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Abstract

To determine the effect of a set of inaccurate parameters in Gaussian Bayesian networks, it
is necessary to study the sensitivity of the model. With this aim we propose a sensitivity
analysis based on comparing two different models: the original model with the initial
parameters assigned to the Gaussian Bayesian network and the perturbed model obtained
after perturbing a set of inaccurate parameters with specific characteristics.

The network’s outputs obtained for both models, after the evidence propagation, are
going to be compared with the Kullback-Leibler divergence. This measure is useful to
discriminate between two probability distributions, comparing the whole behavior of the
considered probability distributions.

Depending on the set of parameters that are going to be perturbed, different ex-
pressions for the Kullback-Leibler are obtained. It is possible to determine the set of
parameters that mostly disturb the network’s output, detecting the variables that must
be accurately described in the model.

The methodology developed in this work is for a Gaussian Bayesian network with a
set of variables of interest and a set of evidential variables.

One example is introduced to show the sensitivity analysis proposed.

1 Introduction

In Bayesian networks some sensitivity anal-
ysis had been proposed to study the effect
of inaccurate parameters over the network’s
output. Most of them, like the analyses and
methodologies proposed by Laskey (1995),
Coupé, van der Gaag and Habbema (2000),
Kjærulff and van der Gaag (2000),
Bednarski, Cholewa and Frid (2004) or
Chan and Darwiche (2005), to name a few, are
developed to study the sensitivity in discrete
Bayesian networks. Some other papers discuss
about general problems with different measures
of sensitivity, like Pradhan, et al. (1996),

Coupé and van der Gaag (2002) and
Onisko and Druzdzel (2003).

In Gaussian Bayesian networks
Castillo and Kjærulff (2003) performed
a methodology based on studying small
changes in the parameters, with one
variable of interest in the model, and
Gómez-Villegas, Main and Susi (2007) de-
veloped a sensitivity analysis to study any kind
of perturbations, small or large changes in the
parameters, when there exists one variable of
interest in the Gaussian Bayesian network.
In the present work, we study a generaliza-
tion of the sensitivity analysis proposed by



Gómez-Villegas, Main and Susi (2007), be-
cause now we consider a Gaussian Bayesian
network with a set of variables of interest and
a set of evidential variables. This approach is
significatively different to the previous work
because simultaneous perturbations in several
parameters can be analyzed.

This paper is organized as follows. In Section
2 a brief introduction is presented, defining first
a Bayesian network and a Gaussian Bayesian
network and reviewing the evidence propaga-
tion for these models. Moreover, we introduce
the working example. In Section 3, we present
the methodology developed to study the sensi-
tivity of a Gaussian Bayesian network with a
set of variables of interest and in Section 4, we
perform the sensitivity analysis proposed with
the working example. Finally, the paper ends
with some conclusions.

2 Gaussian Bayesian networks

A Bayesian network is a probabilistic graphical
model useful to study a set of random variables
with a specified dependence structure.
Bayesian networks have been studied by au-
thors like Pearl (1988), Lauritzen (1996) or
Jensen and Nielsen (2007), among others.

Definition 1 (Bayesian network). A Bayesian
network is a couple (G,P) where G is a
directed acyclic graph (DAG) whose nodes
are random variables X = {X1, ..., Xn}
and edges represent probabilistic dependencies,
P={p(x1|pa(x1)), ..., p(xn|pa(xn))} being a set
of conditional probability distributions (one for
each variable), pa(xi) the set of parents of node
Xi in G and pa(xi) ⊆ {X1, ..., Xi−1}.
The set P defines the joint probability distribu-
tion as

p(x) =
n∏

i=1

p(xi|pa(xi)). (1)

Because of this modular structure, Bayesian
networks are useful to study real life problems
in complex domains.

Depending on the kind of variables of the
problem, it is possible to describe discrete,

Gaussian and mixed Bayesian networks. The
results presented in this paper are developed
for Gaussian Bayesian networks defined next

Definition 2 (Gaussian Bayesian network).
A Gaussian Bayesian network is a Bayesian
network where the joint probability distribution
of X = {X1, ..., Xn} is a multivariate normal
distribution N(µ,Σ), then the joint density

f(x) =

(2π)−n/2|Σ|−1/2 exp
{
−1

2
(x− µ)′Σ−1(x− µ)

}

(2)
where µ is the n-dimensional mean vector and
Σ the n×n positive definite covariance matrix.

