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Abstract

This paper presents an architecture for solving conditional linear-quadratic Gaussian
(CLQG) influence diagrams (IDs) by Lazy Propagation (LP). A strong junction tree (SJT)
is used to guide the elimination order whereas the marginalization operation is based on
arc-reversal (AR). The use of AR for marginalization simplifies the implementation and
gives the architecture a number of advantages. The key benefits of using LP in combina-
tion with AR to solve CLQG IDs are illustrated by examples and in experiments. The
results of a preliminary performance evaluation are promising.

1 INTRODUCTION

The ID (Howard and Matheson, 1984) is an
increasingly popular knowledge representation
for decision making under uncertainty. It pro-
vides an intuitive graphical representation of
a decision problem with a minimum of clutter
and confusion for the decision maker and ana-
lyst (Shachter and Peot, 1992).

Some of the most popular algorithms for solv-
ing IDs, e.g., Olmsted (1983), Shachter (1986),
Shenoy (1992), and Jensen et al. (1994), con-
sider the discrete case only. Recently,
an increased interest in IDs with continu-
ous as well as mixed continuous and dis-
crete variables has emerged. Kenley (1986)
and Shachter and Kenley (1989) introduced the
Gaussian ID consisting of continuous vari-
ables only and an architecture for its so-
lution. The architecture assumes a sin-
gle utility function (UF) conditioned on all
variables in the ID. The solution process is
based on AR operations. Later Poland (1994)
introduced an architecture for representing
and solving continuous IDs by approximating
continuous distributions with Gaussian mix-
tures. The solution process of this architec-
ture is also based on AR operations. Later
Madsen and Jensen (2005) introduced Shenoy-
Shafer and LP architectures for solving CLQG

IDs. These two architectures are based on a
new representation of UFs and representations
and operations of Lauritzen and Jensen (2001)
and Shachter and Kenley (1989). At the same
time, Cobb and Shenoy (2004) introduced an
architecture for solving hybrid IDs using mix-
tures of truncated exponentials (MTEs).

The new architecture introduced in this pa-
per extends LP (Madsen, 2006) with represen-
tations for UFs (Madsen and Jensen, 2005) and
operations for eliminating random and decision
variables (DVs) from UFs. It is simpler than
the architecture of Madsen and Jensen (2005).
We refer to the proposed architecture as LARP
as it is based on LP using AR operations (Cow-
ell, 2005; Madsen, 2006) for variable elimina-
tion. We make an empirical analysis of the effi-
ciency of LARP using randomly generated IDs
and different versions of a famous example. In
addition, we compare LARP with the HUGIN
algorithm (Jensen et al., 1994).

2 PRELIMINARIES

2.1 CLQG INFLUENCE DIAGRAM

A CLQG ID N = (X,G,P,F,U) over variables X

consists of a DAG G, a set of conditional prob-
ability distributions P = {P(X| pa(X)) : X ∈ ∆C}

where pa(X) is the set of variables correspond-
ing to the parents of X in G, a set of con-



ditional linear Gaussian (CLG) density func-
tions F = {f(Y | pa(Y)) : Y ∈ ΓC} and a set of
quadratic UFs U where ∆ is the set of discrete
variables s.t. ∆C is the set of discrete random
variables (RVs) and ∆D is the set of discrete
DVs, Γ is the set of continuous variables s.t. ΓC

is the set of continuous RVs and ΓD is the set of
continuous DVs, i.e., X = ∆C ∪ ΓC ∪ ∆D ∪ ΓD.
We denote the set of RVs as XC = ∆C ∪ ΓC

and the set of DVs as XD = ∆D ∪ ΓD s.t.
X = XC ∪ XD. The variables ∆C ∪ ΓC induce
a CLG distribution conditional on ∆D∪ ΓD s.t.
P(∆C|∆D) · f(ΓC|∆, ΓD) equals:

∏

X∈∆C

P(X| pa(X)) ·
∏

Y∈ΓC

f(Y | pa(Y)).

