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Introduction: Bayesian networks

Bayesian networks (BN) are popular (graphical) models in the area of
probabilistic reasoning. Most working probabilistic expert systems are
based on the mathematical theory related to Bayesian networks.

The motivation for this talk is learning Bayesian network structure from
data by the method of maximization of a quality criterion (= score and
search method).

By a quality criterion, also named a score metric or a score, is meant a
special real function Q of the BN structure, usually represented by a
graph G , and of the database D.

There are two important technical requirements on a quality criterion Q
brought in connection with the maximization problem. One of them is
that Q should be score equivalent (Bouckaert 1995), the other is that Q
should be decomposable (Chickering 2002).
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Introduction: algebraic approach

The basic idea of an algebraic approach to learning BN structures
(Studený 2005) is to represent both the BN structure and the database
by a real vector.

The algebraic representative of the BN structure given by an acyclic
directed graph G is a certain integral (= integer-valued) vector uG ,
called the standard imset (for G ).

The crucial point is that every score equivalent and decomposable criterion
Q is an affine function (= sum of a constant and a linear function) of the
standard imset. More specifically, one has

Q(G ,D) = sQD − 〈t
Q
D , uG 〉 , where sQD ∈ R,

tQD is a real vector of the same dimension as uG and 〈∗, ∗〉 denotes the

scalar product. The vector tQD is named the data vector (relative to Q).
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Introduction: geometric view

The aim of this contribution is to enrich the algebraic approach by a
geometric view.

One can imagine the set of all standard imsets over a fixed set of variables
N as the set of points in the corresponding Euclidean space. The result
presented here is that it is the set of vertices (= extreme points) of a
certain polytope.

Thus, once one succeeds to describe the above mentioned polytope in the
form of a (bounded) polyhedron, one gets a classic task of linear
programming: to maximize/minimize a linear function over a polyhedron.

Motivated by the idea of possible use of the simplex method (Schrijver
1986), we have introduced the concept of geometric neighborhood for
standard imsets and made a drafty analysis in the case 3 and 4 variables.
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Learning concepts: Bayesian network structure

One of possible definitions of a (discrete) Bayesian network is that it is a
pair (G ,P), where G is an acyclic directed graph over a (non-empty finite)
set of nodes (= variables) N and P a discrete probability distribution over
N that is Markovian with respect to G . (Lauritzen 1996)

Having fixed (non-empty finite) sample spaces Xi for variables i ∈ N, the
respective (BN) statistical model is the class of all probability distributions
P on XN ≡

∏
i∈N Xi that are Markovian with respect to G .

To name the shared features of distributions in this class one can use the
phrase BN structure.

M. Studený and J. Vomlel (Prague) A Geometric Approach to Learning September 17, 2008 6 / 24



Learning concepts: quality criterion

Data are assumed to have the form of a complete database D : x1, . . . , xd

of the length d ≥ 1, that is, of a sequence of elements of XN .

Provided the sample spaces Xi with |Xi | ≥ 2 for i ∈ N are fixed let

DATA (N, d) denote the collection of databases over N of the length d .

Moreover, let DAGS (N) denote the collection of all acyclic directed
graphs over N.

Definition (quality criterion)

Quality criterion or a score (for learning BN structures) is a real function

Q(G ,D) on DAGS (N)× DATA (N, d).

In this brief overview we omit examples of quality criteria and the question
of their statistical consistency.
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Learning concepts: score equivalent criterion

Since the aim of the learning procedure is to get the BN structure it is
natural to require that the quality criterion satisfies the following
condition:

Definition (score equivalent criterion)

A quality criterion Q will be named score equivalent if, for every
D ∈ DATA (N, d), d ≥ 1, one has

Q(G ,D) = Q(H,D) whenever G ,H ∈ DAGS (N)

are independence equivalent.

Most quality criteria used in practice are score equivalent.
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Learning concepts: decomposable criterion

Definition (decomposable criterion)

A criterion Q will be called decomposable if there exists a collection of
functions qi |B : DATA({i} ∪ B, d)→ R where i ∈ N, B ⊆ N \ {i}, d ≥ 1
such that, for every G ∈ DAGS (N), D ∈ DATA (N, d) one has

Q(G ,D) =
∑

i∈N qi |paG (i)(D{i}∪paG (i))

where DA : x1
A, . . . , x

d
A denotes the projection of D to the marginal space

XA ≡
∏

i∈A Xi for ∅ 6= A ⊆ N and paG (i) ≡ {j ∈ N; j → i} the set of
parents of i ∈ N.

