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Abstract

A probabilistic network built for an application domain often has a single output variable of
interest, for which either the posterior probability of oneof its values or its most likely value is
reported and used for subsequent decision making. For our domain of application, however, we
are interested primarily in how well the network distinguishes between various compound output
values of interest for different diagnostic variables. To capture this, we introduce a concept of
discrimination, and illustrate a measure to this end, basedupon joint posterior probabilities. In
addition, we address the sensitivity of discrimination to inaccuracies in a network’s parameters
and show that standard sensitivity functions suffice for studying the effects of such inaccuracies.

1 Introduction

A probabilistic network designed for diagnostic
support in an application domain often has a sin-
gle output variable of interest, capturing the pos-
sible diagnoses. Our application domain of classi-
cal swine fever, however, aims at multiple-disorder
diagnosis. To this end, we have two output vari-
ables of interest: a main diagnostic variable to de-
tect classical swine fever, and a secondary variable
to capture primary other infections. Although out-
breaks of classical swine fever occur seldomly, it
is a very serious infectious disease which warrants
early detection to prevent rapid spreading. Early de-
tection, however, is hampered by close resemblance
of the early symptoms of the disease to those of
common infections, and by the simultaneous pres-
ence of such infections. A model for early detection
of classical swine fever, therefore, needs to be able
to distinguish between classical swine fever in an
early stage and a primary other infection. Moreover,
it should be capable of diagnosing classical swine
fever in combination with common infections.

In order to determine how well a probabilis-
tic network can distinguish between different di-
agnoses in an individual case, it does not always
suffice to consider the most likely value of a vari-
able of interest, or its posterior distribution, espe-
cially when more than one diagnostic variable is

concerned. Therefore, we introduce the concept of
evidence-specific discriminationbetween values of
one or more variables. Various measures involv-
ing posterior probabilities for the diagnoses of in-
terest can be used to capture such discrimination. In
this paper we illustrate the concept of discrimination
by defining the absolute difference between poste-
rior probabilities as a simple discrimination mea-
sure: the further these probabilities are apart, the
better the network discriminates between the asso-
ciated diagnoses.

We note that the term discrimination is somewhat
overloaded; it is, for example, often used in the
context of classification problems: “can our model
discriminate between pigs that have classical swine
fever and pigs that have not?” This question, al-
though relevant, concerns discrimination between
cases, and not between diagnoses in an individual
case, which is the problem we address here.

Posterior probabilities can be highly sensitive to
changes in a probabilistic network’s numerical pa-
rameters (Van der Gaag & Renooij, 2001). As the
parameters are generally estimated from (incom-
plete) data or assessed by human experts in the
domain of application, they are inevitably inaccu-
rate. To study the robustness of discrimination to
parameter inaccuracies, we can study the sensitiv-
ity of the output probabilities involved to parame-
ter changes by means of a sensitivity analysis. To



Figure 1: The network for early detection of classical swinefever (csf).

this end, we show how to derive a function that cap-
tures thesensitivity of discriminationto parameter
changes. In addition, we demonstrate that we can
efficiently compute a sensitivity function for joint
posterior probabilities, required in order to study the
dynamics, and therefore robustness, of discrimina-
tion between values of two or more variables.

The paper is organised as follows. In Section 2
we describe an application which motivates the need
for a concept of discrimination and introduce a pre-
liminary measure to this end. In Section 3, we estab-
lish functions that allow for studying the robustness
of discrimination to parameter inaccuracies. The
paper ends with conclusions and directions for fur-
ther research in Section 4.

2 The Concept of Discrimination

Classical swine fever (csf) is a serious infectious
disease and, although outbreaks occur seldomly, its
rapid spreading warrants early detection. Classical
swine fever is hard to diagnose in an early stage,
due to the high variation in its associated clinical
patterns, which strongly resemble those of common
other infectious diseases. To support the early de-
tection of csf, a probabilistic network is being de-
veloped (Geenen, Elbers, Van der Gaag & Loeffen,
2006). The network, shown in Figure 1, currently
includes 82 directed edges, 2113 conditional prob-

abilities, and 41 variables of which 24 can be ob-
served upon clinical investigation. The variables
capture processes in the underlying pathogenesis,
risk factors, relevant clinical signs, and alternative
explanations for these signs.

