
An influence diagram framework for acting under
influence by agents with unknown goals

Nicolaj Søndberg-Jeppesen and Finn Verner Jensen

Aalborg University,

Department of Computer Science

September 17, 2008
1 / 52



2 agents with conflicting plans

• We are dealing with scenarios where 2 agents interact.

• The agents do not know the other agent’s goals.

• The goals may be conflicting.

• We will let each agent have an “assignment” which determines
its goals. The assignments are hidden for the other player.
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Simple example environment

• An example scenario: The Grid Game.

• 2 players move 1 piece on a grid.

♣

• The players prefer to move the piece to some cells more than
others.

• How much a player prefers a cell is determined by her
Assignment.

• The player’s assignment is unknown to the opponent.
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The rules

Moving the piece:

• Possible moves: N, E, S, W.

• The effect on the piece is the combination of the 2 player’s
moves.

• If one player chooses a move which makes the joint move
impossible the piece is only moved in the direction the other
player has chosen if that can be carried out.
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Grid game example

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

{N,W} {N,S}

Assignment 1 Assignment 2

8.55 6.82 1.15

-6.82 0.0 4.12

-8.55 -1.15 -4.12

-1.66 0.42 6.84

-0.51 0.0 -0.42

-6.84 0.51 1.66

Figure: An example of the game Grid. In the first move, P 1 chooses to
move N while P 2 chooses to move W . In the second turn, P 1 and P 2

moves N and S respectively, cancelling each other’s effect.

11 / 52



Grid game example

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

{N,W} {N,S}

Assignment 1 Assignment 2

8.55 6.82 1.15

-6.82 0.0 4.12

-8.55 -1.15 -4.12

-1.66 0.42 6.84

-0.51 0.0 -0.42

-6.84 0.51 1.66

Figure: An example of the game Grid. In the first move, P 1 chooses to
move N while P 2 chooses to move W . In the second turn, P 1 and P 2

moves N and S respectively, cancelling each other’s effect.

12 / 52



The scores

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

{N,W} {N,S}

P 1 : 8.55 − (−1.66) = 10.21

Assignment 1 Assignment 2

8.55 6.82 1.15

-6.82 0.0 4.12

-8.55 -1.15 -4.12

-1.66 0.42 6.84

-0.51 0.0 -0.42

-6.84 0.51 1.66

P 2 : −1.66 − 8.55 = −10.21
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Opponent Modeling

• To deal successfully with this kind of game requires opponent
modeling.

• Equip each agent with a model of its opponent.

• Each model will contain models of the other agent which in
turn will contain a model of the first agent.

• This inevitably results in an infinite regress.

• Classical solutions to that is to find Nash Equilibria.
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Recursive modeling

• Instead of solving Nash Equilibria we use the recursive
modeling method (RMM) (Gmytrasiewicz et al. [1991]).

• In RMM the recursion is ended at a certain level.

• A “flat” model is inserted at the deepest level, i.e. a model
that does not contain models of other players.
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Covert Interference (CIF)
We propose a framework which we call Covert Interference (CIF).

W0 W1 W2
. . .

P 1

1
P 1

2
. . .

P 2

1
P 2

2
. . .

U1 U2

A1 A2

Figure: Covert Interference.
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Covert Interference (CIF)

The model explains :

• How the hidden assignments are modeled using the chance
nodes A and B.

• The transition between states as a function of the two player’s
actions

• The utility functions.

• The opponent’s strategy - represented by a chance node.

The model does not tell us anything about:

• How many future time steps the agent considers.

• How many future time steps the opponent is assumed to
consider

• How deep a modeling level the opponent can be assumed to
have.
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Definition of a (Perfect Recall) Player

In order to describe the missing parts of the model we give the
following definition:

Definition (RMM Player)

A player P is a pair defined as follows:

1 P = (h,NIL) is a player with time horizon h and modeling
level 0.

2 Given a player O, with modeling level i − 1, P = (h,O) is a
player with time horizon h and modeling level i.
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Examples

Thus,

• a (2,NIL) player is a player that takes into account 2 future
time steps and does not have a model of the opponent
(assumes random play).

• A (3,(2,NIL)) model takes 3 future time steps into account
while it assumes the opponent uses a (2,NIL) model.

• A (3,(3,(2,NIL))) model also takes into account 3 future time
steps while she assumes the opponent is a (3,(2,NIL)) model.

• etc.
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Example: a (2, (2, (1, NIL))) model
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Example: a (2, (2, (1, NIL))) model
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Memory Complexity Problems
• Notice the extra arcs in the previous Figure!
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Memory Complexity Problems
• Notice the extra arcs in the previous Figure!

• We assume No-forgetting.

• P 2’s decision in P 2

1
may reveal something about his

assignment.

• Thus, all previous board states and all our previous actions are
relevant to the next decision.

• The memory complexity becomes forbidding for playing the
game.
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Limited memory influence diagrams

• Lauritzen and Nilsson [2000] have proposed Limited memory
influence diagrams (LIMIDS).

• They give up the no-forgetting assumption.

