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Motivation

The influence diagram is a compact graphical model representation sup-
porting decision making under uncertainty

most architectures consider only the discrete case

Decision problems often involve reasoning about entities of both discrete
and continuous nature

the problem of solving CLQG influence diagrams has received only
limited attention

We present an architecture for representation and efficient, exact solu-
tion of CLQG influence diagrams using arc-reversal operations in Lazy
Propagation
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CLQG Influence Diagrams

A CLQG ID N = (X,G,P,F,U) consists of a graph G over chance, deci-
sion, and utility nodes, a set of probability functions, and a set of utility
functions
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We consider CLQG IDs with a additively decomposing utility function

for X ∈ ΓC we have f(Y |Z = z, I = i) = N(α(i) + β(i)z, σ2(i))

discrete chance and decision nodes can only have discrete parents

U(x, i) =
∑
ψ∈Ψψ is of the form xTQ(i)x+ R(i)x+ S(i)
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Solving CLQG Influence Diagram

The variables of N induce an expected UF:

EU(X) = P(∆C |∆D) · f(ΓC |∆, ΓD) ·
∑

u∈U

u. (1)

An optimal strategy can be identified by eliminating variables from (1) in
the reverse time order.

The elimination is performed using a sequence of AR operations
and barren node eliminations

The calculations are organized in a strong junction tree
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The AR Operation

The edge (Xi, Xj) is reversed by setting

p(Xj |Z1,...,Zn) =
∑

Xi

p(Xj |Xi,Z1,...,Zn)p(Xi |Z1,...,Zn),

p(Xi |Xj,Z1,...,Zn) =
p(Xj |Xi,Z1,...,Zn)p(Xi |Z1,...,Zn)

p(Xj |Z1,...,Zn)
.

The edge (Yi, Yj) is reversed by setting

Yi |Z1,...,Zn ∼ N((αYi
+βYj

)+

n∑

i=1

(βi +δi)Zi,σ
2
Yi

+β2Yj
σ2Yj

),

Yj |Yi,Z1,...,Zn ∼ N(µ,σ2), where

µ=

αYj
σ2
Yi

+αYi
βYj
σ2
Yj

+βYj
σ2
Yj
Yi +

n∑

i=1

(δiσ
2
Yi

−βiβYj
σ2Yj

)Zi

σ2
Yi

+β2
Yj
σ2
Yj

,σ2 =
σ2
Yj
σ2
Yi

σ2
Yi

+β2
Yj
σ2
Yj

The AR operation is basically Bayes’ rule and it corresponds to reversing
an arc in the graph G
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Potentials

A potential is a triple π = (P,F,U) over probability potentials, densities,
and utility functions

combination πW1
⊗ πW2

= (P1 ∪ P2,F1 ∪ F2,U1 ∪ U2).

projection of πW = (PW ,FW ,UW) to a subset V ⊆ W denotes
the potential πV = π

↓V
W = (PV ,FV ,UV) obtained by performing a

sequence of variable eliminations of W \ V

Solving a CLQG ID involves combination and projection over potentials
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Marginalization

Computing π = π↓dom(π)−{X} = (PV ,FV ,UV) includes marginalization of

X ∈ ∆C: make barren and set π∗dom(π)−{X}
= (P∗, ∅,U∗) where

P∗ = PX \ {p(X |C(X)) ∈ PX},

U∗ = U \ UX ∪ {(p(X |C(X)) ·
∑

u∈UX

u)↓C(X)},

X ∈ ΓC: make barren and set π∗dom(π)−{X}
= (P,F∗,U∗) where

F∗ = FX \ {f(X |C(X)) ∈ FX},

U∗ = U \ UX ∪ {(f(X |C(X)) ·
∑

u∈UX

u)↓C(X)}.

