.83

The resulting decision rule Θ2 specifies that K = 3.5 if −3 ≤
z < −1.25 and K = 5.83 if −1.25 ≤ z ≤ 3. After creating this
decision rule, the complexity of the model is

C4 = L{φ} + L{u2} + L{Θ2} = 610
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Example — CDMTEID Solution

Marginalizing K (Step 2): Calculate u3(z) = u2 (Θ2(z), z).
The resulting complexity is C5 = 278.

• To remove Z, combine φ and u3, with the resulting complexity
C6 = L{(φ ⊗ u3)} = 569. Integrating the result over the state
space of Z completes the solution. The total complexity of the
ID model is

C =
6∑

i=0

Ci = 4654 .

• The MSE of the CDMTEID solution is calculated as A =
0.7760
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Results

• Efficiency scores with α = 0.1.
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Results

• Efficiency scores with α = 0.9.
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Results
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Summary

• When accuracy is a low priority (e.g., α = 0.1), efficiency

decreases with additional discrete states.

�→ MTEID and CDMTEID provide similar efficiency.

• When accuracy is a low priority (e.g., α = 0.9), efficiency

increases with additional discrete states.

�→ CDMTEID provides the best model.

• Using an ID that creates continuous decision rules can be worth

the additional complexity, subject to decision maker preferences.
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