
Robust Classification using Mixtures of Dependency Networks

José A. Gámez1 and Juan L. Mateo1 and Thomas D. Nielsen2 and José M. Puerta1

1 Computing Systems Department – SIMD i3A 2 Department of Computer Science
University of Castilla-La Mancha Aalborg University

02071, Albacete, Spain 9220 Aalborg, Denmark

Abstract

Dependency networks have previously been proposed as alternatives to e.g. Bayesian net-
works by supporting fast algorithms for automatic learning. Recently dependency net-
works have also been proposed as classification models, but as with e.g. general proba-
bilistic inference, the reported speed-ups are often obtained at the expense of accuracy.
In this paper we try to address this issue through the use of mixtures of dependency
networks. To reduce learning time and improve robustness when dealing with data sparse
classes, we outline methods for reusing calculations across mixture components. Finally,
the proposed model is empirically compared to other state-of-the-art classifiers, both in
terms of accuracy and learning time.

1 Introduction

Classification is a typical data mining task in
which the class label for new instances must be
inferred from the values taken by their predic-
tive attributes. The induction of accurate clas-
sifiers from pre-labelled data is a hot area of re-
search in machine learning and artificial intelli-
gence. Among the wide range of paradigms used
to induce classifiers, Bayesian network classifiers
(BNCs) (Friedman et al., 1997) have received
much attention.

In this paper we consider the use of a spe-
cial class of dependency networks (Heckerman
et al., 2000) for classification. Compared to
BNs, dependency networks allow directed cy-
cles, and structural learning can therefore be
performed very efficiently, since the node fami-
lies can be learned independently of each other.
On the other hand, due to the presence of cycles,
standard BN inference algorithms cannot be
adapted and so approximate algorithms (Gibbs
sampling being the most prevalent) are often
required. Fortunately, for classification prob-
lems where only the class variable is unknown,
inference boils down to simply multiplying the
appropriate table entries, and it can therefore
be performed in linear time w.r.t. the number

of variables.

The efficient learning algorithms for DNs hide
their main problem, namely inconsistency (a
DN does not necessarily represent a joint proba-
bility distribution). Moreover, inherent to DNs
is the problem of overfitting: the node fam-
ilies are generally larger than in BNs, hence
the estimation of the local probability distribu-
tions is less reliable and requires more data than
in a BN (to reduce parameter variance). To
address this problem, Heckerman et al. (2000)
proposed to use probabilistic decision trees
(PDTs) for parameter specification, and re-
cently Gámez et al. (2008a) has proposed a
specification language based on combinations of
probability tables (PTs).

A study on inconsistencies in DNs was con-
ducted by Gámez et al. (2008b), who also pro-
posed a heuristic procedure to reduce the incon-
sistencies. In the study, Gámez et al. (2008b)
conclude that PTs outperform PDTs in terms
of accuracy, and in their experimental results
the inconsistencies almost disappear when using
PTs. On the other hand, PDTs have the ability
to represent contextual independence (i.e., inde-
pendence relations between variables that hold
for some but not necessarily all values), but by
focusing on PTs we lose this property.

In order to include aspects of contextual in-
dependence when working with PTs, we con-
sider DN-based classifiers inspired by multinets
(Geiger and Heckerman, 1996). Multinets are
useful for representing certain types of contex-
tual independence, which cannot easily be rep-
resented by a single PT-based model. In clas-
sification we may, for example, represent differ-
ent independence relations for the different class
values.

As we will also demonstrate, multinets sup-
port a notion of re-usability. The underlying
idea of re-usability is to exploit similarities in
the dependency structures across classes. That
is, if we have an unbalanced class distribution,
we may in some situations be able to reuse parts
of a learned probability model (for an instance-
rich class) when learning the probability model
for a class with few instances. Thus, re-usability
may produce more robust classifiers when deal-
ing with unbalanced class distributions.

2 Dependency Networks

Dependency networks (DNs) were proposed by
Heckerman et al. (2000) as an alternative to
BNs. Formally, a dependency network is a tuple
(G,P) over a domain X where G is a directed
graph (not necessarily acyclic) and P is a set
of conditional probability distributions, one for
each variable in X. Every P ∈ P must be such
that

P (Xi|Pai) = P (Xi|X \ Xi).

