An Anytime Algorithm for Evaluating
Unconstrained Influence Diagrams

Manuel Luque
Dept. Inteligencia Artificial, UNED
28040 Madrid, Spain
mluque@dia.uned.es

Thomas D. Nielsen and Finn V. Jensen
Department of Computer Science
Aalborg University
9220 Aalborg, Denmark
{tdn,fvj}@cs.aau.dk

Abstract

Unconstrained influence diagrams (UIDs) extend the language of influence diagrams to
cope with decision problems in which the order of the decisions is unspecified. Thus, when
solving a UID we not only look for an optimal policy for each decision, but also for a so-
called step-policy specifying the next decision given the observations made so far. However,
due to the complexity of the problem temporal constraints can force the decision maker
to act before the solution algorithm has finished, and, in particular, before an optimal
policy for the first decision has been computed. This paper addresses this problem by
proposing an anytime algorithm that computes a strategy and at any time provides a
qualified recommendation for the first decisions of the problem. The algorithm performs
a heuristic-based search in a decision tree representation of the problem. Experiments
indicate that the proposed algorithm performs significantly better under time constraints

than dynamic programming.

1 Introduction

An influence diagram (ID) is a framework
for representing and solving Bayesian decision
problems with a linear temporal ordering of de-
cisions (Howard and Matheson, 1984). How-
ever, in many domains the process of finding an
ordering of the decisions is an integral part of
the decision problem, and in these situations the
use of IDs would require all decision orderings
to be explicitly specified in the model, possibly
using artificial nodes and states. Examples of
such decision problems include troubleshooting
and medical diagnosis.

Unconstrained influence diagrams (UIDs)
were introduced to represent and solve decision
problems of this type (Jensen and Vomlelova,
2002)); as a special case this also includes deci-

sion problems with a linear temporal ordering
of the decisions. An optimal strategy in this
framework consists not only of an optimal pol-
icy for each decision, but also of a step-strategy
that prescribes the next decision to consider
given the observations and decisions made so
far. Such strategies are computable using dy-
namic programming in a way similar to that for
traditional IDs (Shachter, 1986} [Shenoy, 1992;
Jensen et al., 1994; Madsen and Jensen, 1999).

Unfortunately, many real world problems
have an inherent complexity that makes eval-
uation through exact methods intractable when
time is scarce. Moreover, even if you had the
time for solving the problem, storing the solu-
tion as a simple lookup table may be a problem:
the number of possible past scenarios to con-
sider in a policy can be intractably large. As

mailto:mluque@dia.uned.es�
mailto:tdn@cs.aau.dk;fvj@cs.aau.dk�

an example, the evaluation of the Ictneo sys-
tem (Bielza et al., 1999) requires a table with
1,66 x 10'* entries and produces a policy with
4,24 x 107 configurations for the first decision.

In this paper we present an anytime algo-
rithm for solving UIDs. The algorithm provides
a solution whenever it is stopped, and given suf-
ficient time it will eventually provide a correct
solution.

In comparison, the standard evaluation algo-
rithm for UIDs (Jensen and Vomlelova, 2002)
is a backward induction algorithm employing
dynamic programming like most algorithms for
IDs. It starts computing an optimal policy for
the last decision and moves backwards in time
until it reaches the first decision. If the process
is stopped prematurely, the algorithm may pro-
vide a policy, however, the prescription for the
first decision is completely un-informed. Fur-
thermore, as described above, all effort so far
may be spent on calculating a policy for a dis-
tant decision with an enormous space for the
past; a task which will decrease considerably in
size when you actually approach the point of the
decision. If you consider a situation with a de-
cision maker (DM) impatiently awaiting advice
on what to do, he most probably wants to get
an informed advice on the first decision rather
than receiving detailed prescriptions for the last
decisions.

To address this problem the proposed any-
time algorithm starts with the first decision and
works its way forward in time. Due to the
nature of the problem, you cannot be sure of
the policy for the first decision before the en-
tire problem has been solved. However, the al-
gorithm will over time gradually improve the
probability of choosing the best decision.

2 Unconstrained Influence Diagrams

UIDs were proposed in (Jensen and Vomlelova,
2002) to represent decision problems in which
the order of the decisions is not linear, and for
which the DM is interested in the best ordering
as well as an optimal choice for each decision.

