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Abstract

We describe an approach to modeling diagnostic problems that is based on a passive obser-
vation of a diagnostician’s work-flow and recording their findings and final diagnosis, from
which the model can be modified directly, or improved by learning from cases so acquired.
While the probabilistic model of a system under diagnosis is necessarily simplified, based
on three-layer Bayesian networks with canonical interactions among the network variables,
we are able to reduce greatly the most important bottleneck—the knowledge engineering
effort that goes into model building. Our initial experience with an implementation of
this idea suggests that the sacrifices in diagnostic quality are not large, while gains are
tremendous.

1 Introduction

It is common knowledge that in today’s stage of
development of normative methods, i.e., meth-
ods based on probability theory and decision
theory, it is not the speed of the algorithms that
is a bottleneck. Even though probabilistic infer-
ence has been shown to be NP-hard (Cooper,
1990) and there exist models that will be too
challenging even for a supercomputer, practical
systems are capable of solving models consist-
ing of hundreds or even thousands of variables
within seconds. The true bottleneck in this ap-
proach is the knowledge engineering effort that
goes into constructing models. It is our expe-
rience, in the domain of machine diagnosis at
Intel and elsewhere, that diagnosing a complex
manufacturing device requires an initial invest-

ment of possibly person-years of knowledge en-
gineering effort. Given that building probabilis-
tic models is a task that requires considerable
knowledge and experience, the initial costs are
too prohibitive in most practical environments.
In order to disseminate the otherwise attractive
probabilistic approach, one needs to find ways
of overcoming the knowledge engineering bot-
tleneck.

The conventional procedure for implement-
ing knowledge-based systems separates model-
building from model usage. Different actors per-
form tasks of building and running the model
at different times (Schreiber et al., 2000). Con-
ventionally a diagnostic session consists of a se-
ries of observations, each, in turn, generating
a query to a previously formulated model that
returns recommendations on the next step in
the diagnosis. (For ease of exposition, we will



abbreviate the phase “during the steps in a di-
agnostic session” as simply “during diagnosis.”)
As the diagnosis progresses, possible causes that
initiated the session are clarified, ending in a
recommendation of a repair or, in clinical cases,
of a treatment and prognosis.

In this paper, we consider an approach that
relaxes this constraint by interleaving model
building and refinement, and execution. A sim-
ilar situation occurs with models derived from
data: Learning a model has been traditionally
a separate activity, often quite computation-
ally intensive, that precedes use of a model for
inference. However, recent interest in online-
learning augments this approach, so that learn-
ing and inference are inter-twined (Blum, 1998).
Query-based diagnosis is analogous in that the
model may change during use. However our ap-
proach is quite different, and we do not draw
upon techniques developed for on-line learning.
We explore here two approaches to mingling
model refinement with the diagnostic session,
one derived from study of work-flow, the other
of learning from cases.

By query-based diagnosis we mean that the
diagnostic model is created and modified in the
course of the diagnosis. Is is fluid and not en-
tirely determined before the diagnosis begins.
The model applied during the diagnostic session
is conditioned on the initial query (sometimes
called the primary-complaint) and the queries
made during the session. It is the structure of
the model that changes, not only the state of
information consisting of the observations used
for inference. The implication of the term is also
that the case data on which the model is based
may be retrieved after the session begins, and
learning from the case data may take place si-
multaneously with the diagnosis. This is made
possible, in part, by the computational power
of the current hardware.

In this paper, which is the first time this idea
has been applied to simplify and improve elici-
tation, we first review a few pre-cursors in the
literature, explain the foundations of our ap-
proach, discuss the system’s architecture as it
evolved from study of work-flow, give some ini-
tial insights on how the computational problems

can be addressed, and finally present the first
prototype, which can be accessed by the reader
on-line.