The main diagnostic variable CSF Viraemia in
the network models the presence or absence of csf in
an individual pig. The extremely low prior for the
presence of csf (0.0000016), in combination with
the common occurrence of other infections resem-
bling csf, both in pigs with and without csf, makes
that these diseases cannot all be modelled in a sin-
gle variable: csf would never be diagnosed. A sec-
ondary diagnostic variable in the network therefore
models primary other infections as possible alterna-
tive explanations of a pig’s symptoms. As a result,
for a given pig, not only the network’s prediction
of the probability of csf is of interest, but our pri-
mary interest is to know how well the network dis-
tinguishes csf in an early stage, with or without an-
other infection being present, from just a primary
other infection.

Known concepts as the most likely value of a
variable of interest, or its posterior distribution, do
not always suffice to determine how well a prob-
abilistic network can distinguish between different
diagnoses in an individual case, especially when
more than one diagnostic variable is concerned. To



capture this, we therefore introduce the novel con-
cept of evidence-specific discriminationbetween
two combinations of values for one or more vari-
ables. To measure discrimination, we use a func-
tion of the posterior probabilities of the (compound)
values of interest. Thismeasure of discrimination
preferably has the property of obtaining a maximum
value when one of the posteriors equals zero and
the other 1: it is then easy to discriminate between
the two associated diagnoses; likewise, the measure
should obtain a minimum value when the posteriors
are equal. Possible measures of discrimination can
be based on (odds) ratios, or more complex func-
tions. In this paper, for the purpose of illustration,
we use a simple and straightforward measure of dis-
crimination, defined below. In the remainder of this
paper, we will writePr(a | e), to denote an output
probability under study, wherea is a specific value
assignment to one or more variablesA of interest
ande denotes the available evidence.

Definition 1. Let Pr(a | e) andPr(b | e) be two
output probabilities of interest. The amount ofdis-
crimination of the network betweena andb in the
context of evidencee, written d(a ; b | e), equals
| Pr(a | e) − Pr(b | e) |.

The above measured(a ; b | e) takes on values
between zero and 1, with larger values indicating a
larger amount of discrimination. This specific mea-
sure also has the benefit of being symmetric in its
arguments, that is,d(a; b | e) = d(b; a | e).

Example 1. Discrimination can be measured be-
tween different values of the same variable. For
example, discrimination between a gastro-intestinal
infection (value gi of variable POI , modelling
primary other infections) and an airway infection
(valueai of variablePOI ) in pig 14 is given by

d(gi ; ai | 14) = | Pr(gi | 14) − Pr(ai | 14) |

= 0.54 − 0.10 = 0.44

indicating that the network can easily distinguish
between these two types of infection in this pig.
Discrimination can also be studied for values of dif-
ferent variables. For example, discrimination be-
tween classical swine fever (valuecsf of variable
CSF ) and a gastro-intestinal infection in pig 169 is
given byd(csf ; gi |169) = | Pr(csf |169)−Pr(gi |
169) | = 0.20 − 0.13 = 0.07, indicating that the

network has some difficulty distinguishing csf from
a common infection in this pig. Discrimination
can even be studied for value assignments to more
than one variable. For example, discrimination be-
tween the presence and absence of classical swine
fever in combination with an airway infection in pig
304: d(csf , ai ;¬csf , ai | 304) = | Pr(csf , ai |
304)−Pr(¬csf , ai |304) | = | 0.01−0.15 | = 0.14;
this indicates that the network is capable of diagnos-
ing csf in combination with another infection in this
pig. �

3 Robustness of Discrimination

Sensitivity analysisis a powerful tool for study-
ing the robustness of a probabilistic network’s out-
put probabilities to inaccuracies in the network pa-
rameters. Since discrimination is defined in terms
of output probabilities, its robustness to parameter
changes is a relevant matter, and can be studied by
means of the functions that result from a sensitivity
analysis. We now review some known properties of
such sensitivity functions.