Moreover, the conditional probability distri-
bution of Xi, satisfying expression (1), is a uni-
variate normal distribution with density

f(xi|pa(xi)) ∼ N(xi|µi +
i−1∑

j=1

βij(xj − µj), νi)

where µi is the mean of the variables Xi, βij are
the regression coefficients of Xi on its parents,
and νi = Σii − ΣiPa(xi)Σ

−1
Pa(xi)Σ

′
iPa(xi)

is the
conditional variance of Xi given its parents
in the DAG. It should also be pointed that
pa(xi) ⊆ {X1, ..., Xi−1}.

In Bayesian networks, when there exists evi-
dence about one variable of the problem, know-
ing its value, the evidence propagation updates
the probability distributions of the rest of the
variables of the network given the evidence.
Different algorithms had been developed to
propagate the evidence in Bayesian networks
(see Jensen and Nielsen (2007)). In Gaussian
Bayesian networks most of the algorithms pro-
posed are based on computing the conditional
probability distribution for a multivariate nor-
mal distribution given a set of evidential vari-
ables.
Thereby, to perform the evidence propagation
in a Gaussian Bayesian network we consider a
partition of the set of variables, where X =
(E,Y)′, with E the set of evidential variables



and Y the rest of variables that will be con-
sidered as the set of variables of interest. Af-
ter performing the evidence propagation, the
conditional probability distribution of the vari-
ables of interest Y given the evidence E = e is
a multivariate normal distribution, Y|E = e ∼
N(y|µY|E=e, ΣY|E=e) where

µY|E=e = µY + ΣYEΣ−1
EE(e− µE) (3)

and

ΣY|E=e = ΣYY − ΣYEΣ−1
EEΣEY (4)

are the conditional mean vector and covariance
matrix respectively.

Next, the working example of a Gaussian
Bayesian network is introduced.

Example 1. The interest of the problem is
about the duration of time that a machine
works for. The machine is made up of 7
elements with random time to failure, Xi

i = 1, ..., 7, connected as shown in the DAG of
Figure 1.

Figure 1: DAG of the Gaussian Bayesian net-
work in Example 1

It is known that the time that each element is
working is a normal distribution, being the joint

probability distribution of X = {X1, X2, ..., X7}
a multivariate normal distribution N(µ,Σ) with
parameters

µ =




1
3
2
1
4
5
8




;Σ =




1 0 0 1 0 2 2
0 1 0 2 2 8 8
0 0 2 0 2 4 4
1 2 0 6 4 20 20
0 2 2 4 10 28 28
2 8 4 20 28 97 97
2 8 4 20 28 97 99




The Gaussian Bayesian network that rep-
resents the problem is given by the joint
probability distribution of X ∼ N(x|µ,Σ)
and by the DAG in Figure 1, showing the
dependence structure between the variables of
the example.

Experts know that the evidence is given by

E = {X1 = 2, X2 = 2, X3 = 1}

Then, after performing the evidence propaga-
tion, the probability distribution of the rest of
the variables is Y|E ∼ N(y|µY|E, ΣY|E) with
parameters

µY|E =




0
1
−3
0


 ;ΣY|E =




1 0 2 2
0 4 8 8
2 8 21 21
2 8 21 23




The effect of introducing the evidence updates
the parameters of the marginal distribution of
the variables Y given by

µY =




1
4
5
8


 ;ΣY =




6 4 20 20
4 10 28 28
20 28 97 97
20 28 97 99




and the independence relationship because X4

and X5 become dependent.

3 Sensitivity Analysis

The aim of this work is to generalize the
one way sensitivity analysis developed by



Gómez-Villegas, Main and Susi (2007) to a set
of variables of interest.
The proposed methodology consists in compar-
ing two different network’s outputs: the first
one, given by the network’s output after the
evidence propagation at the original model, and
the other one, given by the network’s output
after the evidence propagation with a perturbed
model. The perturbed model is obtained after
adding a set of perturbations to the inaccurate
parameters, as will be shown in Subsection 3.2.
In this case, both network’s outputs are the
conditional probability distributions of the set
of variables of interest, given the evidence.
It is useful to study the effect of inaccuracy
over the parameters of a Gaussian Bayesian
network for one variable of interest, after the
evidence propagation. Nevertheless, now we
can analyze simultaneous perturbations in
several parameters.

