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Abstract

Under local DeRobertis (LDR) separation measures, the posterior distances between two
densities is the same as between the prior densities. Like Kullback - Leibler separation
they also are additive under factorization. These two properties allow us to prove that the
precise specification of the prior will not be critical with respect to the variation distance
on the posteriors under the following conditions. The genuine and approximating prior
need to be similarly rough, the approximating prior has concentrated on a small ball on the
margin of interest, not on the boundary of the probability space, and the approximating
prior has similar or fatter tails to the genuine prior. Robustness then follows for all
likelihoods, even ones that are misspecified. Furthermore, the variation distances can be
bounded explicitly by an easy to calculate function of the prior LDR separation measures
and simple summary statistics of the functioning posterior. In this paper we apply these
results to study the robustness of prior specification to learning Bayesian Networks.

1 Introduction

Discrete Bayesian networks (BNs) are now
widely used as a framework for inference. The
usual Bayesian methodology requires the selec-
tion of prior distributions on the space of con-
ditional probabilities and various authors have
suggested ways to do this (see (Cowell et al,
2000) and references therein). When data sets
are complete, the usual analysis is conjugate
and it is straightforward to appreciate the ef-
fect of prior specification on the subsequent in-
ferences. However it is now more common to
be working on problems where data entries are
randomly or systematically missing. In this
case conjugacy is then lost, models can become
unidentifiable and sensitive to outliers. In such
circumstances it is much less clear what fea-
tures of the prior drive the inferential conclu-
sions. Of course good modelers use various

forms of sensitivity analyses to examine poten-
tial prior influence. However it is hard to do
this systematically and to be sure that the pos-
terior densities used really are robust to prior
specifications, even when the sample size n is
large. Indeed results on local sensitivity in
Gustafson and Wasserman (1995) appeared to
suggest that the hoped for robustness is a vain
one.

A new family of separation measures has now
been discovered which encode neighbourhoods
of a prior that are on the one hand plausi-
bly large and on the other are sufficient to en-
able the modeler to determine posterior varia-
tion neighbourhoods within which all posterior
densities arising from the prior neighbourhood
must lie. These posterior total variation neigh-
bourhoods can be bounded explicitly in terms of
the parameters of the prior separations and the



sort of summary statistics we would calculate
anyway from the joint posterior distribution of
the model actually implemented: such as pos-
terior means and covariances. In many situa-
tions it is possible to demonstrate that these
bounds between the functioning posterior and
genuine posterior decrease quickly with sample
size, irrespective of the likelihood - even when
that likelihood is misspecified.

Under local DeRobertis (LDR) separation
measures, the posterior distances between two
densities is the same as the prior densities.
Analogously to KL separation they also are ad-
ditive under factorization so are easy to calcu-
late or bound for most high dimensional models.

After reviewing some of the important prop-
erties of LDR in the next section we illustrate
how these techniques can be used to examine
analytically the robustness of inference to vari-
ous forms of prior misspecification in graphical
models (GMs) in Section 3.

2 Local De Robertis Separation

Let g0 denote our genuine prior density and
f0 denote the functioning prior we actually use:
usually chosen from some standard family- often
products of Dirichlets - and let fn and gn denote
their corresponding posterior densities after ob-
serving a sample xn = (x1, x2, . . . xn), n ≥ 1,
with observed sample densities {pn(xn|θ)}n≥1,
where θ = (θ1, . . . , θk). The genuine prior is
unknown but we hope that it lies in some ap-
propriate neighbourhood of f0 so that inferences
based on f0 will be approximately right.

In many situations, because of missingness,
these sample densities are typically sums of
products of the conditional probabilities defin-
ing the GM so both posterior densities fn and gn

usually have a very complicated analytic form.
The functioning posterior density is therefore
approximated either by drawing samples or
making some algebraic computations.

