
Conclusions
We have shown that probabilistic model-based diagnosis can be decomposed into computation
of various probabilities, in which a central role is played by the Poisson-binomial distribution.
When all probabilities pc = P (oc | ac) are assumed to be equal, a common simplifying assumption
in model-based diagnosis, the analysis reduces to the use of the standard binomial distribution.

So far, no attempts were made in related research to look inside what happens in the diagnostic
process, as was done in this paper. We expect that it becomes thus possible to investigate further
variations in probabilistic model-based diagnosis, for example, by adopting assumptions different
from those in this paper with regard to fault behaviour in systems.
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Abductive Diagnosis
Determining the abductive diagnoses of a Bayesian diagnostic problem amounts to comput-
ing P (δC | ω), and then finding the δC which maximises P (δC | ω) [3], i.e.

δ∗C = argmax
δC

P (δC | ω).

The probability P (δC | ω) can be computed by Bayes’ rule, using the probabilities from the
specification of a Bayesian diagnostic system:

P (δC | ω) =
P (ω | δC)P (δC)

P (ω)
. (4)

Using the independence relations derived from a Bayesian diagnostic system, basic probabil-
ity theory and the definition of a Bayesian diagnostic problem yield the following derivation:

P (ω | δC) = P (iω)
∑
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P (Oc | π(Oc)). (5)

Let the notation S : v denote that v is a member of the set S. Then, the following additional
assumptions can be made explicit:

• P (Oc | π(Oc) : ac) = P (Oc | ac), i.e. the probabilistic behaviour of a component that is
faulty is independent of its inputs;

• P (Oc | π(Oc) : āc) ∈ {0, 1}, i.e. normal components behave deterministically.

Decomposition
We start by distinguishing between various types of components, inputs and outputs, in
order to make the necessary distinction:

• The sets of components assumed to function normally and abnormally will be denoted by
C ā and Ca, respectively, with C ā, Ca ⊆ COMPS;

• The sets C ā and Ca are partitioned into sets of components, for observed and unobserved
outputs, indicated by the sets C ā

ω, C
ā
u, C

a
ω, and Ca

u, respectively.

Thus, C ā = C ā
ω ∪ C ā

u and Ca = Ca
ω ∪ Ca

u.

It is now possible to decompose the product of the entire set of components, as follows:
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P (Oc | ac).

As the probability of an output of a normally functioning component was assumed to be
either 0 or 1, i.e. P (Oc | π(Oc) : āc) ∈ {0, 1}, these probabilities yield, when multiplied,
Boolean functions. One of these Boolean functions, denoted by ϕ, is defined as follows:
ϕ(oā

u, oa
u, iā) =

∏
c∈C ā

u
P (Oc | π(Oc) : āc), where the set of parents π(Oc) may, but need not,

contain random variables from the sets of random variables Oa
u and I ā.

Theorem 1 Let PB = (SB, ω) be a Bayesian diagnostic problem. Then, P (ω | δC) can be expressed
as follows:
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where b(oa
u, iā) ∈ {0, 1} and pc = P (oc | ac).

An alternative version of the theorem can be obtained in terms of expectations using Equa-
tion (3) for the Poisson-binomial distribution:
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P (iāu)EP (biā(O
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i.e. the sum of the mean of the Boolean functions biā, which are functions of the unobserved
inputs iāu, in terms of the probability function P (Equation (1)), weighed by the prior prob-
ability of unobserved inputs iāu. Combining this with Equation (4) yields P (δC | ω). Thus,
to rank diagnoses δC probabilistically it is necessary to compute: (i) EP (biā(O

a
u)), the Poisson-

binomial distributionmean of the behaviour of the normally assumed components, (ii) P (iāu),
(iii)

∏
c∈Ca

ω
P (Oc | ac), the observed abnormal components, and (iv) the prior P (δc). Note that

P (iω) is just an invariant weight factor and P (ω) is a normalising factor; both can be ignored
in computing the probabilistic ranking of the diagnoses δC .

Introduction
Bayesian networks are popular as formalisms to built model-based, diagnostic systems. An alter-
native theory of model-based diagnosis was developed at approximately the same time, founded
on techniques from logical reasoning [5]. The General Diagnostic Engine, GDE for short, is a
well-known implementation of the logical theory; however, it also includes a restricted form of
uncertainty reasoning to focus the diagnostic reasoning process [2]. Previous research by Geffner
and Pearl proved that the GDE approach to model-based diagnosis can be equally well dealt with
using Bayesian networks [4].

This research shows that by adding probabilistic information to a model of a system, the predic-
tions that can be made by the model can be decomposed into a logical and a probabilistic part.
The logical specifications are determined by the system components that are assumed to behave
normally, constituting part of the system behaviour. This is complemented by uncertainty about
behaviour for components that are assumed to behave abnormally. In addition, it is shown that
the Poisson-binomial distribution plays a central role in determining model-based diagnoses.

Poisson-binomial Distribution
Let s = (s1, . . . , sn) be a Boolean vector with elements sk ∈ {0, 1}, where sk is a Bernoulli discrete
random variable with value success (1) or failure (0). Let the probability of success of trial k be
indicated by pk ∈ [0, 1] and the probability of failure be set to 1 − pk. Then, the probability of
obtaining vector s as outcome is equal to

P (s) =

n∏

k=1

p
sk

k
(1 − pk)1−sk. (1)

The Poisson-binomial distribution is employed to describe the outcomes of n independent
Bernoulli distributed random variables, where only the number of successes and failures are
counted [1]. The probability that there are m successful outcomes amongst the n outcomes is
then defined as:

f (m; n) =
∑

s1+···+sn=m

n∏

k=1

p
sk

k
(1 − pk)1−sk, (2)

where f is a probability function. Here, the summation means that we sum over all the possible
values of elements of the vector s, where the sum must be equal tom.

Furthermorre, suppose that we model interactions between the outcomes of the trials by means
of a Boolean function b. The expectation or mean of this Boolean function is then equal to:

EP (b(S)) =
∑

s

b(s)P (s). (3)

Note that for b(s) ≡ s1 + · · ·+ sn = m (i.e., the Boolean function that checks whether the number of
successful trials is equal to m), we have that EP (b(S)) = f (m; n). Thus, Equation (3) can be looked
on as a generic way to combine the outcomes of independent trials.

Bayesian Diagnostic Problems
ABayesian diagnostic system is denoted by SB = (G,P ), where P is a joint probability distribution
of the vertices of G, interpreted as random variables, and G is obtained by mapping a logical
diagnostic system SL to a Bayesian diagnostic system:
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Let the set of values of the abnormality variables Ac, with c ∈ COMPS, be denoted by

δC = {ac | c ∈ C} ∪ {āc | c ∈ COMPS − C},

and the set of observations by ω. The set of observed input and output variables are referred to as
Iω and Oω, whereas the unobserved input and output variables will be referred to as Iu and Ou,
respectively. The set of observations is, thus, decomposed as ω = iω ∪ oω. A Bayesian diagnostic
problem is then defined as PB = (SB, ω).
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