3.1 Kullback-Leibler divergence

To compare the network’s outputs we work with
the n-dimensional Kullback-Leibler divergence
(Kullback-Leibler, 1951). This measure takes
into account the whole behavior of the distri-
butions to be considered, therefore, it provides
a suitable procedure to compare the network’s
outputs. The Kullback-Leibler (KL) divergence
measure was introduced as a generalization of
Shannon’s entropy and has been used in statis-
tical inference by authors like Jeffreys, Fisher
and Lindley.

Definition 3 (Kullback-Leibler divergence).
Let f(w) and f ′(w) be two probability densities
defined over the same domain. The Kullback-
Leibler divergence is given by

KL(f(w), f ′(w)) =
∫ ∞

−∞
f(w) ln

f(w)
f ′(w)

dw (5)

When the probability densities to be com-
pared with the KL divergence are multivariate
normal distributions expression (5) can be
written as

KL(f, f ′) =

=
1
2

[
ln
|Σ′|
|Σ| + tr

(
ΣΣ′−1

)
− dim(X)

]
+

+
1
2

[(
µ′ − µ

)T Σ′−1 (
µ′ − µ

)]
(6)

where f is the joint probability density of
X ∼ N(x|µ,Σ) and f ′ is the joint probability
density of X ∼ N(x|µ′,Σ′).

3.2 Sensitivity Analysis: methodology

The sensitivity analysis consists in comparing,
with the KL divergence, two different network’s
output, obtained for the original and the
perturbed model.
The original model is the initial description
of the parameters of the network, given by
X ∼ N(x|µ,Σ). The perturbed model quan-
tifies the uncertainty about the inaccurate
parameters of the original model, as a set of
additive perturbations. These are given by the
mean vector perturbations δ and the covariance
matrix perturbations ∆, where

δ =

(
δE
δY

)
;∆ =

(
∆EE ∆EY

∆YE ∆YY

)

Depending on the inaccurate parameters it
is possible to consider five different perturbed
models obtained when the uncertainty is about
the evidential means, the means of interest,
the variances-covariances between evidential
variables, the variances-covariances between
variables of interest and about the covariances
between evidential variables and variables of
interest. Therefore, next perturbed models are
considered:

• X ∼ N(x|µδE , Σ) where

µδE =

(
µE + δE

µY

)

• X ∼ N(x|µδY , Σ) being

µδY =

(
µE

µY + δY

)



• X ∼ N(x|µ,Σ∆EE) with

Σ∆EE =

(
ΣEE + ∆EE ΣEY

ΣYE ΣYY

)

• X ∼ N(x|µ,Σ∆YY) where

Σ∆YY =

(
ΣEE ΣEY

ΣYE ΣYY + ∆YY

)

• X ∼ N(x|µ,Σ∆YE) where

Σ∆YE =

(
ΣEE ΣEY + ∆EY

ΣYE + ∆YE ΣYY

)

In this way, with the proposed sensitivity
analysis the network’s outputs of all the per-
turbed models are going to be compared with
the network’s output of the original model.
Thereby, five different KL divergences are ob-
tained, one for each perturbed model.
When the KL divergence is large for a specific
perturbed model we can conclude that the set of
parameters perturbed must be reviewed to de-
scribe the network more accurately. However,
when the KL divergence is small, close to zero,
it can be concluded that the network is not sen-
sitive to the proposed perturbations. In sum-
mary, it can be established the set of inaccurate
parameters that causes the worst perturbation.
We have studied these cases separately
to distinguish the effects of different kind
of uncertain parameters. And we have
also studied perturbations on parameters of
both Y and E, giving a robustness mea-
sure of the Gaussian Bayesian network (see
Gómez-Villegas, Main and Susi (2008)).

3.3 Main results

The computations of the KL divergence for each
perturbed model are in Propositions 1 and 2.