Let Θ(n) = {θ ∈ Θ : p(xn|θ) > 0}, assume
that g0(θ), f0(θ) are strictly positive and con-
tinuous on the interior of their shared support -

and so uniquely defined - and assume each ob-
served likelihood, pn(xn|θ), n ≥ 1 is measurable
with respect to g0(θ) and f0(θ). From Bayes
rule, for all θ ∈ Θ(n) our posterior densities
gn(θ) =△ g(θ|xn), fn(θ) =△ f(θ|xn) are given by

log gn(θ) = log g0(θ)+ log pn(xn|θ)− log pg(xn)

log fn(θ) = log f0(θ)+ log pn(xn|θ)− log pf (xn)

where pg(xn) =
∫

Θ(n) p(xn|θ)g0(θ)dθ and

pf (xn) =
∫

Θ(n) p(xn|θ)f0(θ)dθ, whilst
whenever θ ∈ Θ\Θ(n) we simply set
gn(θ) = fn(θ) = 0.

For any subset A ⊆ Θ(n) let

dL
A(f, g) =△ sup

θ∈A

log

{

f(θ)

g(θ)

}

− inf
φ∈A

log

{

f(φ)

g(φ)

}

Note that this is a transparent way of mea-
suring the discrepancy between two densi-
ties on a set A. It is non-negative, sym-
metric, and clearly only zero when f and g
are proportional to each other - i.e. when
f(θ) ∝ g(θ), θ ∈ A and f(φ) ∝ g(φ),
φ ∈ A. The separations have been studied
when A = Θ(n) (see e.g., DeRobertis (1978);
O’Hagan and Forster (2004)) but then the
neighbourhoods are far too small for practical
purposes. Here we focus on cases where A is
chosen to be small. This allows not only the as-
sociated neighbourhoods to be realistically large
but also leads to the types of strong convergence
results we need.

The reason these separation measures are
so important is that for any sequence
{p(xn|θ)}n≥1 - however complicated -

dL
A(fn, gn) = dL

A(f0, g0) (1)

It follows that for all sets A ⊆ Θ(n) the qual-
ity of the approximation of fn to gn - as mea-
sured by such a separation - is identical to the
quality of the approximation of f0 to g0. In par-
ticular distances between two posterior densities
can be calculated effortlessly from two different
candidate prior densities. Unlike the function-
ing posterior density with missingness, the func-
tioning prior and sometimes the genuine prior



lying in standard families and then the LDR
separations can then often be expressed explic-
itly and always explicitly bounded. It can be
shown that these separation measures are es-
sentially the only ones with the isoseparation

property (1) (Smith, 2007).

The fact that there are features in any prior
which always endure into the posterior suggests
that the priors we choose will “always” have
a critical impact on inference and this will in-
deed be so for small sample size n. However for
moderately large n the posterior fn we calcu-
late often places most of its mass within a set
An = B(µn, ρn) where B(µn, ρn) denotes the
open ball centred on µn of radius ρn. Write
dL
Θ0,ρ(f, g) =△ sup{dL

B(µn ,ρ)(f, g) : µn ∈ Θ0} and

dL
ρ (f, g) =△ sup{dL

B(µn ,ρ)(f, g) : µn ∈ Θ}. It
has long been known that a necessary condi-
tion for robustness is that in some sense the
functioning prior is “similarly smooth” to the
genuine one. We therefore demand the fol-
lowing mild condition regulating the mutual
roughness of the functioning and genuine prior.
Assume that f0, g0 ∈ F(Θ0,M(Θ0), p(Θ0)),
where F(Θ0,M(Θ0), p(Θ0)), M(Θ0) < ∞, 0 <
p(Θ0) ≤ 2 denotes the set of densities f such
that for all θ0 ∈ Θ0 ⊆ Θ

sup
θ,φ∈B(θ0;ρ))

|log f(θ) − log f(φ)| ≤

M(Θ0)ρ
0.5p(Θ0) (2)

Thus for example when p(Θ0) = 2 we demand
that log f0 and log g0 both have bounded deriva-
tives within the set Θ0 of interest. Under these
conditions Smith and Rigat (2008) show that

dL
Θ0,ρ(f, g) ≤ 2M(Θ0)ρ

1/2p(Θ0). (3)

It follows that as the mass of the functioning
prior converges on a ball of decreasing radius
within Θ0, dL

Θ0,ρ(f, g) converges to zero at a rate
governed by the roughness parameter p(Θ0). In
particular if f, g are one dimensional densities
such that log f and log g are both continuously
differentiable and have derivatives bounded by
M for all θ0 ∈ Θ0, then dL

ρ (f, g) ≤ 2Mρ.

