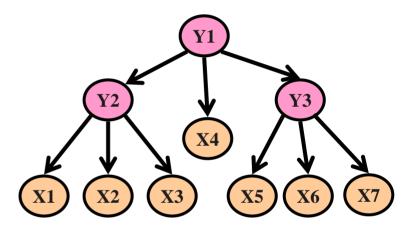
Efficient Model Evaluation in the Search-Based Approach to Latent Structure Discovery

Tao Chen, Nevin L. Zhang and Yi Wang

Department of Computer Science & Engineering The Hong Kong University of Science & Technology

Latent Tree Models (LTMs)

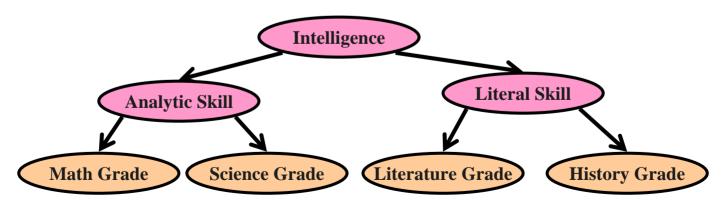
- Bayesian networks with
 - Rooted tree structure
 - Discrete random variables
 - Leaves observed (manifest variables)
 - Internal nodes latent (latent variables)
- Denoted by (m, θ)
 - m is the model structure
 - θ is the model parameters
- Also known as hierarchical latent class (HLC) models, (Zhang 2004)



P(Y1), P(Y2|Y1), P(X1|Y2), P(X2|Y2), ...

Example

- Manifest variables
 - Math Grade, Science Grade,
 - Literature Grade, History Grade
- Latent variables
 - Analytic Skill, Literal Skill, Intelligence



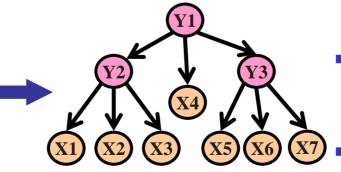
Learning Latent Tree Models

Search-Based method

maximizing the BIC score:

BIC(m|D) = max $_{\theta} \log P(D|m, \theta) - d(m) \log N/2$ Maximized Penalty

X1	X2	 X6	X7
1	0	 1	1
1	1	 0	0
0	1	 0	1



loglikelihood

- Number of latent variables
- Cardinality (i.e. number of states) of each latent variable
 - Model Structure
- Conditional probability distributions

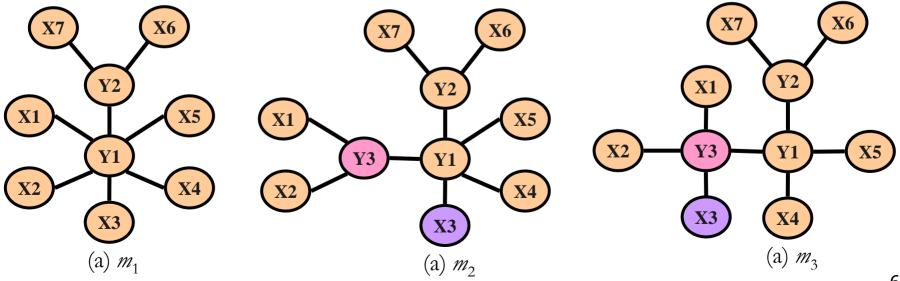
Efficient Model Evaluation

Experiment Results and Explanations

Conclusions

Search Operators

- Expansion operators:
 - Node introduction (NI): $m_1 => m_2$; |Y3| = |Y1|
 - State introduction (SI): add a new state to a latent variable
- Adjustment operator: node relocation (NR), $m_2 = m_3$
- Simplification operators: node deletion (ND), state deletion (SD)



Naïve Search

- At each step:
 - Construct all possible candidate models by applying the search operators to the current model.
 - Evaluate them one by one (BIC)
 - Pick the best one
- Complexity:
 - SI: O(l) l: the number of latent variables in the current model
 - SD: *O*(*l*)
 - NR: O(l (l+n)) n: the number of manifest variables (current)
 - NI: O(l r(r-1)/2) r: the maximum number of neighbors (current)
 - ND: *O*(*lr*)

• Total: $\mathbf{T} = O(l(2 + r/2 + r^2/2 + l + n))$

Reducing Number of Candidate Models

- Reduce number of operators used at each step
- How?
 BIC(m|D) = max_θ log P(D|m, θ) d(m) logN/2

Three phases:

- Expansion Phase:
 - Search with expansion operators NI and SI
 - Improve the maximized likelihood term of BIC
- Simplification Phase:

 $O(l(l+r)) < \mathsf{T}$

 $O(l(1 - r/2 + r^2/2)) < T$

- Search with simplification operators ND and SD, separately
- Reduce penalty term
- Adjustment Phase:

- $O(l(l+n)) < \mathsf{T}$
- Search with adjustment operators NR
- Restructure

- Start with a simple initial model
- Repeat until model score ceases to improve
 - 1. Expansion Phase (NI, SI)
 - 2. Adjustment Phase (NR)
 - 3. Simplification Phase (ND, SD)
- EAST: Expansion, Adjustment, Simplification until Termination