Proposition 1 (Uncertainty about the mean
vector). Let (G, P ) be a Gaussian Bayesian
network with X = {E,Y} and X ∼
N(x|µ,Σ) where the mean vector µ is uncertain.
Giving values to the perturbations of the mean
vector δ = (δE , δY )T , the following results are
obtained

1. When the perturbation δE is added to the
mean vector of the evidential variables, the
perturbed model after the evidence propaga-
tion is Y|E, δE ∼ N(y|µY|E,δE ,ΣY|E) with
µY|E,δE = µY|E − ΣYEΣ−1

EEδE. The KL
divergence is

KLµE =
1
2

[
δT
EMT

1

(
ΣY|E

)−1
M1δE

]

with M1 = ΣYEΣ−1
EE

2. When the perturbation δY is added to the
mean vector of the variables of interest, af-
ter the evidence propagation the perturbed
model is Y|E, δY ∼ N(y|µY|E,δY ,ΣY|E)
where µY|E,δY = µY|E + δY and the KL
divergence is

KLµY =
1
2

[
δT
Y

(
ΣY|E

)−1
δY

]

Proof. For uncertainty about the mean vector,
we work with two perturbed models, depending
on the set of inaccurate parameters.

In both perturbed models the covariance
matrix ΣY|E is the same for the original
model and for the perturbed model, then

tr

(
ΣY|E

(
ΣY|E

)−1
)

= dim(Y). So, working

with expression (6) and dealing with the per-
turbed models, the KL divergences follow di-
rectly.

Note also that the KL divergence obtained
when there exists uncertainty about the mean
vector of the evidential variables coincides with
the KL divergence computed for a perturbation
in the evidence vector e. This gives us a tool
to evaluate evidence influence on the network’s
outputs, as can be seen in Susi (2007).

Proposition 2 (Uncertainty about the co-
variance matrix). Let (G,P ) be a Gaussian
Bayesian network with X = {E,Y} and X ∼
N(x|µ,Σ) where the covariance matrix Σ is un-
certainty. Giving values to the perturbations of

the covariance matrix ∆ =

(
∆EE ∆EY

∆YE ∆YY

)
,

the following results are obtained



1. When the perturbation ∆EE is added to
the variances-covariances of the evidential
variables, after the evidence propagation,
the perturbed model is

Y|E,∆EE ∼ N(y|µY|E,∆EE ,ΣY|E,∆EE)

with µY|E,∆EE = µY +
ΣYE (ΣEE + ∆EE)−1 (e− µE) and
ΣY|E,∆EE = ΣYY −
ΣYE (ΣEE + ∆EE)−1 ΣEY

The KL divergence is
KLΣEE =

=
1
2


ln

∣∣∣ΣY|E,∆EE

∣∣∣
∣∣ΣY|E∣∣ − dim(Y)


 +

+
1
2

[
tr

(
ΣY|E

(
ΣY|E,∆EE

)−1
)]

+

+
1
2

[
MT

2

(
ΣY|E,∆EE

)−1
M2

]

where M2 = µY|E,∆EE − µY|E.

2. When the perturbation ∆YY is added to the
variances-covariances between the variables
of interest, after the evidence propagation
the perturbed model is

Y|E,∆YY ∼ N(y|µY|E,ΣY|E,∆YY)

with ΣY|E,∆YY = ΣY|E + ∆YY.

The obtained KL divergence is

KLΣYY =

=
1
2


ln

∣∣∣ΣY|E + ∆YY

∣∣∣
∣∣ΣY|E∣∣ − dim(Y)


 +

+
1
2

[
tr

(
ΣY|E

(
ΣY|E + ∆YY

)−1
)]

3. If the perturbation ∆YE is added to the co-
variances between Y and E, the perturbed
model after the evidence propagation is

Y|E,∆YE ∼ N(y|µY|E,∆YE ,ΣY|E,∆YE)

with µY|E,∆YE = µY +
(ΣYE + ∆YE)Σ−1

EE(e− µE) and
ΣY|E,∆YE = ΣYY −
(ΣYE + ∆YE)Σ−1

EE (ΣEY + ∆EY)