3.1 Sensitivity Functions

Sensitivity analysis of a probabilistic network
amounts to establishing, for each of the network’s
numerical parameters, thesensitivity functionthat
expresses an output probability of interest in terms
of that parameter. Letx = p(b | π) be a parame-
ter under study, whereb is a value of some variable
B andπ is a combination of values forB’s parents.
We now usefe

a(x) to denote the sensitivity function
that expresses the output probabilityPr(a | e) in
terms of the parameterx.

Any one-way sensitivity functionfe
a(x) is a quo-

tient of two linear functions in the parameterx un-
der study (Castillo, Gutiérrez & Hadi, 1997; Couṕe
& Van der Gaag, 2002). More formally, the function
takes the form

fe
a(x) =

Pr(a, e)(x)

Pr(e)(x)
=

c1 · x + c2

c3 · x + c4

where the constantscj , j = 1, . . . , 4, are built from
the assessments for the parameters that are not be-
ing varied1. Efficient algorithms exist to compute

1We assume that the parameters pertaining to the same con-
ditional distribution as the parameter under study are co-varied
proportionally (Kjærulff & Van der Gaag, 2000).
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Figure 2: Two hyperbolas with their branches and
associated constants (the constraints ons andt are
specific for sensitivity functions).

the constants of any sensitivity function relating a
(posterior) probability for a value of a single output
variable to a network parameter (Coupé & Van der
Gaag, 2002; Kjærulff & Van der Gaag, 2000).

The sensitivity functionfe
a(x) can take one of

three general forms. The function islinear for prior
probabilities of interest, or ifPr(e) is unaffected by
the parameter variation (c3 = 0); if c4 = 0, then
c2 = 0 and the function reduces to aconstant. In all
other cases the function is a fragment of arectangu-
lar hyperbola, which takes the general form

f(x) =
r

x − s
+ t

where, for a sensitivity function withc1, . . . , c4 as
before,s = −c4/c3, t = c1/c3, andr = (c2/c3) +
s · t. In the remainder of the paper, we assume any
sensitivity function to be hyperbolic.

Figure 2 illustrates that a rectangular hyperbola
in general has two branches, and two asymptotes
defining its center(s, t). We observe that a sensitiv-
ity function is defined by0 ≤ x, f(x) ≤ 1; the two-
dimensional space of feasible points thus defined, is
termed theunit window. Since a sensitivity function
moreover should be continuous forx ∈ [0, 1], its
vertical asymptote necessarily lies outside the unit
window. A hyperbolic sensitivity function therefore
is a fragment of a single hyperbola branch.

3.2 Discrimination Dynamics: Simple Values

The robustness of a network’s discrimination be-
tween a and b, in the context of evidencee, to

changes in a parameterx, can be captured by con-
sideringd(a; b | e) as a function ofx. In this section
we assume thata and b are simplevalues, that is
values for a single variableA and a single variable
B; the case wherea andb arecompoundvalues is
considered in Section 3.3. In this paper we assume
thatd(a ; b | e) itself is a function involving simple
operators as the sum, the difference, and/or the ratio
of posterior probabilities. We will demonstrate, for
our choice of measure, thatdiscrimination sensitiv-
ity d(a; b|e)(x) can now again be described in terms
of a rectangular hyperbola.

Proposition 1. Let fe
a(x) = ra/(x − s) + ta and

fe
b (x) = rb/(x−s)+tb be two sensitivity functions.

Then

fe
a(x) − fe

b (x) =
(ra − rb)

x − s
+ (ta − tb)

The above immediately follows from having the
same constants in both sensitivity functions, which
is justified by the following lemma.

Lemma 1. For a fixed parameterx and evidence
e, all sensitivity functionsfe

A(x) for any variableA
have the same vertical asymptote.

Recall that the constants for a sensitivity func-
tion fe

a(x) equalss = −c4/c3, wherec3 · x + c4 =
Pr(e)(x). Given a parameterx, constants therefore
relates to just the available evidence and is indepen-
dent of the output variable of interest.

Although the difference function from Proposi-
tion 1 again is a fragment of one hyperbola branch
for x ∈ [0, 1], it will in general not be a sensitivity
function since it can be negative on[0, 1]; for our
choice of measure,d(a ; b | e)(x) is the absolute
value of this difference. For a fixed parameterx and
evidencee, establishing the constants of all sensitiv-
ity functionsfe

A(x) for any single variableA, rather
than for one specificA, comes at no additional com-
putational expense. Establishingd(a; b|e)(x) hence
requires no additional network propagations.