All criteria used in practice are decomposable.
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Learning concepts: local search methods
The basic idea is that one introduces a neighborhood relation between BN
structure representatives. The one uses greedy search techniques to find a
local maximum of Q with respect to that neighborhood concept.

Example (essential graphs and inclusion neighborhood for 3 variables)
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Algebraic approach: imset

N ... a finite set of variables

P(N)≡ {A; A ⊆ N} ... the power set of N

Definition (imset)

An imset u is a function u : P(N) 7→ Z.

We will regard is as a vector whose components are integers and are
indexed by subsets of N.

Actually, any real function m : P(N)→ R will be interpreted as a (real)
vector in the same way. The symbol 〈m, u〉 will then denote the scalar
product of two vectors of this type:

〈m, u〉 ≡
∑
A⊆N

m(A) · u(A) .

M. Studený and J. Vomlel (Prague) A Geometric Approach to Learning September 17, 2008 11 / 24



Algebraic approach: elementary imset

Given A ⊆ N, the symbol δA will denote a special imset given by:

δA(B) =

{
1 if B = A,
0 if B 6= A,

for B ⊆ N.

Definition (elementary imset)

By an elementary imset is meant an imset of the form

u〈a,b|C〉 = δ{a,b}∪C + δC − δ{a}∪C − δ{b}∪C ,

where C ⊆ N and a, b ∈ N \ C are distinct.

In this algebraic framework it encodes an elementary conditional
independence statement a ⊥⊥ b |C .
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Algebraic approach: standard imset

Definition (standard imset)

The standard imset for an acyclic directed graph G is given by the formula

uG = δN − δ∅ +
∑
a∈N

{δpaG (a) − δ{a}∪paG (a)} .

Here paG (a) ≡ {b ∈ N; b → a in G} denotes the set of parents of the node a.

The standard imset is uniquely determined representative of a Bayesian
network structure.

Since every standard imset over N has at most 2 · |N| non-zero values, it
can be represented in the memory of a computer with polynomial
complexity with respect to |N|.
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Convex geometry: polytopes and polyhedrons
Consider the Euclidean space RK , where K is a non-empty finite set.

Definition (polytope)

A polytope in RK is the convex hull of a finite set of points in RK .
Its dimension dim(P) is the dimension of its affine hull.

The least set of points whose convex hull is a polytope P is the set of its
extreme points.

Definition (polyhedron)

By an affine half-space in RK is meant a set

H+ = {x ∈ RK ; 〈v, x〉 ≤ α} ,

where 0 6= v ∈ RK is a non-zero vector and α ∈ R. A polyhedron is the
intersection of finitely many affine half-spaces. It is bounded if it does not
contain a ray {x + α ·w; α ≥ 0} for any x,w ∈ RK , w 6= 0.
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Convex geometry: Weyl-Minkowski theorem

Theorem (Weyl-Minkowski theorem)

A set P ⊆ RK is a polytope iff it is a bounded polyhedron.

A further important observation is that if P is a full-dimensional polytope
then its irredundant description in the form of a polyhedron is unique.

Provided that the polytope is rational, that is, it is the convex hull of a
finite subset of QK , the respective (irredundant) half-spaces are given by
rational vectors and constants.

They are computer packages that allow one to get the description in the form of

a polyhedron on the basis of the description in the form of a (rational) polytope.
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Result: standard imsets are vertices of a polytope

Theorem (main result)

The set of standard imsets over N is the set of vertices of a rational
polytope P ⊆ RP(N). The dimension of the polytope is 2|N| − |N| − 1.

Now, recall that every score equivalent and decomposable criterion Q
necessarily has the form:

Q(G ,D) = sQD − 〈t
Q
D , uG 〉 for any G ∈ DAGS (N),D ∈ DATA (N, d) ,

where sQD ∈ R and tQD : P(N)→ R do not depend on G .