2 Background

The possibility of learning a model for in-
ference, conditional on specific circumstances
arose as advances in algorithms and hardware
(e.g. “Moore’s law”) made real-time learning
practical. (Wellman et al., 1992) was an early
proponent of building a query-specific proba-
bilistic decision model from a knowledge base.
This line of research has matured and prolifer-
ated numerous automated Bayes network con-
struction methods, for instance, MEBN that
constructs networks from “fragments” based on
attributes of the problem. These methods are
insightful on translating a database represen-
tation into a Bayes network, but do not ad-
dress the question of elicitation during diagno-
sis, but raise a different set of elicitation ques-
tions.(Laskey, 2008)

An example of a full-fledged system that
demonstrates query-driven model-building is
the Priorities system, and the Coordinate
system that grew out of it. They implement
inference models to predict time intervals of in-
dividual’s activities by retrieving relevant cases
from a database of activities. As the authors
describe it:

Rather than attempting to build a
massive static predictive model for all
possible queries, we instead focus the
analysis by constructing a set of cases
from the event database that is consis-
tent with the query at hand.(Horvitz
et al., 2002)

Conceivably the range of models that the
system is capable of generating makes pre-
constructing the models practically impossible.

Similarly, Visweswaran and Cooper have pro-
posed supervised classifier learning, under the
term “instance-based” classifiers, that general-
izes “lazy” learning of classifiers. (Visweswaran
and Cooper, 2004) Their approach averages
over related instance models to avoid pitfalls of
relying on too restrictive a query.



All these approaches condition the model on
the query addressed to it; in contrast, we at-
tempt in addition to learn from user’s actions
while the user is applying the model.

3 Origin of our Approach

As knowledge-engineering practitioners are well
aware, elicitation of causal relationships and
model structure places large cognitive demands
on domain experts. Part of the challenge is the
accessibility of knowledge; during an elicitation
session, the domain expert is faced with a set of
hypothetical circumstances, that often consist
of questions about rare occurrences (since de-
scriptions of common occurrences can often be
derived from data). One would like to elicit this
knowledge when it is current with the activities
of the expert. Why not gather this knowledge at
the time it is used? During diagnosis the expert
is immersed in the problem and the causal rela-
tionships have a cognitive immediacy not avail-
able generally. Incidentally this may be true
at other times, like at the time that the target
system is designed and validated.

In our experience, we find that combining
model building with receiving recommendations
from the model is natural for our users. This
became apparent during an application project-
review with our client, who had designed an al-
ternate approach for supporting diagnosis. Our
application, in conventional fashion, ran infer-
ence cycles, based on the user’s current observa-
tions, to compute posterior probabilities of the
faults present in the model. Our client’s appli-
cation closely followed the steps outlined in the
work flow for the task. It had options for users
to create new observations and to suggest pos-
sible causes relevant to the problem during the
diagnostic session. It lacked any capability for
inference, however, and merely collected cases
that could be reviewed in subsequent situations.
The challenge was put to us to combine infer-
ence with the ability to modify the diagnostic
model as evinced by the user’s suggestions of un-
modeled causal relationships. The manufactur-
ing equipment domain to which this is applied
is dynamic with method and process modifica-

tions occurring monthly, and without software
support that can keep pace with the changes.
And it is fair to say that our client has a sophis-
ticated user in mind, whose understanding of
the diagnostic problem at hand is on a par with
the model they are running. We embraced their
approach as one solution to the well-recognized
“knowledge elicitation bottleneck.”

4 Diagnostic Work-flow

Diagnostic work-flow is the choice of steps avail-
able to the user to pursue the diagnosis. The
software design codifies the process both to
guide the user, and to capture cases for solv-
ing similar problems should they arise again.
In addition to the existing work-flow we add a
mechanism for elicitation of causes in the midst
of the problem-solving work-flow that they are
familiar with.

The process consists of an interaction that
forms a dialog where at each step the applica-
tion suggests the next actions by ranking possi-
ble causes by their posteriors and tests by their
diagnostic value, based on observations already
entered into the model. This fault set is dis-
played as a ranked list of possible diagnoses
along with an indication of the posterior proba-
bilities of the faults, as computed by the under-
lying model. In addition a list of suggested ob-
servations is displayed from those observations
that reside in the model. In suggesting observa-
tions, the Bayesian network engine ranks them
by expected gain in entropy among the faults.

The user has four choices at each step:

1. Select an existing observation variable to
instantiate;

2. Create new test observation;

3. Create a new hypothesized fault; or

4. End the diagnostic cycle by selecting a
cause and making the associated repair.

Creating new observations or faults modify
the causal structure of the model, requiring the
user to indicate what observations a fault man-
ifests, and correspondingly, what faults an ob-
servation implies. Causal relationships are the



primary semantics of the model and the user
deserves some guidance on when they are nec-
essary. For this we bring up a “pop-up” editor,
asking the user to associate a new fault with ob-
servations and vice versa. A screen shot of this
editor is shown in Figure 1.