The functiond(a ; b | e)(x) now details how dis-
crimination is affected by parameter variation. Dis-
crimination is robust to parameter inaccuracies if its
change upon varying a parameter is limited. To as-
sess robustness, we now define different intervals
of parameter values having different effects on dis-
crimination.
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Figure 3: Example sensitivity functions with
s = −1, xint = 0.56 andxmax = 0.

Sinced(a ; b | e)(x) is based on two sensitivity
functions, which are continuous and monotone for
x ∈ [0, 1], we have that maximum discrimination is
found on the boundaries of the unit window, that is,
for eitherx = 0 or x = 1. The value of parameterx
where discrimination is maximised will be denoted
by xmax:

xmax = argmax
x∈[0,1]

d(a; b | e)(x) ∈ {0, 1}

If the two sensitivity functionsfe
a(x) andfe

b (x)
for the posterior probabilities under consideration
intersect within the unit window, such as in Fig-
ure 3, then minimum discrimination is attained at
this intersection point. Assuming that the two
hyperbolas are truly different functions, that is
fe

a(x) 6= fe
b (x), they intersect for at most one value

of x, denotedxint. For our choice of discrimina-
tion measure this minimum value equals zero and is
attained at

d(a; b | e)(xint) = 0 ⇐⇒ xint =
ra − rb

tb − ta
+ s

If xint ∈ 〈0, 1〉, then parameter values on op-
posite sides ofxint will result in the same amount
of discrimination between the valuesa andb under
consideration (see Figure 4). Letxsim denote the
value ofx for which discrimination equals the orig-
inal amount of discrimination betweena and b in
contexte, that is

d(a; b | e)(xsim) = d(a; b | e)(x0),

wherex0 is the original value of the parameterx
under consideration. For our example measure, the
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Figure 4: Discriminationd(csf ; gi | 169)(x) for
a parameterx with x0 = 0.075; xint = 0.11 and
xsim = 0.16.

value ofxsim can be easily established fromd0 =
fe

a(x0) − fe
b (x0):

xsim =
ra − rb

tb − ta − d0
+ s

We now note thatx0 andxsim necessarily lie on op-
posite sides ofxint if the latter two lie within the unit
window. As a result, forx-values betweenx0 and
xsim, discrimination will become smaller than its
original value atx0; we will then say that discrim-
ination decreases, even though it is not a decreas-
ing function ofx; for x-values outside the interval
bounded byx0 and xsim discrimination increases.
If xsim 6∈ [0, 1], for example as in Figure 3 with
x0 = 0.10 andxsim = 1.70, then, necessarily,xmax

lies on the same side ofxint asx0, so variation of
x from x0 towardsxmax increases discrimination,
whereas discrimination will become less whenx is
varied in the opposite direction.

The intersection point of the two hyperbolas does
not necessarily lie within the unit window (see for
example Figure 5). If the intersection point lies out-
side the unit window, or if the hyperbola branches
do not intersect at all, then discriminationd(a ; b |
e)(x) is monotone forx ∈ [0, 1], obtaining its min-
imum value at1 − xmax.

We now have all the ingredients to describe the
effect of parameter variation on discrimination.

Proposition 2. Let fe
a(x), fe

b (x), xmax, xint, and
xsim be as before. Then the network’s discrimina-
tion d(a ; b | e) betweena and b in the context of
evidencee changes as follows, upon varying param-
eterx:
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Figure 5: Discriminationd(gi ; ai | 14)(x) for a
parameterx with x0 = 0.20; xint = 2.08, xsim =
−1.17, andxmax = 0.

◮ if xint 6∈ [0, 1] or xsim 6∈ [0, 1], then discrimi-
nation is non-decreasing ifx is varied towards
xmax, and non-increasing otherwise.

◮ if xint ∈ [0, 1] and xsim ∈ [0, 1], then dis-
crimination is non-decreasing ifx is var-
ied to x ≤ γ or to x ≥ δ, where [γ, δ]
= [min{x0, xsim},max{x0, xsim}], and non-
increasing otherwise.