Suppose the analysis of a Bayesian network is
used to support decisions but the user’s utility
function is unknown to the modeler. If we can
ensure that the variation distance

dV (fn, gn) =
∫

Θ | fn(θ)−gn(θ) | dθ, between fn

and gn is small then this is sufficient to deduce
that the impact of using fn instead of gn will not
be large. For example if dV (fn, gn) < ǫ then it is
trivial to check that for any utility U in the class
U of all measurable utility functions bounded
below by 0 and above by 1, on a decision space
D (Kadane and Chuang, 1978)

∣

∣

∣U(d∗(fn), fn) − U(d∗(fn), gn)
∣

∣

∣ < ε

for d∗(h) = arg maxd∈D U(d, h) and d ∈ D
where U(d∗(h), h) =

∫

Θ U(d,θ)h(θ)dθ.

So provided that dV (fn, gn) < ε where ε > 0
is small, the consequence - measured by utility
- of erroneously using fn instead of gn is simi-
larly small. Conversely - unlike for the KL sep-
aration - if dV (fn, gn) does not tend to zero as
n → ∞, there is at least some utility function
for which the decisions based on fn will remain
much worse than those of gn. This has made
posterior discrepancy measured through varia-
tion distance a popular choice and so is the one
we focus on. In this paper we therefore investi-
gate the conditions under which BN models are
robust in this sense.

In fact the condition that the distance
between the functioning and genuine prior
dL

B(θ0;ρ)
(f0, g0) being small for small ρ is almost

a sufficient condition for posterior variation dis-
tance between these densities being close for suf-
ficiently large sample size n regardless of the
value of the observed likelihood, provided that
the functioning posterior concentrates its mass
on a small set for large n. Below is one useful
result of this type. A useful result of this type
is given below.

Definition 1. Call a genuine prior g c-
rejectable with respect to a functioning f if the

ratio of marginal likelihood
pf (x)
pg(x) ≥ c.

We should believe the genuine prior will ex-
plain the data better than the functioning prior.



This in turn means that we should expect this
ratio to be small and certainly not c- rejectable
for a moderately large values of c ≥ 1. Note
that if the genuine prior were c - rejectable for
a large c we would probably want to abandon
it. For example using standard Bayesian selec-
tion techniques it would be rejected in favour of
f. We need to preclude such densities from our
neighbourhood.

Say density f Λ− tail dominates a density g
if

sup
θ∈Θ

g(θ)

f(θ)
= Λ < ∞.

When g(θ) is bounded then this condition re-
quires that the tail convergence of g is no faster
than f . Here the prior tail dominance condi-
tion simply encourages us not to use a prior
density with an overly sharp tail: a recommen-
dation made on other grounds by for example
O’Hagan and Forster (2004). The following re-
sult now holds.

Theorem 1. If the genuine prior g0 is not c re-

jectable with respect to f0, f0 Λ−tail dominates

g0 and f0, g0 ∈ F(Θ0,M(Θ0), p(Θ0)), then for

0 < p ≤ 2

dV (fn, gn) ≤ Tn(1, ρn) + 2Tn(2, ρn) (4)

where

Tn(1, ρn) = exp dL
µ,ρn

(f, g)−1 ≤ exp
{

2Mρp/2
n

}

−1

and Tn(2, ρn) = (1+cΛ)αn(ρn), where αn(ρn) =
Fn(θ /∈ B(θ0, ρn)) and Fn(.) stands for the cu-

mulative distribution function of θ .

Proof. See Appendix in Smith (2007).

It is usually easy to bound Tn(2, ρn) explicitly
using Chebychev type inequalities (see Smith,
2007 for more details). One useful bound, suf-
ficient for our present context, is given below.
It assumes that we can calculate or approxi-
mate well the posterior means and variances of
the vector of parameters under the functioning
prior. These posterior summaries are routinely
calculated in most Bayesian analyses.

