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An impossible influence diagram
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» The policies for D3 and D, are intractably large



An influence diagram with one decision
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An influence diagram with one decision
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Two decisions
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» To determine J; (X1, X2) we need
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Two decisions

Known when deciding D1
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» The ID is a very efficient representation of
92(X1,X2,D1,01,...,02)
» To determine J; (X1, X2) we need
92(X1,X2,D1,01,...,050).
» A direct representation of d,(X1,X2,D;,04,...,05) is too

costly

» The basic problem is that we need
P(O4,...,020|X1,X2,D1) when deciding D,




Overestimation of information
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» Instead of 20 observations for C, we may assume that we
know the state of C when deciding D2
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> 02(X1,X2,D1,01,...,02) is approximated by
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Overestimation of information

Known when deciding D1
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» Instead of 20 observations for C, we may assume that we
know the state of C when deciding D2

> 02(X1,X2,D1,01,...,02) is approximated by
05(X1,X2,D1,C)
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» And now we have an efficient (approximate) representation
of 51()(1, X2)



Sampling

Known when decicing D1

For each configuration (X3, X2,d1) over X1, X,,D; do N times

» sample a configuration c over (O, ..., 02, X1, X2,d1)
» Solve the ID with ¢ inserted (the result is d, with expected
utility u)

» Construct the sample s = (X1, X2,d1,U)
Use the N constructed samples to establish EU(D1|X1, X2).



A Nasty Influence Diagram
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The previous techniques cannot cope.




A Nasty Influence Diagram
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Information abstraction: introduce latent variables connecting

the information with the decision node.



An abstraction scheme: the conveyor belt

Known when deciding D

The information is abstracted down to one variable (with rather
many states)
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where Hy, ..., H, have an increasing number of states



Example: history variables
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Example: history variables
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An approximate representation of J,, where 3 is approximated
through a belt of history variables



A representation of the first policy

An approximate representation of §; with history variables for
both d, and d3



Another abstraction scheme: conditional
decomposition of the domain

» The policy has the form: if $(Z) = z; then f;(X;)
i=1,....m,
where Z and X; are subsets of the variables of the policy
domain

» m = 2:if ¢(Z) then f(X;) else g(Xop),
where ¢ is a Boolean function

» ¢ may be an alert function ("Return for more fuel”, "Your
opponent is close to fullfilling her assignment")



Graphical representation of conditional decomposition
of domains
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if f(E,D1) then SD1(E,F) else SD2(D1,G),



Graphical representation of conditional decomposition
of domains
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if f(E,D1) then SD1(E,F) else SD2(D1,G),
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SD1 and SD2 have an extra state, na, but otherwise they hold
only decisions relevant for f = 1 or 0, respectively,



Learning of information abstraction
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Figure: This is the ID

Known when deciding D
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And we wish to learn the unknown parameters for this BN
(knowing the number of states of H1 and H2).



Sampling and EM
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Sample the observed variables from the initial ID; for each
sample, determine the optimal decision; hereby establish a
database over observations and decisions.
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Use the EM algorithm to learn the unknown parameters in the
BN.



The poors man’s sampling
It may be too time consuming to solve an ID for each sample
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The poors man’s sampling
It may be too time consuming to solve an ID for each sample
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Convert the ID using Coper’s trick (Cooper 1988)

A

Insert U = 1 and sample (X,Y,Z, Delta); use the EM algorithm
as previously; possibly modify the CPT for Delta to be
deterministic



Experiment, history variables
Poor man’s sampling. 10.000 cases

if Z =y then
(if X =y then D =a; else D = ayp)
else (if Y =y then D =az else D = ay)
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» H1 with three states and H2 with fours states



Experiment, history variables
Poor man’s sampling. 10.000 cases

if Z =y then
(if X =y then D =a; else D = ayp)
else (if Y =y then D =az else D = ay)
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» H1 with three states and H2 with fours states
» For all eight scenarios the learned structure gave maximal
probability to the correct decision.



Experiment, conditional decomposition
Poor man’s sampling. 10.000 cases
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» The learned structure had all decisions correct



Experiment, conditional decomposition
Poor man’s sampling. 10.000 cases
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» The learned structure had all decisions correct
» Learning a policy over f(X),SD1(Z),SD2(Y) resulted in a

policy with 5 out of 8 decisions correct



Future work

» Experiments with real world IDs
» Library of abstraction schemes

» Alternative to (or combination with) LIMIDS (including
single policy updating) - in particular for dynamic IDs.
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