2.1 The Representation Language

We start considering a very simple example:
the diabetes diagnosis problem, introduced in
(Demirer and Shenoy, 2001)). A physician is try-
ing to decide on a policy for treating patients.
After an initial examination of their symptoms
(S), the physician has to diagnose whether the
patient is suffering from diabetes (D). Diabetes
has two symptoms, glucose in urine and glucose
in blood. Before deciding on whether or not to
treat the patient for diabetes (7'r), the physi-
cian can decide to perform a urine test (UT)
and/or a blood test (BT'), which will produce
the test results U and B, respectively. After the
physician has observed the tests results (if any)
she has to decide whether to treat the patient
for diabetes. Observe that the order in which
the tests are performed is not specified and that
the result of a test is only available if the physi-
cian decides to perform the corresponding test.

To represent this problem by an influence dia-
gram we have to represent the unspecified order-
ing of the tests as a linear ordering of decisions.
This can be done by introducing two decision
variables to model the first test and the second
test, respectively. Unfortunately, the structure
of the decision problem is not apparent from the
model and for large decision problems this tech-
nique will be prohibitive as all possible scenarios
should be explicitly encoded in the model.

In the UID framework, the combinatorial
problem of representing non-sequential decision
problems is postponed to the solution phase.
A UID for the diabetes diagnoses problem is
shown in Figure [I (explained below).

More formally, an wunconstrained influence
diagram (UID) is a DAG over three sets of
nodes: a set of decision nodes (rectangles) Vp,
chance nodes V¢, and utility nodes (diamonds)
V. Chance nodes can be of two types, 0b-
servable (circles) and non-observable (double-
circles), and we require that utility nodes have
no children. We will use the terms 'node’ and
'variable’ interchangeably if this does not cause
any confusion.

The quantitative information associated with
a UID consists of probability distributions and

Figure 1: UID for the diabetes diagnosis prob-
lem.

utility functions. For each chance node C we
have a probability distribution P(C'| pa(C)) for
C' given its parents pa(C), and for each utility
node U we have a utility function %y ; ¥y maps
each configuration of the parents of U to a real
number. We assume that the utility functions
combine additively into a joint utility function
.

The semantics of the links are similar to the
semantics from IDs, and the traditional no-
forgetting assumption is also assumed. How-
ever, as opposed to IDs a total ordering of
the decision nodes is not required. While non-
observable variables are variables that will never
be observed, an observable variable will be ob-
served when all its antecedent decision variables
have been decided. For example, in Figure'l B
is observed after deciding on BT, and S is ob-
served before the first decision, since it has no
antecedent decision variables.

The structural specification of a UID yields
a partial temporal order. If a partial order is
extended to a lineal order we get an influence
diagram. Such an extended order is called an
admissible order.

2.2 Solving a UID

Solving a UID means establishing a set of step-
policies and a set of decision-policies. Together,
the step-policies and the decision-policies form
an optimal strategy. To organize the compu-
tations, we work with a secondary computa-
tional structure, called an S-DAG, which is a

DAG representing the admissible orderings of
the nodes in the UID (see Figure[2). A GS-
DAG is a minimal S-DAG containing all admis-
sible orderings relevant for computing an opti-
mal strategy.

Figure 2: An S-DAG for the UID model of Fig-

urel 1.

A step-policy for a node N in an S-DAG
is a rule that based on the current history
hst(INV) U {N} specifies which of its children
ch(N) to go to. As the policy needs not be
deterministic, we formally define a step-policy
for node N as a conditional probability distri-
bution P(ch(N) | hst(N)). A decision-policy for
a decision node D in an S-DAG is probability
distribution P(D | hst(D)). A strategy for an
S-DAG consists of a step-policy for each node
and a decision policy for each decision.

To define the expected utility (EU) of a strat-
egy S, we unfold it to a strategy tree: following
the policies of S we construct a tree in which all
root-leaf paths represent admissible orderings.
The expected utility for a strategy tree is de-
fined as for decision trees, and it is by definition
the expected utility of the strategy.

Jensen and Vomlelova (Jensen and Vom*
lelova, 2002) describe an algorithm for finding a
strategy of maximum expected utility (MEU).
The algorithm utilizes the S-DAG for the UID,
and basically solves the UID/S-DAG through
dynamic programming similarly to solving in-
fluence diagrams (i.e., eliminating the variables
in reverse temporal order).