Example 1. Let θ = (θ1, θ2, . . . , θk) and
µj,n, σ2

jj,n denote, respectively, the mean and
variance of θj, 1 ≤ j ≤ k under the functioning
posterior density fn. Then Tong (1980, p153)
proves that, writing µn = (µ1,n, µ2,n, . . . µk,n)

Fn (θ ∈ B(µn; ρn))

≥ Fn





k
⋂

j=1

{

|θj − µj,n| ≤
√

kρn

}





≥ 1 − kρ−2
n

k
∑

j=1

σ2
jj,n

so that Fn (θ /∈ B(µn; ρn)) ≤ kρ−2
n

∑k
j=1 σ2

jj,n

implying

Tn(2, ρn) ≤ cΛσ2
nρ−2

n ,

where σ2
n = k max1≤j≤k σ2

j,n. In many cases we
can show that σ2

n ≤ n−1σ2 for some value σ2.
Note that this gives an explicit upper bound
on Tn(2, ρn) which tends to zero provided ρn is
chosen so that ρ2

n ≤ nrρ where 0 < r < 1.

For a fixed (small) ρ, provided σ2
n is suffi-

ciently small dV (fn, gn) will also be small. In-
deed when p = 2 it will tend to zero at any
rate slower than the rate σ2

n converges to zero.
The other component of our bound Tn(1, ρn)
can also be calculated or bounded for most stan-
dard multivariate distributions. A simple illus-
tration of this bound, where both the function-
ing prior and genuine prior are drawn from the
same family, is given below.

Example 2. Let θ = (θ1, θ2, . . . , θk) α =
(α1, α2, . . . , αk), θi, αi > 0,

∑k
i=1 θi = 1 - so that

Θ is the k simplex. Let the two prior densities
f0(θ | αf ) and g0(θ | αg) be Dirichlet so that

f0(θ | αf ) ∝
k

∏

i=1

θ
αi,f−1
i , g0(θ | αg) ∝

k
∏

i=1

θ
αi,g−1
i

Let µn = (µ1,n, µ2,n, . . . , µk,n) denote the
mean of the functioning posterior density fn.
Then it can be easily checked that if ρn <
µ0

n = min {µi,n : 1 ≤ i ≤ k} , then dL
µn;ρn

(f0, g0)
is bounded above by

k
∑

i=1

|αi,f − αi,g| {log (µi,n + ρn) − log (µi,n − ρn)}



≤ 2kρn

(

µ0
n − ρn

)−1
α(f0, g0)

where α(f0, g0) = k−1 ∑k
i=1 |αi,f − αi,g| is the

average distance between the hyperparameters
of the functioning and genuine priors. So
Tn(1, ρn) is uniformly bounded whenever µn re-
mains in a given fixed closed interval Θ0 for all
n and converges approximately linearly in n.
Note that in the cases above, provided we ensure
ρ2

n ≤ nrρ, 0 < r < 1 then both Tn(1, ρn) and
Tn(2, ρn) - and hence dV (fn, gn) - tends to zero.
However if fn tends to concentrate its mass on
the boundary of Θ near one of the cell proba-
bilities being zero, then even when the average
distance α(f, g) between the hyperparameters
of the priors are small, it can be shown that
at least some likelihoods will force the varia-
tion distance between the posterior densities to
stay large for increasing ρn. See Smith (2007)
for a proof and an explicit example of this phe-
nomenon. Typically the smaller the probability
the slower any convergence in variation distance
will be.

Example 3. Sometimes it is convenient, partic-
ularly with covariate information, to smoothly
transform a vector of probabilities. One com-
monly used transformation in BNs is the logis-
tic transformation (Spiegelhalter and Laritzen,
1990). Like the variation distance the LDR is
invariant to diffeomorphic transformations like
this one. When the learning has proceeded on
this transformed scale it is often expedient to
use this scale directly in the use of Theorem
1. Note that under the logistic transformation
we can identify the problem area of inference
in the example above - i.e. where the pos-
terior concentrates near a zero in one of the
component probabilities, corresponds exactly to
the well known sensitivity to tail behaviour
when outliers are observed (O’Hagan (1979);
Andrade and O’Hagan (2006)). Any family of
distributions on the transformed scale having
sub-exponential tails - for example multivariate
t-distribution has better robustness properties
both in term of the LDR and the tail domi-
nation condition above than super-exponential
tails families - like the Gaussian, and should be
preferred in this context (O’Hagan and Forster,

2004).