X ∈ ∆D: set π∗dom(π)−{X}
= (∅, ∅,U \ UX ∪ {maxD

∑
u∈UX

u})

X ∈ ΓD: set π∗dom(π)−{X}
= (∅, ∅,U \ UX ∪ {(

∑
u∈UX

u)↓{Z1,...,Zn}})

The main contribution is the use of uni-variate CLG distributions only
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Lazy Propagation (LP)

Lazy Propagation

an inference architecture based on message passing in a strong
junction tree T

T guides the elimination process. It is constructed by moraliza-
tion and strong triangulation

Initialization of T: the core of lazy evaluation is to maintain potential
decompositions until combination becomes mandatory by variable
elimination

potentials assigned to a clique are not combined

Message passing in T: messages πA→B are computed by elimina-
tion of variables

decision variables are eliminated by maximization

chance variables are eliminated by summation/integration
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Lazy Propagation (LP)

Evaluation of a CLQG ID using Lazy propagation in a strong junction tree

after initialization each clique C holds a potential πC = (P,F,U)

message passing πA→B =
(

πA ⊗
(

⊗C∈ne(A)\{B}πC→A
))↓B

local computation enables exploitation of barren variables and in-
dependence relations between variables

Policy optimization is performed as part of message passing

Main contributions

AR operations and barren node eliminations as projection operation

illustrate use of distributive law

illustrate advantage of decomposition

performance evaluation
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Distributive Law

Different researchers have exploited that the distributive law of algebra
(DL) can be exploited in the solution process

U(Y, T, Z) =
∑

X

P(X) (U(X, Y, Z) +U(X, T)) .

Using DL the expression is rewritten:

U(Y, Z) +U(T) =
∑

X

P(X)U(X, Y, Z) +
∑

X

P(X)U(X, T).
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Decomposition of Potentials

The CLQG ID by Jensen, Jensen & Dittmer
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Strong Junction Tree of CLQG ID

BD1EFD

BEDC BCA

FD3H D3HK HKJ

ED2G D2GD4I D4IL

At the root we may compute (more efficiently)

EU(∆̂) =
∑

B

P(B)max
D1

`

U1(D1)+
∑

D

P(D|B,D1)(
∑

E

P(E|D)U(E)+
∑

F

P(F|D)U(F))
´

Domain graph of root potential
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Performance Analysis - Random Networks

Time Space

‖X‖ LARP HDE LARP HDE

20 4.27 N/A 1, 953, 125 N/A

20 0.93 1.25 390, 625 1, 953, 125

20 0.03 0.24 3, 125 390, 625

25 0.13 N/A 15, 625 N/A

25 0.64 1.74 78, 125 1, 953, 125

50 4.67 10.16 1, 048, 576 8, 388, 608

50 24.31 N/A 4, 194, 304 N/A

50 7.22 28.64 1, 048, 576 16, 777, 216

CLQG IDs have discrete variables only and |X| ≤ 25 implies ||X|| = 5 while
|X| = 50 implies have ||X|| = 2
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Performance Analysis - JJD network

Different versions of the CLQG ID network of Jensen, Jensen & Dittmer

jjd |C| maxC∈C s(C) s(C)

d 9 9, 765, 625 10, 640, 625

m 9 9, 765, 625 10, 188, 826

c 9 1 1

Performance evaluation

Time Space

jjd HDE LARP HDE LARP

d 3.87 0.53 9, 765, 625 390, 625

m - 0.35 - 390, 625

c - 0.03 - 1
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Performance Analysis - DL

A naive example with ‖Y‖ = 100, ‖Xi‖ = 5 and ‖D‖ = 10

X1 X2 X3 X4 X5 X6

U1 U2 U3 U4 U5 U6D

Y

The (Strong) junction tree is a single clique

Using HDE, LARP and LARP with DL the average time costs in seconds
(over ten runs) are 2.91, 16.73, and 0.49.
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Conclusion

The main contributions of the paper is an architecture for solving CLQG
IDs using arc-reversal in Lazy propagation

Results of a preliminary performance evaluation are promising

Future work includes extending the architecture to support the
LIMID representation

Related work includes Lauritzen&Jensen on evidence propagation in
CLG BNs // Madsen&Jensen and Madsen&Nilsson on solving influence
diagrams by lazy evaluation // Poland and Kenley&Shachter on linear-
quadratic Gaussian influence diagrams // Madsen&Jensen on solving
CLQG IDs // Cobb&Shenoy on MTEs
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