The variables of N induce an expected UF:

EU(X) = P(∆C|∆D) · f(ΓC|∆, ΓD) ·
∑

u∈U

u. (1)

An optimal strategy can be identified by elim-
inating variables from (1) in the reverse time
order. The time order is the order in which
variables are observed s.t. Ii is the set of vari-
ables observed after the ith decision and before
the i + 1th decision.

Let Y ∈ ΓC with I = pa(Y)∩∆ and Z = pa(Y)∩
Γ , then Y has a CLG distribution if:

f(Y |I = i, Z = z) = N(α(i) + β(i)z, σ2(i)), (2)

where the mean value is linear in the values of Z,
while the covariance matrix is independent of Z.
In (2), α(i) is a table of real numbers, β(i) is
a table of |Z|-dimensional row vectors and σ2(i)

is a table of non-negative values.
A quadratic UF has the form u(X = x, I =

i) = xTQ(i)x + R(i)x + S(i) where X is a
|X| × 1-dimensional vector of continuous vari-
ables, I ⊆ ∆, Q(i) := (qjk)|X|×|X|(i) is a table
of |X|× |X| symmetric negative semi-definite ma-
trices, R(i) = (rk)|X|(i) is a table of 1×|X| vectors
and S(i) is a table of constants. Thus, a UF is
represented as a triple [Q,R, S].

We assume the UF to be a negative quadratic
function as a weighted average of quadratic
functions is quadratic. This implies that op-
timization of DVs and elimination of RVs

from (1) have closed form solutions. Notice that
the UFs specified in the model need not be neg-
ative quadratic. It is sufficient if the UF over
which a continuous DV is maximized is nega-
tive quadratic (or constant).

We let G(P∪F∪U) denote the domain graph
spanned by P∪F∪U and CG(X) denote the con-
ditioning variables of X in G where subscript G

is omitted when no confusion is possible.

A RV X in G(P ∪ F ∪ U) is probabilistic
barren w.r.t. T ⊆ X if it is barren w.r.t. T

in G(P ∪ F). Let Di be the ith decision in an
ID. A variable X ∈ Ik>=i is irrelevant for Di

if X ⊥ de(Di) ∩ U| pa(Di) where ⊥ denotes d-
separation and de(Di) are the descendants of Di

while a variable Y ∈ pa(Di) is non-requisite
for Di if X ⊥ U ∩ de(Di)| pa(Di) \ {Y}, see, e.g.,
Nielsen (2001) for more details.

2.2 THE AR OPERATION

The AR operation (Shachter, 1986; Cow-
ell, 2005) changes the direction of an edge
between two variables. Let Xi, Xj ∈ ∆

with C(Xi) = {Z1, . . . , Zn} ⊆ ∆ and C(Xj) =

{Xi, Z1, . . . , Zn} ⊆ ∆ s.t. p(Xj|Xi, Z1, . . . , Zn)

and p(Xi|Z1, . . . , Zn) are the corresponding
probability distributions of Xi and Xj, respec-
tively. The edge (Xi, Xj) is reversed by setting:

p(Xj|Z1, . . . , Zn) =
∑

Xi

p(Xj|Xi, Z1, . . . , Zn)p(Xi|Z1, . . . , Zn),

p(Xi|Xj, Z1, . . . , Zn) =

p(Xj|Xi, Z1, . . . , Zn)p(Xi|Z1, . . . , Zn)

p(Xj|Z1, . . . , Zn)
. (3)

The AR operation can also be applied to a pair
of density functions (Cowell, 2005). Let Yi, Yj ∈
Γ with C(Yj) = {Z1, . . . , Zn} ⊆ Γ and C(Yi) =

{Yj, Z1, . . . , Zn} ⊆ Γ s.t.:

Yi|Yj, Z1, . . . , Zn ∼

N(αYi
+βYj

Yj +

n∑

i=1

βiZi, σ
2
Yi

),

Yj|Z1, . . . , Zn ∼N(αYj
+

n∑

i=1

δiZi, σ
2
Yj

).