Of course the usual priors in discrete GMs are
typically products of many such Dirichlet den-
sities. However our local separation for these
products is similarly easily explicitly bounded:
see below.

It is interesting to note that lower bounds
on variation distances can calculated given that
dL
µn;ρn

(f0, g0) stay unbounded above as n →
∞. Thus Smith (2007) show that whenever
dL
µn;ρn

(f0, g0) does not converge to zero as ρn →
0, in general. Of course our genuine prior g0

need not be Dirichlet even if the functioning
prior is. However, the general conditions above
ensure that except when posterior distribution
of a single vector of probabilities under the func-
tioning prior tend to zero in some component or
unless the prior we should use is much rougher
(or smoother) than f0 with large n we will ob-
tain approximately the right answer in the sense
described above.

Note that if two priors are close with respect
to LDRs, even when the likelihood is inconsis-
tent with the data, the functioning posterior
distribution nevertheless will tend to provide a
good approximation of the genuine posterior as
the functioning posterior concentrates. All simi-
lar priors will give similar (if possibly erroneous)
posterior densities.

We now proceed to investigate the properties
of dL

µn;ρn
(f0, g0) for graphical models.

3 Isoseparation and BN’s

3.1 Some General Results for

Multivariate BN’s

We begin with some general comments about
multivariate robustness.

In Smith and Rigat (2008) it is proved that
if θ = (θ1,θ2) and φ = (φ1,φ2) are two can-
didate parameter values in Θ = Θ1 × Θ2 where
θ1,φ1 ∈ Θ1 and θ2,φ2 ∈ Θ2, where the joint
densities f(θ), g(θ) are continuous in Θ and
f1(θ1), g1(θ1) represent the marginal densities
on Θ1 of the two joint densities f(θ) and g(θ)
respectively, then

dL
A1

(f1, g1) ≤ dL
A(f, g) (5)



where A1 = {θ1 : θ = (θ1,θ2) ∈ A for all
θ2 ∈ B ⊂ Θ2 for some open set B in Θ2}. So
in particular marginal densities are never more
separated than their joint densities. Thus if
we are interested only in particular margins of
the probabilities in a BN and we can show that
the functioning prior converges on that margin,
then even if the model is unidentified provided
f0, g0 ∈ F(Θ0,M(Θ0), p(Θ0)), we will still be
able to assert - using an argument exactly anal-
ogous to that in the proof of Theorem 1 that
with large n the functioning prior will be a good
surrogate for the genuine one. This is important
since we know that BNs with interior systemati-
cally hidden variables are unidentified. However
if our utility function is a function only of the
manifest variables we can ensure that the vari-
ation distance between two posterior marginal
densities f1,n g1,n become increasing close - usu-
ally at a rate of at least 3

√
n - in variation. So

in such a case lack of robustness only exists on
prior specifications of functions of probabilities
of the conditional distributions of the hidden
variables conditional on the manifest variables.

Next we note that the usual convention is to
use BNs whose probabilities all exhibit prior
local and global independence (LGI). Imme-
diately from the definition of dL

A(f, g) if θ =
(θ1,θ2, . . . θk) with functioning prior f(θ) and
genuine prior g(θ) both with the property that
subvectors {θ1,θ2, . . . θk} of parameters are
mutually independent so that

f(θ) =
k

∏

i=1

fi(θi), g(θ) =
k

∏

i=1

gi(θi)

where fi(θi) (gi(θi)) are the functioning (gen-
uine) margin on θi, 1 ≤ i ≤ k, then

dL
A(f, g) =

k
∑

i=1

dL
Ai

(fi, gi) (6)

It follows that - all other things being equal -
our local prior distances grow linearly with the
number of parameters needed to specify a BN.
In particular models encoding more conditional
independences are intrinsically more stable and
the effects of possibly erroneous prior informa-

tion will endure longer than more complex mod-
els encoding less conditional independences. It
has long been known that Bayesian selection
methods, for example based on Bayes Factors
automatically select simpler models when they
provide similar explanation of the observed data
than more complex models. But here we have
a complementary point. The choice of the com-
plex model will tend to give less reliable poste-
riors if we are not absolutely sure of our priors.