Then, the KL divergence is

KLΣYE =

=
1
2


ln

∣∣∣ΣY|E −M(∆YE)
∣∣∣

∣∣ΣY|E∣∣ − dim(Y)


 +

+
1
2

[
tr

(
ΣY|E

(
ΣY|E −M(∆YE)

)−1
)]

+

+
1
2

[
(e− µE)T

(
Σ−1

EE

)T
M3Σ−1

EE(e− µE)
]

where
M3 = ∆T

YE

(
ΣY|E −∆YEΣ−1

EEΣT
YE

−ΣYEΣ−1
EE∆EY −∆YEΣ−1

EE∆EY

)−1
∆YE

Proof. We work with three perturbed models
defined for different sets of inaccurate param-
eters. The corresponding conditional parame-
ters for the perturbed model are stated. Then,
computing the KL divergence with (6) to com-
pare the network’s output of the original model
with the network’s outputs obtained for the per-
turbed models, the obtained expressions follow
directly.

Although computation involves matrix opera-
tions and depends on the network size, the final
calculations consider a reduced dimension be-
cause of the partition in the original covariance
matrix. The introduced results can be imple-
mented algorithmically with a polynomial com-
putational complexity.

4 Experimental results

Next, we will run the sensitivity analysis pro-
posed in Section 3 for the Example 1.

Example 2. There are different opinions
between experts about the parameters of
the Gaussian Bayesian network shown in



Example 1. Quantifying this uncertainty we ob-
tain the perturbed mean vector δ and the per-
turbed covariance matrix ∆ as follows

δE =




0
−1
1


 ; δY =




0
1
0
−1




ΣEE =




0 0 0
0 1 0
0 0 −1




ΣYY =




0 0 0 1
0 1 0 0
0 0 1 −2
1 0 −2 0




ΣEY =




0 0 0 0
0 0 0 0
0 0 0 −1




Taking into account the evidence
E = {X1 = 2, X2 = 2, X3 = 1} and the
variables of interest Y = {X4, X5, X6, X7}, it
is possible to perform the sensitivity analysis
proposed.
Then, for the KL divergence with the expres-
sions presented in Propositions 1 and 2, next
values are obtained:

KLµE = 2.125
KLµY = 2.375
KLΣEE = 0.596
KLΣYY(f, fΣYY) = 1.629
KLΣYE(f, fΣYE) = 0.265

With the obtained results it is possible
to conclude that some parameters must be
reviewed to describe the network more accu-
rately. The parameters that must be reviewed
are the mean vector, because the possible
perturbations makes the KL divergence larger
than 1 and, moreover, it is necessary to review
the parameters that describe the variances-
covariances between the variables of interest
because the network is sensitive to uncertainty
about these parameters.

Uncertainty about the variances-covariances
between evidential variables and about the
covariances between variables of interest and
evidential variables do not change the network’s
output so much, therefore the network is not
sensitive to these inaccurate parameters.

5 Conclusions

In a Gaussian Bayesian network, some inaccura-
cies about the parameters that describe the net-
work, involve a sensitivity analysis of the model.
In this paper we propose a sensitivity analysis
for Gaussian Bayesian networks, useful to de-
termine the set or sets of inaccurate parameters
that must be reviewed to be introduced in the
network more accurately, or if the network is
not sensitive to inaccuracies.
The analysis performed is a generalization of
the one way sensitivity analysis developed by
Gómez-Villegas, Main and Susi (2007), work-
ing now with a set of variables of interest and
being able to analyze a set of parameters per-
turbations simultaneously.
At the proposed sensitivity analysis five differ-
ent sets of parameters are considered, depend-
ing on the type of variables and if they describe
the mean or the covariance of the model. After
computing the expressions of the KL divergence
obtained in Propositions 1 and 2, it is possible
to conclude the set or sets of parameters that
must be reviewed to describe the network more
properly. In this way, when a KL divergence is
small, next to zero, we can conclude that the
network is not sensitive to the proposed pertur-
bations.
The methodology we present is easy to perform
with any Gaussian Bayesian network and is use-
ful to evaluate any kind of inaccurate parame-
ters, that is, large and small perturbations as-
sociated to uncertain parameters.
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