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I The policies for D3 and D2 are intractably large



An influence diagram with one decision
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An influence diagram with one decision
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I Policy δD : O1 × . . . × O20 → D
I The ID itself is a very efficient representation of δD



Two decisions
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I The ID is a very efficient representation of
δ2(X1, X2, D1, O1, . . . , O20)

I To determine δ1(X1, X2) we need
δ2(X1, X2, D1, O1, . . . , O20).
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I The ID is a very efficient representation of
δ2(X1, X2, D1, O1, . . . , O20)

I To determine δ1(X1, X2) we need
δ2(X1, X2, D1, O1, . . . , O20).

I A direct representation of δ2(X1, X2, D1, O1, . . . , O20) is too
costly

I The basic problem is that we need
P(O1, . . . , O20|x1, x2, D1) when deciding D1



Overestimation of information
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I Instead of 20 observations for C, we may assume that we
know the state of C when deciding D2



Overestimation of information
Known when deciding D1

D1

E
D2 B U

A

C

X1 X2

F

I Instead of 20 observations for C, we may assume that we
know the state of C when deciding D2

I δ2(X1, X2, D1, O1, . . . , O20) is approximated by
δ′

2(X1, X2, D1, C)



Overestimation of information
Known when deciding D1

D1

E
D2 B U

A

C

X1 X2

F

I Instead of 20 observations for C, we may assume that we
know the state of C when deciding D2
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I And now we have an efficient (approximate) representation
of δ1(X1, X2)



Sampling
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For each configuration (x1, x2, d1) over X1, X2, D1 do N times
I sample a configuration c over (O1, . . . , O20, x1, x2, d1)

I Solve the ID with c inserted (the result is d2 with expected
utility u)

I Construct the sample s = (x1, x2, d1, u)

Use the N constructed samples to establish EU(D1|X1, X2).
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A Nasty Influence Diagram
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The previous techniques cannot cope.
Information abstraction: introduce latent variables connecting
the information with the decision node.



An abstraction scheme: the conveyor belt
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where H1, . . . , Hn have an increasing number of states



Example: history variables
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Example: history variables

D1

B D2

C D3

E U

A

X1

Y1

Z1

X2

Y2

Z2

X3

Y3

Z3

An ID with three decisions. A good representation of δ3

D1

B

H3

D2

C

H7

U

A

X1

Y1

Z1

X2

Y2

Z2

E

X3

Y3

Z3

H1

H2
H4

H5

H6

Delta3

An approximate representation of δ2, where δ3 is approximated
through a belt of history variables



A representation of the first policy
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An approximate representation of δ1 with history variables for
both δ2 and δ3



Another abstraction scheme: conditional
decomposition of the domain

I The policy has the form: if φ(Z ) = zi then fi(Xi)
i = 1, . . . , m,
where Z and Xi are subsets of the variables of the policy
domain

I m = 2: if φ(Z ) then f (X1) else g(X0),
where φ is a Boolean function

I φ may be an alert function ("Return for more fuel", "Your
opponent is close to fullfilling her assignment")



Graphical representation of conditional decomposition
of domains
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Graphical representation of conditional decomposition
of domains
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SD1 and SD2 have an extra state, na, but otherwise they hold
only decisions relevant for f = 1 or 0, respectively.



Learning of information abstraction
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And we wish to learn the unknown parameters for this BN
(knowing the number of states of H1 and H2).



Sampling and EM
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Sample the observed variables from the initial ID; for each
sample, determine the optimal decision; hereby establish a
database over observations and decisions.
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Use the EM algorithm to learn the unknown parameters in the
BN.



The poors man’s sampling
It may be too time consuming to solve an ID for each sample
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The poors man’s sampling
It may be too time consuming to solve an ID for each sample
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Convert the ID using Coper’s trick (Cooper 1988)
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Insert U = 1 and sample (X , Y , Z , Delta); use the EM algorithm
as previously; possibly modify the CPT for Delta to be
deterministic



Experiment, history variables
Poor man’s sampling. 10.000 cases
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Experiment, history variables
Poor man’s sampling. 10.000 cases
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I H1 with three states and H2 with fours states
I For all eight scenarios the learned structure gave maximal

probability to the correct decision.



Experiment, conditional decomposition
Poor man’s sampling. 10.000 cases
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Experiment, conditional decomposition
Poor man’s sampling. 10.000 cases
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I The learned structure had all decisions correct
I Learning a policy over f (X ), SD1(Z ), SD2(Y ) resulted in a

policy with 5 out of 8 decisions correct



Future work

I Experiments with real world IDs
I Library of abstraction schemes
I Alternative to (or combination with) LIMIDS (including

single policy updating) - in particular for dynamic IDs.
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