3 An Anytime Algorithm

In general, the basic idea with an anytime al-
gorithm is that time constraints may cause the
user to be unable to wait for the standard solu-
tion algorithm to finish. Thus, it should be pos-
sible to stop the algorithm at any time, and the

algorithm should then provide an approximate
solution. With this requirement we may settle
for an algorithm that may take longer than the
standard algorithm, but which in the mean time
can provide a better approximate solution than
the standard algorithm.

With respect to UlDs, the standard algo-
rithm provides a strategy by solving the prob-
lem in reverse temporal order. If the algorithm
is stopped prematurely, it can provide a strat-
egy, which consists of choosing completely ran-
domly for the decisions which have not yet been
dealt with, and to follow the calculated optimal
policies for the last decisions. In this way, it can
be said that you have an anytime algorithm; it
provides a strategy whenever it is stopped, the
expected utility of the strategy never decreases
over time, and eventually, the algorithm pro-
vides an optimal strategy.

However, this is not satisfactory. If the user
stops the algorithm prematurely, it is because
she needs to take the first decision, but the al-
gorithm does not give her any clue on what to
do first. Therefore, the aim of an anytime al-
gorithm for solving UIDs (or decision graphs in
general) is to provide more and more informed
advice on what to do first.

We propose an algorithm performing a for-
ward search in a decision tree (Raiffa and
Schlaifer, 1961) representation of the UID. The
tree is built from the root toward the leaves,
and it keeps a list of triggered nodes (the cur-
rent leaves in the tree constructed so far) as can-
didates for expansion.!’ A triggered node X is
expanded by adding its children to the tree and
calculating the expected utility of the path from
the root to X using a heuristic function for es-
timating the maximum expected utility (MEU)
obtainable at the children of X.

3.1 A Search Based Solution Algorithm
An S-DAG (and a GS-DAG) can be converted

into a decision tree (possibly using a dummy
source node), which in turn can be used as a
computational structure for solving the corre-

!The terminology is borrowed from AO* search algo-
rithms (Nilsson, 1980), from which the proposed algo-
rithm has been inspired.

sponding decision problem (disregarding com-
plexity issues). A decision tree is a rooted
tree in which the leaves are utility nodes and
the nonleaf nodes are either decision nodes or
chance nodes. The decisions on the possible or-
derings are made explicit in the model by parti-
tioning the decision nodes into either ordinary
decisions or branching point decisions.

The past of a node X (denoted by past(X))
is the configuration specified by the labels asso-
ciated with the arcs on the path from the root
to X; if X is a value node then past(X) is called
a scenario.

The quantitative part of the decision tree con-
sists of probabilities and utilities. Each arc from
a chance node A is associated with a probabil-
ity P(A = a| past(A)), where A = a is the la-
bel of the arc. These probabilities can be found
by converting the UID into a Bayesian network:
value nodes are removed, and decision nodes are
replaced by chance nodes having no parents and
with an arbitrary probability distribution.? Fi-
nally, with each value node V in the decision
tree, we associate the utility v (past(V')) of the
scenario past(V). These utilities can be read
directly from the UID model.

The decision tree represents each scenario in
the decision problem explicitly; hence the size
of the tree can grow exponentially in the num-
ber of variables. The size can, however, be re-
duced by collapsing identical subtrees, a proce-
dure also know as coalescence (Olmsted, 1983)).
The opportunities for exploiting coalescence can
be automatically detected in the S-DAG of the
UID.

Instead of building the decision tree in full
and solving it using the “average-out and fold-
back” algorithm (Raiffa and Schlaifer, 1961), we
propose to build the tree from the root toward
the leaves. A heuristic function h provides an
estimate of the MEU obtainable at every node
in the decision tree. Thus, at any point in
time we have a partial decision tree in which
the heuristic can be used to estimate the MEU
at the leaf nodes. These estimates can in turn

2The time for computing the probabilities is small

compared to the time required for evaluating the UID,
and we shall therefore not consider this issue further.

be propagated upward in the tree, which gives
an estimate of the MEU of the nodes in the ex-
plored part of the tree, and, in particular, an
estimate of the optimal policy for the decision
nodes in this part.

A collection of optimal policies for a subset
of the decision nodes is called a partial strategy
A/, and a partial strategy based on the heuristic
function is called a partial heuristic strategy A
Clearly, the closer the heuristic function is at
estimating the MEU of the triggered nodes in
the partial decision tree, the closer the EU of
A’ will be at the EU of A’

A partial strategy can always be extended to
a full (not necessarily optimal) strategy by as-
signing random policies to the decision nodes in
the unexplored part of the tree. When we have
a set of policies S, we define the uniform exten-
sion of S as a strategy A such that every policy
in S is in A and the rest of the policies in A are
uniform distributions.