A primary intent of building the application
around work-flow is to hide the Bayes network
from the user. In doing so we make several sim-
plifying assumptions on model structure: The
model is a bi-partite graph with occasional con-
text nodes to condition faults; all nodes have bi-
nary state spaces; all observation nodes assume
Independence of Causal Influences (ICI); and all
nodes when initially created are assigned default
probabilities so that the user does not need to
enter numeric values. These assumptions may
appear restrictive, however they should be con-
sidered in the context of the feeble guidance that
current support tools offer.

By assuming Independence of Causal Influ-
ences for all observation nodes, the addition
or removal of a cause translates directly into
the addition or removal of one arc and modu-
lar change in the CPT of the child node. This
is critically necessary for modification of the
model to incorporate causal knowledge elicited
during diagnosis, and makes model modification
straightforward. The notion of Independence
of Causal Influences (ICI) has been described
many times in the literature, usually under a
somewhat confusing term causal independence.
Please see (Dı́ez and Druzdzel, 2008) for a re-
view of canonical models, including ICI models.

4.1 Causal Work-flow Example

Aside from the modeling and computational
challenges to updating the model within a di-
agnostic session, the work-flow of such a session
presents no surprises to the user. Consider this
“use-case” example of diagnostic support for a
simplified automobile diagnosis.

The user begins the session by entering the
primary complaint, of smoke visible in the ex-
haust. The application responds by referring to
the appropriate, if incomplete, model, and sug-
gests a list of possible causes, such as worn pis-
ton rings, etc. To isolate the likely cause, the

user proposes to do a compression test, a test
that is not in the existing model. When the user
enters the description of the test, she also des-
ignates other possible causes which are relevant
to it, both from a list of those already in the
model, and those she might create, in addition
to worn piston rings, such as an exhaust valve
leak. More significant is that she is steered to
not designating causes to which the test is not
relevant, making the test a good differentiator
among them. Similarly the user could add a
new possible cause of the primary complaint.
She would then be prompted at that step in the
session to designate the relevant observations.
The session continues through diagnostic cycles
by the user taking one of the four actions listed
above.

The result of this interaction style is a model
that makes tradeoffs that lean toward a more
dynamic, up-to-date model at the cost of cur-
rent model accuracy and completeness. The ap-
propriate degree to which to shift the interac-
tion style toward dynamicism depends strongly
on the domain.

5 A Working Prototype

We have implemented the ideas presented
in this paper in a prototype diagnostic sys-
tem, called Marilyn, available to inter-
ested readers at the Decision Systems Lab-
oratory’s web site at the following location:
http://barcelona.exp.sis.pitt.edu/. A
sister implementation to Marilyn is in prepa-
ration at Intel, to be evaluated on machinery
maintenance tasks. We will describe the aca-
demic prototype below, understanding that the
two implementations share many features.

From the point of view of user work-flow,
Marilyn appears as a smart data-entry module
that collects observables, such as symptoms and
test results, context information, such as the age
of a device, prior problems with it, etc., and fi-
nally, the final diagnosis. Marilyn involves its
user in a dialog that focuses on entering a di-
agnostic case and does not reveal the underly-
ing probabilistic model. The target users are
diagnosticians, possibly working in a machine



Figure 1: When the user enters a variable name that is not already in the current model, they are presented with
a pop-up editor (here shown in yellow and largely hidden from view), for entering causal information. We see here a
screen shot of the GeNIe editor that shows the model fragments generated by previous diagnoses super-imposed over
the panes of the web application. The model network fragments are not shown to the user in the application.

repair shop. Marilyn takes a very gentle at-
titude towards the user—it merely suggests a
set of possible diagnoses from among those di-
agnoses that have been entered in the past that
are contained in the current model and implied
by the observations entered.

5.1 The System Architecture

The intent of making Marilyn a web-based
program is to make the system accessible from
any computer through the Internet. Marilyn
prototype consists of three elements: (1) user
interface running on the client, (2) database of
cases, and (3) a Bayesian reasoning engine based
on SMILE, both running at the server. Infor-
mation that is entered by the user is stored in a
database (Figure 2 shows the database schema,
which illustrates the components of the infor-
mation collected from the user during a diagnos-
tic session). The database is used by the user
interface module in its auto-complete function.
The database is also accessed directly by the

Figure 2: Entity-relationship diagram for the database
storing diagnostic information in Marilyn



Bayesian reasoning engine, which constructs on
the fly a three-layer Bayesian network that is
used in deriving suggested diagnoses and sug-
gested observations. As revealed in Figure 1, it
is possible to export the underlying network to
GeNIe for the purpose of the examination by a
knowledge engineer.