Efficient Model Evaluation

Experiment Results and Explanations

Conclusions

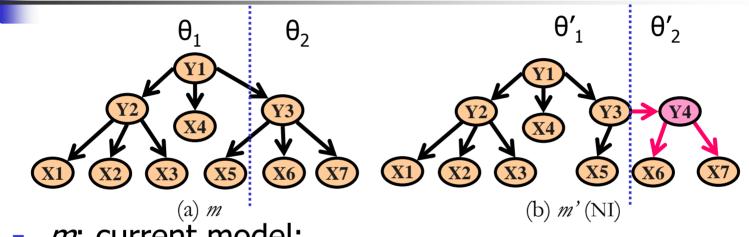
The Complexity of Model Evaluation

- Compute likelihood term max $_{\theta} \log P(D|m, \theta)$ in BIC
- EM algorithm necessary because of latent variables
- EM is an iterative algorithm
 - At each iteration, do inference for every data case

l = 30 the number of latent variables in the current model n = 70 the number of manifest variables in the current model

- The complexity of EM algorithm has THREE factors
 - 1. #of iterations: M = 100
 - 2. Sample size: N = 10,000
 - 3. Complexity of inference for one data case is the model size: O(l + n)
- Evaluating a candidate model: $O(MN(l + n)) \rightarrow 10^8$
- How to reduce the complexity:
 - Restricted Likelihood (RL) Method
 - Data Completion (DC) Method

Restricted Likelihood: Parameter Composition



- *m*: current model;
- *m*⁴: candidate model generated by applying a search operator on *m*

new

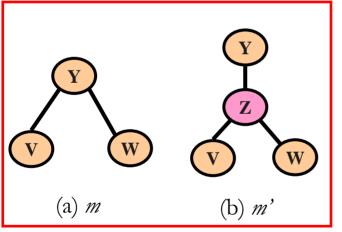
• The two models share many parameters • *m*: (θ_1, θ_2) ; *m*': (θ_1', θ_2')

Restricted Likelihood

- Know optimal parameter values for m: (θ_1^*, θ_2^*) ;
- maximum restricted likelihood:
 - Freezing $\theta_1' = \theta_1^*$ and Varying θ_2'
 - Likelihood \approx Restricted Likelihood $\max_{\theta 2'} \log P(D|m', \theta_1^*, \theta_2') \approx \max_{(\theta 1', \theta 2')} \log P(D|m', \theta_1', \theta_2')$
- **RL based evaluation**: likelihood → restricted likelihood BIC_RL(m'|D) = $\max_{\theta_{2'}} \log P(D|m', \theta_1^*, \theta_2') - d(m') \log N/2$
- How the complexity is reduced? (sample size N = 10,000)
 - 1. Need less iterations before convergence: M' = 10
 - 2. Inference is restricted to new parameters: model size = O(1)M'N O(1) $\rightarrow 10^5$

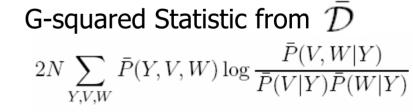
Data Completion

- Complete data D using $(m, \theta^*) \rightarrow \overline{D}$
- Use $\overline{\mathcal{D}}$ to evaluate candidate models



Null Hypothesis:

 V and W are conditionally independent given Y



 $O(N) \rightarrow 10^4$ (RL: 10^5)

Model Selection

- How the complexity is reduced? (sample size N = 10,000)
 - No iterations any more
 - Linear in sample size

Efficient Model Evaluation

Experiment Results and Explanations

Conclusions

RL vs. DC: Data Analysis

- Two Algorithms: EAST-RL and EAST-DC
- Date sets:
 - Synthetic data
 - Real-world data

	$1\mathrm{k}$	$5\mathrm{k}$	10k
m_7	$\mathcal{D}_7(1k)$	$\mathcal{D}_7(5k)$	$\mathcal{D}_7(10k)$
m_{12}	$\mathcal{D}_{12}(1k)$	$\mathcal{D}_{12}(5k)$	$\mathcal{D}_{12}(10k)$
m_{18}	$\mathcal{D}_{18}(1k)$	$\mathcal{D}_{18}(5k)$	$\mathcal{D}_{18}(10k)$

	num vars	num states per var	sample size	
			train	test
ICAC	31	3.5	1200	301
KIDNEY	35	4.0	2000	600
COIL	42	2.7	5822	4000
DEPRESSION	100	2	500	104

Quality measure:

- Synthetic: empirical KL divergence (approximate); 10 runs
- Real-world: logarithmic score on testing data (prediction); 5 runs