Example 4. Suppose a discrete BN G on
{X1,X2, . . . ,Xm} where Xi has t levels and par-
ents Pai, taking on si different parent configu-
rations, 1 ≤ i ≤ m. Make the common assump-
tion that our genuine and functioning prior both
exhibits LGI: i.e. all s =

∏m
i=1 si parameter

vectors θi|pai are mutually independent under
both f and g. If we believe the LDR sep-
aration between the s component densities of
the functioning and genuine prior is δA then
dL

A(f, g) = sδA. Note that the quality of the
approximation will depend on the number of
parent configurations in the model. Thus if G1

has all components independent, G2 is a tree,
G3 is complete and f j, gj are the prior densities
under Gj , j = 1, 2, 3 then

dL
A(f1, g1) = mδA, dL

A(f2, g2) = {mt − t + 1} δA

dL
A(f3, g3) = {tm − 1} {t − 1}−1 δA

The last most general separation bound in-
creases exponentially with m. By (5) this in
turn implies that BN’s containing a large clique
are most unreliable in the sense that data size
has to be enormous before we can be confident
our inferences are approximately reliable in the
sense measured by LDR. Note that in this set-
ting the bound given by our first example on
the second component Tn(2, ρn) in our theo-
rem is a function of the mean and variances
of the component vectors of probabilities (or in
some analyses their logistic transform). These
are routinely sampled anyway so good estimates
can just be plugged in our formula and together
with the bounds above this provides explicit op-
erational uncertainty bounds on our variation
distances.



Example 5. If the BN is decomposable with
cliques C[j], j = 1, 2, . . . ,m then if we require
LGI to hold in all Markov equivalent graphs
then it is proved that the joint distribution of
the clique probabilities on the vector of proba-
bility tables over each clique must have a Dirich-
let distribution (with consistent distributions
over separators). This in turn implies all con-
ditional probabilities used in a BN will also be
Dirichlet for both the genuine and functioning
prior allowing us to calculate explicit expres-
sions for distances between components. Here
we note again that prior distances are expressed
through a Euclidean distance on the hyperpa-
rameters of the genuine and functioning prior
then posterior variation instabilities can occur
in the limit only if our posterior density con-
centrates near zero on some component. Al-
though this phenomenon is unusual for many
likelihoods where components are missing at
random this is not the case when some com-
ponents are systematically missing (Smith and
Croft, 2003). Indeed when estimating probabil-
ities on phylogenetic trees where only the root
and leaf nodes are observed and all probabili-
ties are free it is the norm in practice to find
the distribution of at least some of the internal
hidden nodes concentrating near zero on some
of the probabilities. In these cases, whilst it
can be shown that the estimates of the marginal
manifest probabilities are usually stable under
large samples and the prior may well have a
large effect on the inferences about the internal
explanatory probabilities, even when the prob-
abilities are identifiable and samples are very
large. Unfortunately these probabilities are of-
ten the ones of scientific interest!