This means that the set of parents Pa(Xi)
for every variable Xi is its Markov blanket
MB(Xi).

This definition requires specification consis-
tency, in the sense that the joint probability
distribution for X can be recovered from P.
This is a very restrictive condition when learn-
ing from data, so Heckerman et al. (2000) de-
fine general dependency networks that relax the
factorization requirement by letting P (X) ≈∏

i P (Xi|Pai).

Since directed cycles are allowed, a DN can
be learned from data by learning the parent
set for each variable independently, thus sup-
porting fast learning algorithms. On the other

hand, by having directed cycles we cannot adapt
traditional BN inference algorithms. Instead,
Heckerman et al. (2000) relies on approximate
inference carried out using Gibbs sampling (Ge-
man and Geman, 1984), and propose the so-
called modified ordered Gibbs sampler, which is
more efficient than standard Gibbs sampling.
Fortunately, sampling algorithms are not re-
quired when we have complete data for the pre-
dictive attributes, and we shall therefore not
discuss this topic further.

3 Multinets and Re-usability:

Proposed Scheme

Multinets (Geiger and Heckerman, 1996) are
useful for representing natural contextual inde-
pendence assertions. For example, in a classi-
fication context we may directly represent the
(possibly different) independence relations over
the predictive attributes for each of the class
values. Consequently a multinet classifier is ex-
pected to have a higher, or at least the same,
representational power than that of a single BN
classifier.

A multinet classifier based on DNs (termed a
MultiDN) is built by learning a DN model for
each class value. Every DN model is built by
independently learning the MB for each vari-
able using e.g. the IAMB algorithm (Tsamardi-
nos et al., 2003), specified in Figure 1. The
algorithm relies on a method for testing inde-
pendence, and in this paper we have considered
traditional statistical tests, such as G2, as well
as tests measuring the score difference between
candidate structures (Chickering, 2002) using
e.g. the BIC (Schwarz, 1978) or the BD score
(Cooper and Herskovits, 1992).

It should be noted that as an alternative to
IAMB, Peña et al. (2007) proposed the PCMB
algorithm, which they showed to be more data
efficient than IAMB. The results, however, also
indicate that for very small data sets (e.g. Alarm
with 100 instances) PCMB has worse precision
(although better recall) than IAMB. The com-
bination of these two factors means that PCMB
may identify larger candidate MB sets than
IAMB. This behavior was also confirmed in our

1 { Phase I (forward) }
2 MB = ∅
3 While MB has changed
4 Y = argmaxX∈U\(MB∪{T}) dep(X, T |MB)
5 I f Y ⊥⊥/ T |MB Then

6 MB = MB ∪ {Y }
7
8 { Phase I I (backwards) }
9 For each X ∈ MB Do

10 I f X ⊥⊥ T |(MB\X) Then

11 MB = MB\{X}
12
13 Return MB

Figure 1: The incremental association Markov
blanket (IAMB) algorithm for learning the MB
for a target variable T .

preliminary experiments, where we compared
both algorithms based on the datasets listed
in Section 4 (having similar ratio between the
number of variables and instances as the exam-
ple above). This limits the usability of PCMB
for learning DNs, since the larger MBs make the
probability estimates less reliable.

3.1 Re-usability

In a multinet classifier we basically need to learn
several networks, one for each class value. As-
suming that the set of independence statements
for the different class values are not disjoint, one
might be able to use parts of the learned prob-
ability model for one class value when learning
the probability model for another class value.
The potential advantages are twofold: First we
may speed up learning, and, secondly, we may
obtain a more robust classifier when data is
scarce for some of the classes.

For MultiDNs, re-usability consists in seeding
the MB learning algorithm with a candidate MB
set. In the IAMB algorithm this is achieved by
simply replacing line 2 with MB = seedMB.
We call this new algorithm SeededIAMB. If the
candidate seed is good, i.e., it corresponds to the
true MB or a subset hereof, the algorithm can
achieve substantial computational savings (the
situation where this is not the case is discussed
below).

Theorem 1. Under the assumptions that the
independence tests are correct and that the

database D is an independent and identically
distributed sample from a probability distribu-
tion P faithful to a DAG G, SeededIAMB iden-
tifies the true MB for the target variable.