RL vs. DC: Efficiency

Synthetic data:

	time	D ₇ (1k)	D ₇ (5k)	D ₇ (10k)	D ₁₂ (1k)	D ₁₂ (5k)	D ₁₂ (10k)	D ₁₈ (1k)	D ₁₈ (5k)	D ₁₈ (10k)
	RL	.7	7.1	8.3	17.2	1.4	2.6	.7	6.0	18.4
30	DC	.6	5.8	8.4	6.6	0.7	1.4	.6	3.9	8.2
	RL/DC	1.1	1.2	1.0	2.6	2.0	1.9	1.2	1.5	2.2

Real-world data:

	time	ICAC	KID.	COIL	DEP.
	RL	0.22	1.00	2.31	3.58
R	DC	0.09	0.27	0.68	0.58
	RL/DC	2.4	3.7	3.4	6.2

RL vs. DC: Model Quality

- Synthetic data:
 - 12 and 18 variables : EAST_RL beats EAST_DC
 - 7 variables : identical models

	emp-KL	D ₁₂ (1k)	D ₁₂ (5k)	D ₁₂ (10k)	D ₁₈ (1k)	D ₁₈ (5k)	D ₁₈ (10k)
ZC	RL	.0999	.0311	.0032	.1865	.0148	.0047
	DC	.1659	.0590	.0051	.2171	.0371	.0113
	DC/RL	1.7	1.9	1.6	1.2	2.5	2.4

Real-world data: EAST_RL beats EAST_DC

	logScore	ICAC	KID.	COIL	DEP.
30	RL	-6172	-16761	-34121	-4220
	DC	-6231	-17236	-35025	-4392
	Ratio	0.6%	2.8%	2.6%	3.9%

Theoretical Relationships

Objective function: BIC functions

- Resort to RL and DC due to hardness
- How RL and DC are related to BIC?
- Proposition 1 (RL and BIC) : For any candidate model m' obtained from the current model m,
 RL functions
 BIC functions.
- Proposition 2 (DC and BIC): For any candidate model m' obtained from the current model m using the NR, ND or SD operator, DC functions (NR, ND and SD) ≤ BIC functions (NR, ND and SD)

No clear relations between DC and BIC functions in the case of SI and NI operators.

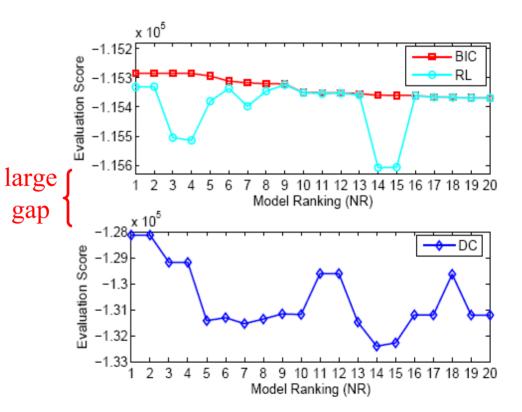
Comparison of Function Values

RL functions

 Tight lower bound BIC

DC functions

- Lower bound BIC
- Far away from BIC
- Similar stories on ND, SD.



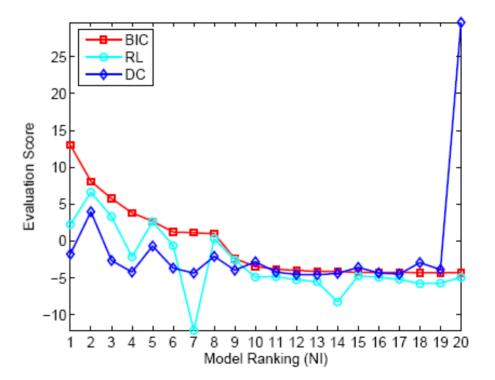
Comparison of Function Values

RL functions:

- Lower bound
- Tight in most cases
- Good ranking

DC functions:

- Not lower bound
- Bad ranking



Comparison of Model Selection

# steps	$\mathcal{D}_7(1k)$	$\mathcal{D}_7(5k)$	$\mathcal{D}_7(10k)$	$\mathcal{D}_{12}(1k)$	$\mathcal{D}_{12}(5k)$	$\mathcal{D}_{12}(10k)$	$\mathcal{D}_{18}(1k)$	$\mathcal{D}_{18}(5k)$	$\mathcal{D}_{18}(10k)$
RL > DC	0	0	0	5	5	5	4	7	4
RL = DC	0	2	2	7	14	15	16	25	28
$\mathrm{RL} < \mathrm{DC}$	0	0	0	0	0	1	0	3	2
Total	0	2	2	12	19	21	20	35	34

D₇(1k), D₇(5k), D₇(10k)

- RL and DC picked the same models
- The other 6 data sets
 - Most steps : the same models
 - Quite a number of steps : RL picked better models.

Performance Difference Explained

- EAST_RL uses RL functions in model evaluation
- EAST_DC uses DC functions in model evaluation
- RL functions are more closely related to BIC functions than DC functions
 - Theoretically
 - Empirically
- Model Selection
 - RL picks better models than DC during search
- EAST_RL finds better models than EAST_DC

Efficient Model Evaluation

- RL: find better models
- DC: more efficient
- Deeper understanding → new search-based algorithms (future work)



Thank you!