3.2 Selecting a Heuristic Function

The choice of heuristic function not only deter-
mines the policies being computed, but it may
in fact also be used to prune irrelevant parts of
the tree thereby reducing complexity. A spe-
cial class of heuristic functions are the so-called
admissible heuristic functions.

Definition 1. A heuristic function A is said to
be admissible if h(N) > MEU(N) for any node
N in the decision tree.

An admissible heuristic can be exploited dur-
ing the search: Consider a decision node whose
children X and Y are the roots in two subtrees.
If the subtree defined by Y has been explored
and h(X) < MEU(Y), then we need not explore
the subtree rooted at X.

Obviously, we would like the heuristic func-
tion A to define a tight upper bound on the ex-
pected utility, and relative to the computational
complexity of solving the decision tree we would
also like for h to be easy to compute.

3.2.1 An Admissible Heuristic

A possible choice of heuristic function could
be (Vomlelova, 2003)

hy(X) = max(path(X, 1)), (1)

where L is the set of leaf nodes in the subtree
rooted at X and ¢ (path(X,[)) is the sum of the
utilities associated with [and the path from X
to [.

It is trivial to see that Ay is admissible. More-
over, hy has the advantage of being computa-
tionally efficient, since it can be evaluated by
max-marginalizing out the variables appearing
in the domains of the utility potentials. The
number of required max-marginalizations is at
most |Vo U Vp|. In contrast to the dynamic
programming approach, the complexity of com-
puting this heuristic does not depend on the
number of possible paths in the GS-DAG as
max-operations commute.

Unfortunately, preliminary experiments have
shown that hy yields a very loose bound on the
expected utility. For certain UIDs the estimated
optimal policy for the first decision failed to sta-
bilize over time, and in fact a random policy
would on average provide a similar solution in
terms of expected utility. Since we have not
been able to define an alternative computation-
ally efficient admissible heuristic, we have in-
stead been looking for a nonadmissible heuris-
tic.

3.2.2 A Nonadmissible Heuristic

The estimation given by the admissible
heuristic hy can be extremely far from the
MEU. However, since it provides an upper
bound on the expected utility, we can use it
in combination with a lower bound to derive a
good approximation to the expected utility.

As a lower bound hj, we use the expected
utility of the uniform extension of the current
partial strategy; decision nodes in the unex-
plored part of the decision tree are treated
as chance nodes with a uniform distribution.
Relative to the computational complexity of
solving the UID, this heuristic can be calcu-
lated efficiently by sum-marginalizing out the

variables in the utility and probability poten-
tials. The number of required marginalizations
is at most |V U Vp| and does not depend on
the number of paths in the GS-DAG as sum-
marginalizations commute (this means that we
are not required to follow an admissible elimi-
nation order consistent with the UID).

If all the variables in the future of node X
are chance variables, i.e., if future(X) C Vg,
then hz(X) = MEU(X). Furthermore, as the
number of decision nodes in future(X) increases
the larger the difference MEU(X) — hr(X) will
be. The opposite holds for the heuristic Ay (X).

In order to derive a heuristic close to the ac-
tual expected utility, we define the nonadmissi-
ble heuristic h as a weighted linear combination

of hy, and hy:
hMX) = wr(X)hr(X) + wy (X)hy (X)),

where wr(X) = a - kx - ¢(X) and wy(X) =
a - d(X) ; here ¢(X) and d(X) are the num-
ber of chance and decision nodes in future(X),
respectively, and « is a normalizing factor en-
suring that wr(X) + wy(X) = 1. By varying
the parameter kx between 0 and +o0o, we can
achieve any desired mixture of conservatism and
optimism as defined by the two heuristics; note
that kx may be the same for all nodes.