Proof sketch: Given any initial set the algo-
rithm will in the forward phase always intro-
duce all variables in the MB because, by def-
inition, there is no set of variables that can
make the variables in the MB independent of
the target. So at the end of this phase we will
have a super-set of the MB for the target vari-
able. The backward phase, removing all false
positives, behaves in the same way as the non-
seeded version. �

As indicated above, if the candidate set used
for SeededIAMB is close to the actual MB, then
we may get computational savings. On the
other hand, if the candidate set does not in-
tersect the true MB, then the seeded version of
the IAMB algorithm may introduce a computa-
tional overhead. Thus, it is important to find
a good ordering in which to process the classes,
and to be able to determine when a previous
structure should be used as seed. Below we have
detailed some of our considerations.

• Ordering the class values: In our experiments
we order the classes according to the number of
instances associated with each class value, start-
ing with the class value having most instances.
Here we assume that more data yields more re-
liable MB estimates for potential reuse.

• Determine the score for a candidate seed
structure: Assume that we have a collection of
previous models DNi, i = {1, . . . , n}, and that
the current model must be learned from data
Dcj

. The log-likelihood of the previous mod-
els DNi given Dcj

, log L(DNi|Dcj
), can be used

to select which of these models to use as seed.
Furthermore, we can also use the local score for
each single variable X

1

Nj

Nj∑

l=1

log P (X|MB(X)i,DNi)(dl),

indicating how well MB(X)i predicts X in Dcj
.

• Setting the threshold for when to reuse a
MB: A possible threshold value is the score

of the empty structure, since if IAMB is not
seeded, then this is the structure that is used as
prior. Here we have two strategies. One strat-
egy (called BESTlogL) consists in picking the
best MB(X)i for a given variable X, if its score
is greater than that of the empty MB. As an-
other strategy (called THRESHOLDlogL), we
can pick the union of all MB(X)i for all pre-
vious models that have greater score than the
empty MB.

• When to compute the score of a candidate
seed structure: Although the log-likelihood is
easy to compute (its complexity is linear in the
number of instances), it still incurs an overhead
for the algorithm. We have considered three
alternatives for deciding on re-usability with-
out having to compute a score; thus, saving
computation time but making the selection less
informed. The first method simply uses the
first learned model as seed for all the subse-
quent models, and is labelled First. The second
method uses the intersection of the MBs for all
the previous learned models (Intersection), and
the third method uses the union of the MBs for
all the previous learned models (Union).

4 Experiments

We have performed a set of experiments in or-
der to analyze the performance of the proposed
algorithm in terms of classification accuracy,
learning time, and the potential improvement
obtained by re-usability.1 For evaluating the
accuracy and learning time, we have compared
our classifier with a collection of other well-
known classifiers, both probabilistic and non-
probabilistic. For the actual learning, we have
used 28 dataset from the UCI repository (Asun-
cion and Newman, 2007), see Table 1.

All experiments have been carried out on a
PC with a 3GHz Intel Pentium IV processor
and 2Gb RAM memory.

1Given the space limitation not all results of our
experiments are included, but a complete list can
be found at http://www.dsi.uclm.es/personal/JuanLuis
Mateo/mixtureDN.html

Table 1: Datasets used in our experiments.
dataset insts. vars. |class|
australian 690 14 2
autos 205 23 7
balance 625 5 3
breast-cancer 286 10 2
breast-w 699 10 2
car 1728 7 4
cmc 1473 10 3
diabetes 768 7 2
ecoli 336 7 8
heart 270 14 2
hepatitis 155 20 2
ionosphere 351 34 2
iris 150 5 3
kr-vs-kp 3196 37 2
labor 57 12 2
mushroom 8124 23 2
nursery 12960 9 5
page-blocks 5473 11 5
post-op 90 9 3
segment 2310 20 7
soybean 683 36 19
spambase 4601 56 2
vehicle 846 19 4
vote 435 17 2
vowel 990 14 11
waveform 5000 20 3
wine 178 14 3
zoo 101 17 7

4.1 Algorithms

The algorithms used in the comparison are J48
(Quinlan, 1993), multilayer perceptron (NN)
(Bishop, 1995), k-nearest neigbours (kNN)
(Aha and Kibler, 1991), support vector machine
(SVM) (Platt, 1999), naive Bayes (NB) (Lang-
ley et al., 1992), k-dependence Bayesian clas-
sifier (kDB) (Sahami, 1996), tree augmented
naive Bayes (TAN) (Friedman et al., 1997),
multinet with Bayesian networks (MultiBN)
(Friedman et al., 1997), and another DN-based
classifier (ChiSqDN) (Gámez et al., 2006).