5.2 The Quality of the System’s Advice

In our experience, the quality of Marilyn’s
initial advice (during the first 10-20 diagnos-
tic cases) is low, as the system is not aware
of most of the possible diagnoses. As time
progresses and the number of cases entered in-
creases, the quality of the model increases and
so does the quality of the system’s advice. It
is our expectation that in such environments as
help desks, where tens of hundreds of cases are
entered daily, Marilyn’s approach will outper-
form novice diagnosticians fairly quickly.

5.3 Managing Variables

A downside of the system’s flexibility toward the
users being able to enter any text as the name
of variable is the possible proliferation of similar
variable names. While its user is typing a name,
Marilyn offers suggestions from the database,
based on simple techniques for string matching
(along the lines of the “auto-complete” function
of web browsers). We believe that for a system
like Marilyn to truly scale, this flexibility is
necessary; however this invites confusion due to
model variables that are named slightly differ-
ently but stand for the same concept.

In the future we hope to augment the string
matching auto-complete feature of Marilyn’s
user interface with more sophisticated statis-
tical language processing techniques. The in-
tent would be to accommodate common typo-
graphic errors using string edit distance mea-
sures as well as more challenging synonymous
labels through semantic similarity techniques.
The ultimate goal is to make this system scale
to large models with as little expert user inter-
vention as possible.

Also to support scaling, we believe that it is
necessary to equip the system with what we call
expert mode in which an expert knowledge en-

gineer downloads the underlying Bayesian net-
work, analyzes it, corrects it as necessary, and
uploads it back to the system. The frequency of
this knowledge base maintenance task depends
on the speed of growth of the model. Similarly,
the expert might review cases generated by di-
agnostic sessions that will be used in learning
to refine the model. Over time the frequency of
reviewing the expert model should converge to
a low level.

An issue related to the expert mode and to
the initial weak performance of the system is
the possibility jump-starting the initial domain
model.1 The quality of this initial model is not
critical and the expert can spend just a little
bit of time entering the most important domain
variables. We expect that the quality of this ini-
tial model will be improved fairly quickly as the
system is fielded and diagnostic cases entered.

5.4 Managing Model Growth

One technical challenge that we are facing with
a system of this type is a possible uncontrolled
growth of the underlying model. Model size is
normally not a problem, as a reasoning engine
such as SMILE is able to handle huge networks
and propagate evidence in them within a frac-
tion of a second. What is more troublesome
are certain undesirable trends in the network
topology. If the number of parents of a single
node, for example, grows above 15, this node
may pose a considerable challenge to the algo-
rithms. Even though Marilyn represents all
conditional probability distributions as DeMor-
gan gates, a variety of ICI model (a detailed
exposition of the DeMorgan gate, a natural and
intuitive combination of Noisy-OR and Noisy-
AND gates can be found as a separate paper in
this volume (Maaskant and Druzdzel, 2008)),
the size of the conditional probability table is a
challenge for the algorithms. Our initial way of
dealing with this problem is imposing a maxi-
mum on the number of parents of every single
node. We control this by means of removing

1Such model can be created manually, or by convert-
ing an existing Bayesian network to a bipartite graph.
GeNIe in fact contains a function to this effect (see the
Diagnosis menu).



weaker connections in the model. In the next
section we speculate about more rigorous meth-
ods for modifying models once fielded.

6 Learning from just a Few Cases

It is natural to consider how automated learn-
ing can be applied in query-based diagnosis by
using a selection of cases to modify an existing
model. In this section we state this problem,
and make a few observations about how one
might go about it; the solution to it is outside
the scope of this paper. The logging function of
the system will generate supervised cases of ses-
sion outcomes that can be used to improve the
accuracy of the model. Much like a case-based
reasoning system, the process envisioned con-
sists of retrieving cases from a database when
a new diagnosis starts. The process resembles
conventional case-based reasoning, but enforces
the strong consistency conditions of a Bayes net-
work model.