3.2 Sensitivity to Departures in

Parameter Independence

Although LGI is a useful expedient, if a prior
is elicited using contextual information - as it
should be- systematic biases in the elicitation
processes due to poor calibration or selection
bias will break these assumptions dramatically.
The issue then is to what extent using the as-
sumption of LGI matters. One possible exten-
sion away from LGI that naturally occurs under

selection biases is for the vector of probabili-
ties in the problem to mirror the dependence
structure of the BN G. A special case of this is
when we drop the local independence assump-
tion. So suppose a functioning prior f(θ) and
a genuine prior g(θ) where θ = (θ1, θ2, . . . θk) ∈
Θ = Θ1 ×Θ2× . . .×Θk are both constrained to
respect the same factorisation

f(θ) = f(θ1)
k

∏

i=2

fi|.(θi | θpai
)

g(θ) = g(θ1)
k

∏

i=2

gi|.(θi | θpai
),

where for 2 ≤ i ≤ k, the parents θpai
of θi is a

subvector of (θ1, θ2, . . . θi−1). Write θ[1] = θ1 ∈
Θ[1] = Θ1 and θ[i] = (θi,θpai

) ∈ Θ[i], 2 ≤ i ≤
k. Let A = A[1] × A[2] × . . . × A[k] ⊆ Θ where
A[i] ⊆ Θ[i], 1 ≤ i ≤ k. Then it is straightfor-
ward to show that dL

A(f, g) ≤ ∑k
i=2 dL

A[i](f[i], g[i])
where fA[i], gA[i] are respectively the margin of f

and g on the space Θ[i] of the ith variable and its
parents (Smith, 2007). Note therefore that our
local separations increase no faster than linearly
in the number of probabilities. It is natural to
set these bounds so that they are functionally
independently of the particular parent configu-
ration θpai

.

Definition 2. Say the neighbourhood N (f) of
f(θ) = f(θ1)

∏k
i=2 fi|.(θi | θpai

) is uniformly A
uncertain if g ∈ N (f) respect the same factori-
sation as f and

sup
g∈G(f)

sup
θi,φi∈A[i]

log

{

fi|. (θi,θpai
) gi|.((φi,θpai

)

gi|. (θi,θpai
) fi|. (φi,θpai

)

}

is not a function of θpai
2 ≤ i ≤ n.

If we believe the genuine prior g ∈ G(f)
is uniformly A uncertain then we can write
dL

A(f, g) =
∑k

i=1 dL∗
A[i](fi|., gi|.) (see Smith, 2007).

The separation between the joint densities f
and g is then simply the sum of the separa-
tion between its component conditionals fi|. and
gi|., 1 ≤ i ≤ k. So in particular we can calcu-
late bounds for the joint density of the genuine
posterior from prior smoothness conditions on



each of the genuine and functioning condition-
als and parameters of the posterior. Notice that
these bounds will apply even when the like-
lihood destroys the factorisation of the prior.
So the critical property we assume here is the
fact that we believe a priori that f respects the
same factorisation as g. If we learn the value
of θ(I) = {θi : i ∈ I} where I is some index
set then the separation between the densities
reduces to

dL
A(f(.|θ(I)), g(.|θ(I))) =

∑

i/∈I

dL∗
A[i](fi|., gi|.)

There is therefore a degree of stability to devi-
ations in parameter independence assumptions.

Finally consider the general case where the
hyperprior is totally general but the modeler be-
lieves that the dependence between parameters
has been caused by the expert first assuming all
component probabilities as mutually indepen-
dent and then observing a particular data set y

with sample mass function q(y|θ) > 0 and form-
ing her new dependent posterior. If we assume
that deviation in this process is only caused
by the misspecification of the initial indepen-
dence prior then by the isoseparation property,
the LDR discrepancy between genuine and func-
tioning prior should be set at the same deviation
parameters as the independence priors. So on
this strong assumption we regain the stability
existing under LGI.

4 Discussion

For any BNs whose densities factorise, the LDR
separations are a valuable way of understand-
ing exactly what forces the final posterior infer-
ences. Robustness under large n will typically
exist for sparse graphs with no component prob-
abilities close to zero. On the other hand graph-
ical models with many boundary probabilities
and/or a large number of edges will exhibit en-
during large approximation errors measured in
total variation distance. This gives yet another
reason why restricting inference with BN’s to
graphs with only a small number of edges is a
good idea.

We note that the same techniques can be used
to study inference in continuous and mixed BN’s

and also for all other GMs encoding a single fac-
torization. We are currently implementing these
techniques and the bounds appear to provide
genuinely helpful supplementary diagnostic in-
formation to what is often a complex estimation
exercise.
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