We have used the Weka implementation of
J48, NN, kNN, and SVM (Witten and Frank,
2005). For these classifiers, all parameters were
set to their default values, except for kNN for
which we tried both k = 1, and k = 3 with
inverse distance weighting. For kDB we have
experimented with k = 1, 2, 3, 4. For MultiBN
we have considered two variants. One based
on the PC learning algorithm (Spirtes et al.,
2001), and the other based on local search (hill-

climbing) with the BIC (Schwarz, 1978) or the
BD score (Cooper and Herskovits, 1992). For
MultiDN we used the IAMB algorithm to de-
termine the MB for each variable, and the inde-
pendence tests were performed using either G2

or by measuring the difference in BIC score for
the candidate structures. All algorithms (ex-
cept J48, NN, kNN and SVM) have been imple-
mented in Java with the Elvira software (Elvira
Consortium, 2002). Accuracy is assessed using
a 5x2 cross validation scheme.

4.2 Results

For each algorithm appearing in several versions
(different parameter settings) we only report
on the version giving the best accuracy results.
That is, kNN with k = 3 and inverse distance
weighting, kDB with k = 1, and multinets based
on the BIC score.

Table 2 shows the accuracy results for some
of the selected classifiers; the results reported
for MultiDN relates to the BIC variant with no
reuse across classes. Due to space restrictions
we have only included the best classifiers, but
the results for the remaining classifiers can be
found at the web page specified above.

From Table 2 we see that SVM achieves the
best result on average. In order to determine
which of the other classifiers that (from a statis-
tical point of view) cannot be considered weaker
than SVM, we have carried out Holm’s post-hoc
test with the SVM classifier as control. This test
shows that kDB and both multinet-based classi-
fiers are comparable with SVM; the remaining
classifiers receive worse results and the differ-
ences are statistically significant.

4.2.1 Learning Time

In Table 3 we list the learning time for the al-
gorithms selected above. MultiDN obtains the
best results in several cases and is never the
worst. MultiBN, on the other hand, is never
the best and several times the worst, whereas
SVM is the fastest for most of the datasets, but
it is sometimes the slowest too. In order to test
whether there is a statistical difference, we have
evaluated the results using Wilcoxon’s signed
rank test. With significance level 0.05 the test

Table 2: Accuracy results. For each dataset,
the best results are shown in bold face, and the
worst results are underlined.

kDB MultiBN MultiDN SVM
australian 84.64 85.42 86.35 84.93
autos 79.02 79.81 73.27 82.14

balance 74.05 73.82 74.08 74.11
breast-cancer 70.28 69.79 70.49 71.12
breast-w 96.22 96.57 97.34 96.68
car 93.26 91.68 91.01 92.45
cmc 53.96 52.49 53.29 53.96
diabetes 77.47 77.68 79.27 76.77
ecoli 84.82 85.12 82.26 83.87
heart 81.63 80.3 82.37 83.7
hepatitis 87.88 86.45 85.81 85.55
ionosphere 91.97 92.65 92.19 90.48
iris 95.07 94.53 96.27 96.40

kr-vs-kp 94.22 96.49 95.27 95.24
labor 89.8 92.22 94.72 92.29
mushroom 99.87 100.00 99.95 99.99
nursery 93.26 95.57 93.73 93.06
page-block 95.75 96.42 96.24 96.81

post-op 66.22 66.89 66.89 69.56
segment 94.17 94.94 91.36 95.56
soybeam 91.6 94.00 93.35 92.5
spam-base 92.73 93.65 92.58 93.81

vehicle 71.23 71.28 70.33 73.14

vote 93.75 93.89 94.16 95.22

vowel 73.17 69.82 64.99 79.07
waveform 82.25 81.79 81.26 84.86

wine 97.08 97.98 98.31 97.87
zoo 94.65 94.26 94.06 94.26

aver. 85.72 85.91 85.4 86.62

indicates that MultiDN is significantly faster
than kDB and MultiBN, but there is no such dif-
ference between SVM and MultiDN, and they
can therefore be considered equally fast. The
critical values for the comparisons are 1.42e-
3 for kDB, 8.20e-7 for MultiBN, and 0.52 for
SVM.