Learning from cases is an additional way to
exploit user work-flow, however unlike modifica-
tions made from elicitation of causal links, there
is no direct way to modify the network by in-
spection of a set of cases. The problem is to
determine if the set is consistent, and if so, to
learn a model consistent with the set. To do
this we offer a precise definition of probabilistic
cases and case consistency:

Consider a database of cases indexed by j,
corresponding to a selected set of diagnostic ses-
sions that have been resolved. A case is the rel-
evant part of the diagnostic state at the end of
a diagnosis that has been validated, perhaps by
replace-and-test, or by an expert’s opinion. An
individual case contains both evidence consist-
ing of the complete set of observations from the
session and the posterior of the top (or top few)
faults.

Definition 1. Case. Given evidence for
case j, e(j) = {e(j)}i=1...Ij and the poste-
rior of faults f (1) . . . f (k) obtained by inference
from the current model Mj , a case j is list
of ordered fault marginals for that evidence:
P

(
f (1) | e(j), Mj

)
≥ . . . ≥ P

(
f (k) | e(j), Mj

)
.

Definition 2. Case Consistency. A model M∗

is consistent with a case j, to level k, if the list of
ordered fault marginals given the evidence e(j)

agrees with the case: P
(
f (1) | e(j), M∗

)
≥ . . . ≥

P
(
f (k) | e(j), M∗

)
.

Clearly a case j is consistent with the model
Mj that generated it.

6.1 Stochastic versus Epistemic
Uncertainty

Given a large number of such cases, one may
be tempted to apply conventional supervised
learning techniques to refine the existing model.
Putting aside the problem of a limited number
of cases, and that the case consists most likely
almost entirely of missing values, we argue that
this is inappropriate from the user’s point of
view. The user considers a case as specifying
the exact effect that they expect to see when
the case is run on the correct model. The prob-
abilities in the case are not variations due to a
random sample, rather they indicate epistemic
uncertainty—the knowledge, or lack of it in the
diagnostic outcome given the observation set.

When a database of observations contains
stochastic uncertainty, a statistical learning ap-
proach is appropriate, since, roughly, the true
model is an average of many imprecise in-
stances. In contrast, a case containing epistemic
uncertainty is better considered as a fragment
of the correct network model. The case is “su-
pervised” in the sense of revealing a part of the
joint distribution of the overall network.

The learning problem can now be stated as
one of modifying an existing model to meet the
set of constraints expressed by cases selected as
relevant to the current diagnosis. We call this
learning problem case consistency. Methods to
solve this have been studied as applications of
Jeffreys’ Rule for belief revision (Chan and Dar-
wiche, 2005). Such belief revision changes the
joint distribution of the model. Jeffrey’s rule is
often presented as an alternate means of apply-
ing evidence, by comparison with applying like-
lihoods as evidence (sometimes called “virtual”
or “soft” evidence, but the usage in the liter-
ature isn’t consistent.) In contrast it appears
preferable to distinguish the application of ev-



idence from case consistency, if only to make
a clear semantic distinction between inference
conditioned on observations, and an operation
more like “splicing” a fragment of new knowl-
edge into the existing model.

7 Conclusions

We described an approach to solving diagnos-
tic problems that is based on the concept of
query-based diagnostics and amounts to recover-
ing a normative system based on Bayesian net-
works from a conventional diagnostic work-flow.
Without forcing the user to use a limited vo-
cabulary and variables, and by capturing the
user’s causal understanding, the system allows
for continuous refinement of the model, while
offering suggestions to avoid possible repetition
of terms. While this carries with it a danger
of uncontrolled model growth, we believe that
with incorporation of workflow-generated cases
for belief revision, and possibly off-line interven-
tion of a knowledge engineer, the accuracy of
the system can be maintained. Despite that the
probabilistic model of a system under diagno-
sis is necessarily simplified, based on three-layer
Bayesian networks with canonical interactions
among the network variables, we are still able to
reduce greatly the most important bottleneck—
the knowledge engineering effort that goes into
model building. We have two implementations
of this idea underway, with preliminary results
that are promising.

A system based on the principles outlined in
this paper has to be thoroughly evaluated in a
practical setting. One of our next steps is to em-
ploy our prototype in a diagnostic setting and
carefully monitoring its use, including user ex-
periences, model creation and growth, and the
development of the system’s diagnostic accu-
racy.
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