• The syntax is like IDs but the only thing known at decisions
are represented by information-arcs into that decision node.

• Lauritzen and Nilsson [2000] propose a solution algorithm for
LIMIDS, namely Single Policy Update (SPU).
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A LIMID Player

• With a lot of inspiration from LIMIDs we introduce a Limited
Memory Player (LIMID Player).

• A LIMID player has a certain look-ahead and modeling level,
just like perfect recall players, but
as opposed to perfect recall players they have a limited
memory.

• With a memory of m the LIMID player remembers the last m

decisions and the last m world
states.
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Definition of a LIMID Player

Definition (RMM LIMID Player)

A RMM LIMID player L is a triple defined as follows:

1 L = (h,m,NIL) is a LIMID player with time horizon h,
memory m and modeling level 0.

2 Given a player or a LIMID player O, with modeling level i − 1,
P = (h,m,O) is a LIMID player with time horizon h, memory
m, and modeling level i.
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An example of a LIMID player

W0 W1 W2 W3

P 1

1
P 1

2
P 1

3

P 2

1
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2
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3

U1 U2 U3

A1 A2

W0 W1 W2 W3

P 1

1
P 1

2
P 1

3

P 2

1
P 2

2
P 2

3

U1 U2 U3

A1 A2

(1,NIL)

Figure: An example of a (3,2,(3,1,(1,NIL))) model.
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Single policy updating

• Convert all decision nodes into chance nodes starting with
uniform priors.

• Repeat until convergence:
• Starting from the last decision, find the optimal policy for that

decision given the parents and insert that in the chance node.
• Proceed with the second last decision now knowing the policy

for the last decision.
• Continue finding local optimal policies down to the first

decision.

41 / 52



Single policy updating

• Convert all decision nodes into chance nodes starting with
uniform priors.

• Repeat until convergence:
• Starting from the last decision, find the optimal policy for that

decision given the parents and insert that in the chance node.
• Proceed with the second last decision now knowing the policy

for the last decision.
• Continue finding local optimal policies down to the first

decision.

42 / 52



Single policy updating

• Convert all decision nodes into chance nodes starting with
uniform priors.

• Repeat until convergence:
• Starting from the last decision, find the optimal policy for that

decision given the parents and insert that in the chance node.
• Proceed with the second last decision now knowing the policy

for the last decision.
• Continue finding local optimal policies down to the first

decision.

43 / 52



Single policy updating

• Convert all decision nodes into chance nodes starting with
uniform priors.

• Repeat until convergence:
• Starting from the last decision, find the optimal policy for that

decision given the parents and insert that in the chance node.
• Proceed with the second last decision now knowing the policy

for the last decision.
• Continue finding local optimal policies down to the first

decision.

44 / 52



Single policy updating

• Convert all decision nodes into chance nodes starting with
uniform priors.

• Repeat until convergence:
• Starting from the last decision, find the optimal policy for that

decision given the parents and insert that in the chance node.
• Proceed with the second last decision now knowing the policy

for the last decision.
• Continue finding local optimal policies down to the first

decision.

45 / 52



Experiments

In experiments we have investigated:

1 The allowed time horizon for players with perfect recall
compared to LIMID players.

2 The performance of the two models against a benchmark.

3 The importance of having the correct model of the opponent.
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1. The allowed time horizon

Table: The maximal time horizons possible on our system with different
sizes of the Grid game.

Board ID max h LIMID max h (m = 1)

3 × 3 4 32

5 × 5 3 8

7 × 7 3 8

9 × 9 2 8

47 / 52



2. The performance of the two models

Table: Average scores and standard deviations (σ) after 100 Grid games
between different models against (2,(2,(1,NIL))).

Model P 1 σ

1 (2,(2,(2,(1,NIL)))) 5.03 10.1

2 (2,1,(2,(2,(1,NIL)))) -0.248 8.66

3 (3,(2,(2,(1,NIL)))) 7.32 10,7

4 (3,2,(2,(2,(1,NIL)))) 0.252 8,27
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3. The importance of having the correct

model of the opponent

Table: Average scores and standard deviations (italics) obtained by
players with h = 3 on different levels in a 3 × 3 instance of Grid.

Level 0 1 2 3 4

1 2.47 – – – –
5.41 – – – –

2 -1.83 3.24 – – –
6.39 10.76 – – –

3 -3.19 -4.50 9.29 – –
7.64 10.9 10.5 – –

4 0.55 -4.60 -0.73 8.00 –
7.06 10.0 5.82 10.6 –

5 0.572 1.18 -6.21 4.40 5.78
6.36 7.34 10.8 10.0 8.84
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Conclusions & Future Research

• We have proposed a framework called CIF for solving agent
encounters when the goals of the opponents are uncertain.

• We have addressed the complexity problem caused by the
amount of relevant information.

• The empirical results for the LIMID player has shown a loss in
performance compared to perfect recall players.

• The modeling level of the opponent has turned out to be
important in order to successfully win the game. (Adaptation.)

• Current research: Investigate alternative opportunities for
model approximation.
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Thank You!
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