One potential difficulty with this heuristic is
how to choose a good value for kx. To alle-
viate this problem, we propose to update kx
automatically as the tree is expanded. The in-
tuition underlying the updating method is that
we would in general expect the heuristic to be
more precise the closer we get to the leaves: Af-
ter a node X has been expanded we first esti-
mate the expected utility of its children (using
h and the current value for kx). These esti-
mates are then propagated upward in the tree:
If X is a chance node, then the value propagated
to X is EU(X) = > yeon(x) P(Y[past(X))h(Y)
and if X is a decision node then the value
is EU(X) = maxyeq(x)h(Y). By treating
EU(X) as an accurate estimate of the expected
utility for X, we calculate a new value for kx

by setting @(X) = h(X):

EU(X) — ahy(X)d(X)
ac(X)hr(X)

kx :=

Note that kx will always be non-negative, and
that the update is not guaranteed to get us
closer to the true expected utility (we might e.g.
have started off with the “correct” value for kx).

3.2.3 Performing the Search

The search/construction of the coalesced de-
cision tree starts with the tree consisting of a
single root node together with its children (such
a tree stump is always uniquely identifiable).
From this tree structure the method iteratively
expands a node consistent with the UID speci-
fication.

When a node is expanded, its outgoing links
are added to the decision tree as well as any
successor node not already in the tree; the node
to be expanded is always selected among the
triggered nodes/leaves. When a node is added
to the decision tree, a heuristic estimate of the
MEU for that node is calculated. The values
are then propagated upwards, possibly updat-
ing the current partial heuristic strategy.

The choice of which node to expand is non-
deterministic. =~ We have experimented with
three selection schemes: (i) expand the node
X with highest probability P(past(X)) of oc-
curring (decision nodes are given an even prob-
ability distribution), (i7) expand the node X
with highest weight w(X) = P(past(X))-h(X),
where h is the heuristic function estimating the
expected utility of node X, and (i4i) expand the
node of lowest depth, i.e., perform a breadth
first search. Preliminary experiments suggest
that the latter provides the best results, and
this is therefore the selection scheme used in
the tests documented in Section 4.

4 Experiments

We have performed a series of experiments for
assessing the performance of the proposed algo-
rithm. For comparison we used dynamic pro-
gramming (Jensen and Vomlelova, 2002), and
to test the algorithms we generated a collection
of random UIDs.

4.1 Generation of UIDs

It is easy to come up with artificial UID struc-
tures that, from a specification point of view,
cannot be considered proper models of real-
world decision problems. As an example, con-
sider a UID with a decision node having only
barren nodes (Shachter, 1986) in its future.
Thus, rather than generating completely ran-
dom UIDs (Vomlelova, 2003) we have instead
tried to guide the UID generation by making
perturbations of pre-specified UID templates.

Specifically, we manually constructed four
UID templates from which we sampled 13
UID structures with varying number of deci-
sion nodes, chance nodes, and observable chance
nodes. For each structure we randomly gener-
ated 50 realizations (probability and utility ta-
bles), producing a total of 650 models. Space
restrictions prevent us from including additional
details, but all models (including the templates)
and a description of the sampling algorithm can
be found at www.ia.uned.es/ mluque/UID.

4.2 Evaluation Metrics

The proposed anytime algorithm is intended
for situations, where a DM is required to take
one or more initial decisions but does not have
time to wait for dynamic programming to finish.
On the other hand, after the specified decisions
have been taken we assume that there is suffi-
cient time for dynamic programming to return
an optimal strategy for the remaining decisions.
Here we also assume that simply solving the
UID offline and storing the policies as look-up
tables is prohibitive due to space requirements.

The performance of the algorithm is evalu-
ated according to the following two characteris-
tics. i) The frequency with which the anytime
algorithm returns the correct decision options
(relative to the optimal strategy) for all decision
nodes down to the ith level in the decision tree.
ii) The expected utility of following the strat-
egy prescribed by the anytime algorithm for the
first i levels of decisions, followed by the opti-
mal strategy for the remaining decisions. Both
of these two measures depend on the amount
of computation time used by the anytime al-

gorithm, and to compare the results for differ-
ent models, time is thus specified relative to the
time required for dynamic programming to fin-

ish.

4.3 Experimental Results

The algorithms were implemented in Java 6.0
with the Elvira software package.® The experi-
ments were performed on an Intel Core 2 com-
puter (2.4 GHz) with 2 GB of memory.

First of all, it is important to emphasize that
all reported values are normalized with the uni-
form strategy as baseline value, i.e., the uniform
strategy and the optimal strategy attains the
values 0 and 1, respectively.