Example 2. Reconsider the network for early de-
tection of csf and its discrimination between csf and
a gastro-intestinal infection for pig 169,d(csf ; gi |
169). Discrimination between these two values as
a function of a parameterx pertaining to the suc-
cess of treatment with antibiotics (x0 = 0.075), is
captured by the following two sensitivity functions:

f169
csf (x) =

0.12

x + 0.55
andf169

gi (x) =
−0.54

x + 0.55
+ 1

and shown in Figure 4. From these functions we
find thatxint = 0.11 andxsim = 0.16. As a result,
if a more accurate assessment of the parameter turns
out smaller than 0.075, then the network will be able
to better discriminate between the two infections in
this pig; if a more accurate assessment is larger, but
not as large as 0.16, then discrimination becomes
worse. Similarly, discriminationd(gi ; ai | 14) be-
tween a gastro-intestinal and an airway infection in
pig 14, as a function of a parameterx pertaining to
faeces samples (x0 = 0.20), is captured by the fol-
lowing two sensitivity functions:

f14
gi (x) =

0.69

x + 1.19
+ 0.05, and

f14
ai (x) =

−0.39

x + 1.19
+ 0.38

shown in Figure 5. From the formulas we find that
xint = 2.08 andxsim = −1.17. We conclude that
discrimination decreases for any parameter value
larger than0.20, and increases otherwise. �

For our example measure we have studied the dif-
ference between two sensitivity functions, each de-
scribing a posterior probability for a simple output
value as a function of a network parameter. We note
that the difference between two such posterior prob-
abilities in relation to changes in a network param-
eter has been studied before by Chan & Darwiche
(2002) in the context of parameter tuning. They
demonstrated that parameter values which enforce
a constraint on the difference, or on the ratio, of two
posterior probabilities can be computed from par-
tial derivatives established from the network with-
out explicitly determining a sensitivity function. Es-
tablishing the constants of the sensitivity function,
however, is just as efficient and has the benefit of
providing insight in the effects of arbitrary parame-
ter changes on an output of interest.

3.3 Discrimination Dynamics: Compound
Values

In this section, we extend the results on the robust-
ness to parameter inaccuracies of discrimination be-
tween simple values, to apply to compound value
combinations for two or more variables. This type
of robustness is relevant in case we need to dis-
tinguish between diagnoses for multiple disorders,
modelled in separate diagnostic variables. In prac-
tice, the number of variables under consideration
should typically be small, for computational reasons
as well as for interpretability. Although results in
this section apply to compound values for any num-
ber of variables, we limit the discussion to only two.

We consider the variablesA andB and the poste-
rior probability Pr(a, b | e) of the compound value
ab. A sensitivity functionfe

ab(x) for ab in the con-
text of evidencee, as a function ofx, is readily de-
termined by one of the following two approaches:

I) Extend the network with a new variableY ,
with parentsA andB and all their compound
values as possible values forY ; for the CPT,
define p(y | a, b) = 1 iff y ≡ ab, and



p(y | a, b) = 0 otherwise. Enter evidencee
into the new network and computefe

Y =ab(x).

II) Enter evidencee into the original network to
computefe

b (x), then enter additional evidence
b to computef be

a (x). Finally, multiply the two
functions:

fe
ab(x) = f be

a (x) · fe
b (x)

=

(

ra

x − sbe

+ ta

)

·

(

rb

x − se
+ tb

)

The first approach requires less propagations, but in
a more complex network, and establishes the sensi-
tivity functions for all compound values of the vari-
ables under consideration. The second approach
leaves the network as-is and provides all informa-
tion for establishing the sensitivity functionsfe

Ab(x)
for all values of all variablesA in the network. The
multiplication step is simplified by the observation
that the resulting function is again a sensitivity func-
tion and therefore a rectangular hyperbola. This in-
deed follows after careful inspection of all constants
involved.

Proposition 3. Letf be
a (x) = ra/(x− sbe) + ta and

fe
b (x) = rb/(x − se) + tb be two sensitivity func-

tions. Then

fe
ab(x) =

ra · tb + (se − sbe) · ta · tb
x − se

+ ta · tb

is the sensitivity function relating the joint probabil-
ity Pr(a, b | e) to parameterx.

