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Imprecise probabilities (Walley, 1991)

Models of uncertainty about the state
of a categorical variable X

• A probability mass function P (X)

• More generally, a closed convex set
of probability mass functions K(X)
This is a credal set (Levi, 1980)

• Complete ignorance?
A vacuous credal set K0(X)

• Lower (and upper) expectation
EK [f(X)] = infP (X)∈K(X)
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From Bayesian to credal nets

Bayesian nets (Pearl, 1988)

• (stochastic) independence by a DAG

• conditional mass functions
P (Xi|pa(Xi))

• joint probability mass function
P (x1, . . . , xn) =

Qn
i=1 P (xi|pa(Xi))

• updating = compute P (Xq |xE)
NP-hard (Cooper, 1989)

• BP efficiently updates polytrees
(Pearl, 1988)

• Loopy BP for multi-connected
(Murphy, 1999)

Credal nets (Cozman, 2000)

• strong independence by a DAG

• conditional credal sets
K(Xi|pa(Xi))

• joint credal set (strong extension)
K(X1, . . . , Xn)

• updating = compute P (Xq |xE)
NPPP-hard (Campos & Cozman, 2005)

• 2U: fast alg for binary polytrees
(Zaffalon, 1998)

• Loopy 2U for multi-connected binary
(Ide & Cozman, 2002)

• . . . ?

Updating non-binary credal nets?
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Two main results

Theorem (about representation)

“Every credal net can be equivalently represented
as a credal net over binary variables”

(and the transformation takes only polynomial time)

Corollary (about inference)

“Algorithms for binary credal nets can be
applied to credal nets of any kind”

(loopy 2U can update credal nets of any kind)
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Binarization (graph)

• Nodes binarization
• State of a variable as a joint state of a number of “bits”
X = x ⇐⇒ (X̃1 = x̃1) ∧ (X̃2 = x̃2) ∧ . . .

• Arcs binarization
• For each arc between two variables, all the relative bits are linked
• The bits of the same variable are completely connected

X1
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8 states
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4 states
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Binarization (probabilities)

• Bayesian nets

• All the conditional mass function P (X̃j
i |pa(X̃j

i )) of the bits of Xi

can be computed from the conditional mass function P (Xi|pa(Xi))

P (x̃j
i |pa(X̃j

i )) ∝
P′

xi
P (xi|pa(Xi))

• Credal nets

• Same calculations iterated over the conditional credal set K(Xi|πi)

P (x̃j
i |pa(X̃j

i )) = infP (Xi|pa(Xi))∈K(Xi|pa(Xi)) P (x̃j
i |pa(X̃j

i ))

• A “binarized” Bayesian/credal net is obtained

• The transformation takes only linear time!
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BNs binarization is exact
• Let P (X) be the joint probability mass function of a BN,
• and P̃ (X̃) the corresponding p.m.f. on the binarized BN.
• Then, P (X) = P̃ (X̃).
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• Let K(X) be the strong extension of a CN,
• and K̃(X̃) the strong extension of its binarization.
• Then, K(X) ⊆ K̃(X̃).

We can do better!
But another transformation should be applied
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Decision-theoretic specification of CNs
(Antonucci & Zaffalon, PGM ’06/IJAR 2008)

• For each i = 1, . . . , n, add a node Ti,

parent of Xi, between Xi and pa(Xi)

• Decision nodes {Ti}ni=1 indexing the

possible specifications of each mass

function given the values of the parents

• Decision nodes can be regarded as chance

nodes with a “vacuous” specification of the

relative credal set

• An equivalent credal net is obtained!
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Binarization of DT-specified CNs

• Binarization can be implemented locally

• After DT specification, the nodes are either
precise or vacuous

• For precise specifications binarization is

exact (result for BNs)

• Also for vacuous specifications binarization

can be proved to be exact

• Binarization of DT-specified CNs is exact!

• But any CN can be DT-specified

• Any CN admits an exact binarization
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Generalized loopy 2U (GL2U)

• Multi-connected (non-binary) CNs?

• Binarization + L2U (twofold approx)

• DT + Bin + L2U = GL2U is better!

• Approx only because of loopy!

• State-of-the-art updating algorithm

for CNs updating

• Good accuracy and scalability

O(eindegreemax ) is better

than O(etreewidth)
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Conclusions and outlooks

• Exact binarization of BNs and CNs

• A state-of-the-art algorithm for CNs updating

• The algorithm of choice for very large nets?

• A Python/C++ implementation available (ask Sun Yi)

• Challenges

• In numerical tests (G)L2U always converges.

A formal proof of that?
• For non-binary targets, accuracy can be improved

with an alternative binarization of the target.
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