4.2.2 Re-usability Analysis

To get an indication of the theoretical com-
plexity of the re-use methods, we introduce the
notion of reuse-complexity, which is defined as
the number of computations2 times the average
number of variables involved in each computa-
tion; note that reuse-complexity does not take
into account the overload introduced by BEST-
logL and TRHESHOLDlogL. This overload is
considered in learning time. Table 4 shows the
average complexity and learning time among all
datasets.

From the results we see that reusability based
on Intersection achieves the best results in

2A computation is a call to the function that either
calculates the score of a local structure with BIC or BDe,
or performs a statistical test with G2.

Table 3: Learning time in mileseconds.
kDB MultiBN MultiDN SVM

australian 543 1036 249 174

autos 711 3226 951 268

balance 30 46 37 85
breast-cancer 89 372 94 72

breast-w 196 228 130 68

car 173 166 114 352
cmc 396 428 281 653
diabetes 83 96 67 81
ecoli 42 59 63 325
heart 213 256 129 40

hepatitis 348 433 254 33

ionosphere 3995 5716 1849 105

iris 14 22 17 60
kr-vs-kp 47422 63283 18906 1545

labor 41 75 62 29

mushroom 25730 93243 13727 3792

nursery 2481 2087 1285 17293
page-block 1960 4760 1443 2763
post-op 29 58 37 61
segment 4875 14380 2343 2863
soybeam 8425 4374 4383 2651

spam-base 217476 79629796 39136 8311

vehicle 1557 15215 1428 653

vote 573 847 389 49

vowel 792 8088 994 1582
waveform 10810 6131 3815 10478
wine 144 148 122 66

zoo 157 166 217 303

terms of both complexity and learning time.
Moreover, both BESTlogL and TRHESHOLD-
logL have the highest learning times, which indi-
cates that their overload for determining when
and what to re-use is not justified by the learn-
ing time. As part of future work, we plan to in-
vestigate other ways to evaluate candidate seed
structures.

Table 4: Complexity and learning time for the
different re-usability schemes averaged over all
datasets.

Complexity Time
NOREUSE 2045 3303
BESTlogL 1920 3671
TRHESHOLDlogL 1925 3861
First 1915 3201
Intersection 1899 3136

Union 1945 3400

The underlying idea of reusability is to use
the probability estimates from data-rich classes
to improve the estimates for data-poor classes.
In order to evaluate this idea we have selected
a subset of the datasets in Table 1, all of which
have an unbalanced class distribution. The re-

sults can be found in Table 5, which shows the
absolute difference in accuracy between each of
the proposed re-usability methods and the plain
algorithm without re-usability. On average we
can see that there is always an improvement,
and to compare the methods we have carried out
a one-tailed Wilcoxon’s signed rank test with
significance level 0.05. The critical values for
these five methods are 0.03 for BESTlogL, 0.01
for THRESHOLDlogL, 0.02 for First, 0.07 for
Intersection, and 0.13 for Union. From these
values the experiments indicate that BESTlogL,
THRESHOLDlogL, and First significantly im-
prove the original algorithm’s performance. The
improvement is usually small, but we have to
bear in mind that this improvement is typically
over class values with few instances.

Table 5: Absolute difference in accuracy for
each of the re-usability methods with respect
to the plain learning algorithm without re-
usability. 1=BESTlogL, 2=THRESHOLDlogL,
3=First, 4=Intersection, 5=Union