The consequence is as follows: the task to maximize Q over BN structures
(= standard imsets) is equivalent to the task to maximize an affine
function over the above mentioned polytope.
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Example: the case of three variables (essential graphs)

In this case, one has 11 BN structures and they break into 5 types
(= permutation equivalence classes).
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B

CA

B

A C

B

CA

B

CA

B

A C

B

CA

B

CA

B

A C

B

CA

B

B

CA

A C
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Example: the case of three variables (standard imsets)

The standard imsets can also be classified by the number of edges in the
corresponding essential graph.

The zero imset corresponds to the complete (undirected) essential
graph.

Six elementary imsets break into two types, namely u〈a,b|∅〉 and
u〈a,b|c〉; the essential graphs are a→ c ← b and a −− c −− b.

Three “semi-elementary” imsets of the form
u〈a,bc|∅〉 ≡ δabc + δ∅ − δa − δbc define one type; the essential graphs
have just one undirected edge.

The imset δN −
∑

i∈N δi + 2 · δ∅ corresponds to the empty essential
graph.

The dimension of the polytope generated by these 11 imsets is 4.
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Example: the case of three variables (polyhedron)

To get its irredundant description in the form of a polyhedron we
embedded it in a 4-dimensional space. Then we used the computer
package Convex (Franz 2006) to get all 13 polyhedron-defining
inequalities, which break into 7 types. They can be classified as follows:

Five inequalities hold with equality for the zero imset. They break
into 3 types: 0 ≤ 2 · u(abc) + u(ab) + u(ac) + u(bc),
0 ≤ u(abc) + u(ab) and 0 ≤ u(abc).

Eight inequalities achieve equality for the imset corresponding to the
empty graph. They break into 4 types, namely u(abc) ≤ 1,
u(abc) + u(ab) ≤ 1, u(abc) + u(ab) + u(ac) ≤ 1 and
u(abc) + u(ab) + u(ac) + u(bc) ≤ 1.

In the case of 4 variables one has 185 BN structures breaking into 20
types. The dimension of the polytope is 11. The number of corresponding
polyhedron-defining inequalities is 154.
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Geometric neighborhood

One of possible interpretations of the simplex method is that it is a kind of
“greedy search” method in which one moves between vertices (of the
polyhedron) along its (geometric) edges. This motivated the definition:

Definition (geometric neighborhood)

We say that two standard imsets u, v are geometric neighbors if the
line-segment E connecting them in RP(N) is an edge of the polytope P
(generated by the set of standard imsets), which means P \ E is convex.

We characterized the geometric neighborhood in the case of three and four
variables and compared it with the inclusion neighborhood.
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Geometric neighborhood: search space for three variables

Example
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M. Studený and J. Vomlel (Prague) A Geometric Approach to Learning September 17, 2008 21 / 24



Geometric neighborhood: GES Failure

What are the consequences?

Example

There exists a database D (of the length d = 4) over N = {a, b, c} such
that the BIC criterion achieves its local maximum in the BN structure
given empty graph G 0 and its global maximum for (any of) the graph(s)
Ĝ of the type a→ b ← c .
Put Xi = {0, 1} for i ∈ N and

D : x1 = (0, 0, 0), x2 = (0, 1, 1), x3 = (1, 0, 1), x4 = (1, 1, 0).

Actually, this is the asymptotic behavior of any consistent score equivalent
decomposable criterion Q, provided the database is “generated” from the
empirical distribution P̂ given by D. In particular, the GES algorithm
(Chickering 2002) should (asymptotically) learn the empty graph G 0, while
it is clear that (any of the graphs) Ĝ gives a more appropriate BN
structure approximation for P̂.
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Conlusions

In our view, this is an example of the failure of the GES algorithm which
may occur whenever a disputable data faithfulness assumption is not valid.
The point of the preceding example is that the GES algorithm is based on
the inclusion neighborhood. This cannot happen if the greedy search
technique is based on the geometric neighborhood.

Therefore, we think the concept of geometric neighborhood is quite
important. We plan to direct our future research effort to algorithms for
its efficient computation.

These questions concern the complexity of a potential (future) greedy
search procedure for maximization of a quality criterion Q based on the
geometric neighborhood.

The conjecture that the inclusion neighborhood is always contained in the

geometric one has recently been confirmed by Raymond Hemmecke.
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