Proof. First we rewrite the formulas for the hyper-
bolic sensitivity functions in terms of a fraction of
linear functions:

f be
a (x) =

Pr(a, b, e)(x)

Pr(b, e)(x)
=

c1 · x + c2

c3 · x + c4

where−c4/c3 = sbe, c1/c3 = ta, and c2/c3 =
ra − sbe · ta, and

fe
b (x) =

Pr(b, e)(x)

Pr(e)(x)
=

c3 · x + c4

c5 · x + c6

where−c6/c5 = se, c3/c5 = tb, andc4/c5 = rb −
se · tb. Now,

fe
ab(x) = f be

a (x) · fe
b (x) =

c1 · x + c2

c5 · x + c6

=
rab

x − sab

+ tab

where

sab = −
c6

c5
= se

tab =
c1

c5
=

c1

c3
·
c3

c5
= ta · tb

rab =
c2

c5
+ se · ta · tb =

c2

c3
·
c3

c5
+ se · ta · tb

= (ra − sbe · ta) · tb + se · ta · tb

From the above observations, we have that all
properties for sensitivity functions and discrimina-
tion derived in the previous section readily apply to
the compound values case.

Example 3. Reconsider the network for early de-
tection of csf. We study the network’s discrimina-
tion, and its robustness, between csf and one of the
primary other infections. More specifically, since
other infections are quite common in pigs, we are
interested in whether or not csf can be distinguished
from them. In this example, we focus on the differ-
ence betweenPr(csf , ¬gi | 169) andPr(¬csf , gi |
169) for pig 169. The robustness of discrimina-
tion, as a function of a parameterx, can be stud-
ied by means of the corresponding sensitivity func-
tions: | f169

csf ,¬gi (x)−f169
¬csf , gi (x)|. The constants for

the rectangular hyperbola representing this differ-
ence are found by applying Propositions 3 and 1 to
the functionsf169,¬gi

csf (x), f169, gi
¬csf (x), andf169

gi (x)

and exploiting the fact thatf169
¬gi (x) = 1 − f169

gi (x).
From these constants,xint andxsim can be straight-
forwardly computed.

Examples of the sensitivity functions for the sim-
ple output values under consideration and a parame-
terx pertaining to the success of an antibiotics treat-
ment are given in Figure 6. The sensitivity functions
for the compound values of interest for the samex,
together with discrimination as a function ofx, are
shown in Figure 7. Note that Figure 7 gives valu-
able insight into the dynamics of discrimination be-
tween csf and gastro-intestinal infections, which is
not obvious from Figure 6: although from Figure 6
we can see that changes in the posterior probabil-
ity of gi will pull the probabilities for its combina-
tion with csf towards the center of the probability
range, it is not immediately obvious from this fig-
ure that the functions for the compound values will
intersect, nor where this will occur. �
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4 Conclusions

In this paper we introduced the concept of evidence-
specific discrimination to investigate how well a
probabilistic network can distinguish between two
or more output values or, more in general, between
value combinations for two or more output variables
of interest. We illustrated a simple measure of dis-
crimination based on the difference between two
posterior probabilities. Subsequently, we demon-
strated how sensitivity functions can be employed
to study the robustness of discrimination to parame-
ter inaccuracies, even when discrimination concerns
compound values rather than simple ones.

Our results on the dynamics of discrimination
build to a large extent on the observation that, in
the same evidence context, simple operations on
hyperbolic sensitivity functions for the same pa-
rameterx, again result in a rectangular hyperbola.
This entails that more sophisticated discrimination
measures, such as for example (odds) ratios or
|fe

a(x) − fe
b (x)|/(fe

a(x) + fe
b (x)), can be straight-

forwardly employed with the techniques presented
in this paper. Further research is required to in-
vestigate what measure of discrimination is most
suitable in what situation, and what amount of dis-
crimination is acceptable or desirable. In addition,
we plan on investigating to what extent results that
address evidence-dependent bounds on sensitivity
functions (Renooij & Van der Gaag, 2005) can be
employed to make general statements concerning
discrimination involving all network parameters.
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