1 2 3 4 5
autos 1.17 1.07 1.07 -0.20 0.87
balance 0.00 0.00 -0.03 -0.03 0.00
breast-cancer 0.28 0.28 0.28 0.28 0.28
breast-w 0.00 0.00 0.00 0.00 0.00
car 0.00 0.00 0.00 0.00 0.00
cmc 0.19 0.20 0.20 0.11 0.29
diabetes 0.03 0.03 0.08 0.08 0.08
ecoli 0.00 0.00 0.00 0.00 0.00
hepatitis 0.26 0.26 0.65 0.65 0.65
ionosphere -0.11 -0.11 -0.17 -0.17 -0.17
nursery 0.00 0.00 0.00 0.00 -0.58
page-block 0.04 0.04 0.05 0.04 0.05
post-op 0.00 0.00 0.00 0.00 0.00
soybeam -0.09 0.03 -0.03 0.06 -0.70
spam-base 0.36 0.36 0.13 0.13 0.13
vote 0.09 0.09 0.23 0.23 0.23
zoo 0.00 0.00 0.00 0.00 0.20

average 0.13 0.13 0.14 0.07 0.08

In order to investigate this aspect further we
can consider the confusion matrices for the two
datasets cmc and hepatitis. For each dataset
we perform learning with re-usability (using the
First method) and without re-usability (see Ta-
bles 6 and 7); for BESTlogL and THRESHOLD-
logL we obtain the same behavior. In these ma-
trices we see an improvement for the class value
with fewer instances, which corresponds to the

second column in cmc and the first column in
hepatitis. These states represent 23% and 21%
of the instances, respectively, and in both cases
the improvement obtained with re-usability is
3% for that state.

The impact of these results can be illustrated
by considering e.g. medical diagnosis, where the
number of cases with people being sick is typ-
ically much smaller than the number of cases
with healthy people. A false negative for a
person being sick means that she will not be
given a treatment for her illness (possibly with
disastrous consequences). With re-usability we
can reduce this mis-classification rate, which, in
situations like the medical example above, can
have significant consequence.

Table 6: Confusion matrices without re-
usability (a) and using with re-usability using
the First method (b) on the cmc dataset.

0 1 2

0 363.8 72.0 127.2
1 82.8 150.2 112.8
2 182.4 110.8 271.0

0 1 2

0 360.4 66.4 118.8
1 87.6 159.4 124.0
2 181.0 107.2 268.2

(a) (b)

Table 7: Confusion matrices without re-
usability (a) and with re-usability using the
First method (b) on the hepatitis dataset.

0 1

0 21.8 11.8
1 10.2 111.2

0 1

0 22.6 11.6
1 9.4 111.4

(a) (b)

In comparison with the SVM classifier (see
Table 8) we see a significant difference: the
SVM classifier has the best average accuracy,
but, in these cases, it has difficulties with class
values having few instances. This behaviour can
be expected by taking into account how this
classifier is built. Nonetheless, if we instead look
at the MultiBN or kDB classifiers, we also ob-
serve (results not included) that the proposed
classifier obtains better results for states with
poor representation of instances.

5 Conclusions and Future Work

In this paper we have presented a probabilis-
tic classifier based on a class mixture of de-

Table 8: Confusion matrices for SVM with cmc
(a) and hepatitis (b) datasets.

0 1 2

0 387.0 81.8 139.8
1 54.8 95.6 59.0
2 187.2 155.6 312.2

0 1

0 19.0 9.4
1 13.0 113.6

(a) (b)

pendency networks. In addition to supporting
fast learning algorithms, the proposed classi-
fier allows for intermediate results to be reused
across classes, thereby obtaining potential com-
putational savings as well as improving the ro-
bustness for data scarce classes. We have pro-
posed strategies for deciding on what and when
to reuse. However, while the preliminary re-
sults indicate that the proposed strategies can
improve classification accuracy, they also indi-
cate that a simple uninformed strategy achieves
better learning time results than more elabo-
rate strategies. Measured in terms of the re-
usability percentage, preliminary results indi-
cate that the heuristic BESTlogL obtains the
best results; for this strategy, 35% of the seeded
variables also appear in the final Markov blan-
kets (averaged over all the datasets). Designing
other heuristic functions for guiding re-usability
is a topic for future research. Here the aim is to
find strategies that give a more balanced trade-
off between accuracy improvements and learn-
ing time overhead.

As part of future work we also plan to con-
duct more extensive re-usability experiments on
larger datasets. Medical datasets, in particular,
can be of interest, since they typically have hun-
dreds of variables and relatively few instances.
Another issue for future work is how to establish
a good class ordering. One may, for example, be
able to exploit the natural class ordering found
in ordinal variables, i.e., we may expect that
class values close to each other induce similar
dependency structures over the attributes.