The results obtained by letting the anytime
algorithm run for e.g. 50% of the time re-
quired by dynamic programming are listed in
the second column in Table 1; EU'(t) and
AccFreqDec(t) correspond to the two mea-
sures described in Section [4.2. In particular,
AccFreqDec!(t) denotes the frequency of se-
lecting the best initial decision (i.e., a branching
point decision). For example, if we assume that
the initial choice is between two decisions, then
the anytime algorithm returns the optimal deci-
sion with a frequency of 0.742 (0.5+40.484-0.5).
Similarly, suppose that the expected utility of
following a random policy for the first decision
is 90 and the MEU is 100, then a value of 0.514
for EU!(t) corresponds to an expected utility of
95.14.

From the results we clearly see that the algo-
rithm improves over time w.r.t. all the recorded
characteristics. Additional results can be found
at www.ia.uned.es/ "mluque/UID.

3The Elvira program was developed as a collabora-
tive project of several Spanish universities (Elvira Con-
sortium, 2002). The program and its source code can be
downloaded from www.ia.uned.es/ elviral

http://www.ia.uned.es/~mluque/UID�
http://www.ia.uned.es/~mluque/UID�
http://www.ia.uned.es/~elvira/index-en.html�

25 % | 50 % | 75 %

EUL(t) 0,442 | 0,514 | 0,538
EU?%(t) 0,609 | 0,769 | 0,865
EU3(t) 0,546 | 0,703 | 0,794
AccFreqDec'(t) | 0,383 | 0,484 | 0,505
AccFreqDec?(t) | 0,396 | 0,503 | 0,563
AccFreqDec®(t) | 0,291 | 0,381 | 0,428

Table 1: Results for the anytime algorithm.

Acknowledgements

The first author was supported by the Depart-
ment of Education of Madrid, the European So-
cial Fund and the Spanish Ministry of Educa-
tion and Science (grant TIN-2006-11152). We
would like to thank Marta Vomlelova for giving
us access to her UID implementation.

References

[Bielza et al.1999] C. Bielza, S. Rios, and M. Gémez.
1999. Influence diagrams for neonatal jaundice
management. In AIMDM ’99, pages 138-142,
London, UK. Springer-Verlag.

[Demirer and Shenoy2001] R. Demirer and P. P.
Shenoy. 2001. Sequential valuation asymmetric
decision problems. Lecture Notes in Computer
Science, pages 252—265.

[Elvira Consortium2002] The Elvira Consortium.
2002. Elvira: An environment for creating and
using probabilistic graphical models. In PGM’02,
pages 1-11, Cuenca, Spain.

[Howard and Matheson1984] R. A. Howard and J. E.
Matheson. 1984. Influence diagrams. In R. A.
Howard and J. E. Matheson, editors, Readings on
the Principles and Applications of Decision Anal-
ysis, pages 719-762.

[Jensen and Vomlelova2002] F. V. Jensen and
M. Vomlelova. 2002. Unconstrained influence
diagrams. In UAI'02, pages 234-241, San
Francisco, CA. Morgan Kaufmann.

[Jensen et al.1994] F. Jensen, F. V. Jensen, and S. L.
Dittmer. 1994. From influence diagrams to junc-
tion trees. In UAI’94, pages 367-373, San Fran-
cisco, CA. Morgan Kaufmann.

[Madsen and Jensen1999] A. Madsen and F. V.
Jensen. 1999. Lazy evaluation of symmetric
Bayesian decision problems. In UAI’99, pages
382-390, San Francisco, CA. Morgan Kaufmann.

[Nilsson1980] N. J. Nilsson. 1980. Principles of Ar-
tificial Intelligence. Tioga, Palo Alto, CA.

[Olmsted1983] S. M. Olmsted. 1983. On Represent-
ing and Solving Decision Problems. Ph.D. the-
sis, Dept. Engineering-Economic Systems, Stan-
ford University, CA.

[Raiffa and Schlaifer1961] H. Raiffa and R. Schlaifer.
1961. Applied Statistical Decision Theory. MIT
press, Cambridge.

[Shachter1986] R. D. Shachter. 1986. Evaluating in-
fluence diagrams. Operations Research, 34:871—
882.

[Shenoy1992] P. P. Shenoy. 1992. Valuation based
systems for Bayesian decision analysis. Opera-
tions Research, 40:463-484.

[Vomlelova2003] M. Vomlelova. 2003. Unconstrained
influence diagrams - experiments and heuristics.
In WUPES’2003, Hejnice, Czech Republic.