Acknowledgments

This work has been partially supported by
Spanish Ministerio de Educación y Ciencia
(project TIN2007-67418-C03-01); Junta de Co-
munidades de Castilla-La Mancha (project PBI-

08-048) and FEDER funds.
We would like to thank José Manuel Peña for

useful comments and suggestions for earlier ver-
sions of this paper. We would also like to thank
the anonymous reviewers for their constructive
comments.

References

D. Aha and D. Kibler. 1991. Instance-based learn-
ing algorithms. Machine Learning, 6:37–66.

A. Asuncion and D.J. Newman. 2007. UCI machine
learning repository.

C.M. Bishop. 1995. Neural Networks for Pattern
Recognition. Oxford University Press.

D.M. Chickering. 2002. Optimal Structure Identifi-
cation With Greedy Search. Journal of Machine
Learning Research, 3:507–554.

G.F. Cooper and E. Herskovits. 1992. A Bayesian
Method for the Induction of Probabilistic Net-
works from data. Machine Learning, 9(4):309–
347.

Elvira Consortium. 2002. Elvira: An Environ-
ment for Creating and Using Probabilistic Graph-
ical Models. In Proceedings of the Fist Euro-
pean Workshop on Probabilistic Graphical Models,
pages 222–230.

N. Friedman, D. Geiger, and M. Goldszmidt. 1997.
Bayesian Network Classifiers. Machine Learning,
29(2-3):131–163.

J.A. Gámez, J.L. Mateo, and J.M. Puerta. 2006.
Dependency networks based classifiers: learning
models by using independence test. In Third
European Workshop on Probabilistica Graphical
Models (PGM06), pages 115–122.

J.A. Gámez, J.L. Mateo, and J.M. Puerta. 2008a.
Improved EDNA (Estimation of Dependency Net-
works Algorithm) Using Combining Function
with Bivariate Probability Distributions. In Ge-
netic and Evolutionary Computation Conference
(Gecco08).

J.A. Gámez, J.L. Mateo, and J.M. Puerta. 2008b.
Towards consistency in general dependency net-
works. Technical Report DIAB-08-04-1, Comput-
ing Systems Deparment, University of Castilla-La
Mancha.

D. Geiger and D. Heckerman. 1996. Knowledge rep-
resentation and inference in similarity networks
and bayesian multinets. Artificial Intelligence,
82:45–74.

S. Geman and D. Geman. 1984. Stochastic re-
laxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 6:147–
156.

D. Heckerman, D.M. Chickering, C. Meek, R. Roun-
thwaite, and C. Kadie. 2000. Dependency net-
works for inference, collaborative filtering and
data visualization. Journal of Machine Learning
Research, 1:49–75.

P. Langley, W. Iba, and K. Thompson. 1992. An
Analisys of bayesian Classifiers. In Proceedings of
the 10th National Conference on Artificial Intel-
ligence, pages 223–228.

J.M. Peña, R. Nilsson, J. Björkegren, and J. Tegnér.
2007. Towards scalable and data efficient learning
of markov boundaries. International Journal of
Approximate Reasoning, 45(2):211–232.

J. Platt, 1999. Advances in Kernel Methods - Sup-
port Vector Learning, chapter Fast Training of
Support Vector Machines using Sequential Min-
imal Optimization, pages 185–208. MIT Press.

R. Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann.

M. Sahami. 1996. Learning Limited Depen-
dence Bayesian Classifiers. In Second Inter-
national Conference on Knowledge Discovery in
Databases, pages 335–338.

G. Schwarz. 1978. Estimating the dimension of a
model. Annals of Statistics, 6(2):461–464.

P. Spirtes, C.N. Glymour, and R. Scheines. 2001.
Causation, Prediction, and Search. MIT Press.

I. Tsamardinos, C.F. Aliferis, and A. Statnikov.
2003. Algorithms for large scale markov blanket
discovery. In Proceedings of the Sixteenth Interna-
tional Florida Artificial Intelligence Research So-
ciety Conference FLAIRS 2003.

I.H. Witten and E. Frank. 2005. Data Mining:
Practical machine learning tools and techniques.
Morgan Kaufmann, 2nd edition edition.