The distributions of Yi and Yj after AR are:

Yi|Z1, . . . , Zn ∼

N((αYi
+ βYj

) +

n∑

i=1

(βi + δi)Zi, σ
2
Yi

+ β2
Yj

σ2
Yj

),

Yj|Yi, Z1, . . . , Zn ∼ N

(

αYj
σ2

Yi
+ µ

d
,
σ2

Yj
σ2

Yi

d

)

,

where d = σ2
Yi

+ β2
Yj

σ2
Yj

and µ equals:

−αYi
βYj

σ2
Yj

+βYj
σ2

Yj
Yi+

n∑

i=1

(δiσ
2
Yi

−βiβYj
σ2

Yj
)Zi.

See Cowell (2005) and Madsen (2006) for more
details. If C(Yi) ∩ ∆ = C(Yj) ∩ ∆ = K, then the
formulas are indexed by k.

3 POTENTIALS

Definition 1. A potential πW = (P,F,U)

on W ⊆ X consists of a set of conditional prob-
ability potentials P over subsets of W, a set of
CLG density functions F over subsets of W ∩ Γ

conditional on subsets of W ∩ ∆ and a set of
UFs U over subsets of W.

Elements of P are referred to as factors and
elements of F as density functions. Further-
more, we call the potential πW = (∅, ∅, ∅) vac-
uous and denote it π∅. The domain of P is
dom(P) =

⋃

p∈P dom(p) where dom(p) denotes
the set of variables over which p is defined
(similarly for dom(F) and dom(U)). The do-
main of a potential π = (P,F,U) is defined
as dom(π) = dom(P) ∪ dom(F) ∪ dom(U). Fi-
nally, we define G(π) = G(P ∪ F ∪ U).

Definition 2. The combination of poten-
tials πW1

= (P1,F1,U1) and πW2
= (P2,F2,U2)

denotes the potential on W1 ∪ W2 given by
πW1

⊗ πW2
= (P1 ∪ P2,F1 ∪ F2,U1 ∪ U2).

Potential combination is simply set union.

Definition 3. A projection of πW =

(PW,FW,UW) to a subset V ⊆ W denotes the

potential πV = π
↓V
W = (PV,FV,UV) obtained by

performing a sequence of variable eliminations
of W \ V .

In projection ↓, variables Γ ∩V are eliminated
before ∆ ∩ V in reverse time order.

3.1 MARGINALIZATION

Madsen and Jensen (2005) define the necessary
and sufficient marginalization operations for
solving a CLQG ID. These operations assume
the [Q,R, S]-representation of UFs and the p ·
[A,B,C]-representation of (multivariate) CLG
distributions where p is the discrete potential
and A is a vector of αs, B is a matrix of βs, and
C is a covariance matrix (this representation
is equal to the [p,A,B,C]-representation intro-
duced by Lauritzen and Jensen (2001) except
for the decomposition of the potential into the
discrete p and the continuous [A,B,C] parts).
The main contribution of this paper is that the
proposed solution method considers only uni-
variate CLG distributions, i.e., a density func-
tion has exactly one head variable. This is
a significant simplification over the [A,B,C]-
representation as it simplifies the operations re-
lated to variable elimination and eliminates the
need for complex matrix operations.

Madsen (2006) describes an architecture for
belief update in CLG Bayesian networks using
AR operations to eliminate variables. These
operations are applicable for the elimination of
RVs in the process of solving a CLQG ID.

When solving an ID, variables are eliminated
in the reverse temporal order and continuous
variables are eliminated before discrete vari-
ables. In the process we may take advantage of
irrelevance and non-requisite variables. In the
following subsections we assume X is the vari-
able to eliminate, UX = {u ∈ U : X ∈ dom(u)}

and dom(UX) = {X,Z1, . . . , Zn}. In the process
of eliminating variables it may be necessary to
perform straightforward domain extensions.

3.1.1 Discrete Random Variables

The marginalization of X ∈ ∆C from a po-
tential π = (P, ∅,U) s.t. dom(U) ⊆ ∆ pro-
duces a new potential π∗

dom(π)−{X}
= (P∗, ∅,U∗)

where the components P∗ and U∗ are com-
puted as follows. A sequence of AR opera-
tions to make X probabilistic barren in G(P)

is performed. Let PX denote the resulting set
of factors, the set of UFs U is unchanged by
this operation. Since X is probabilistic bar-
ren only a single factor p ∈ PX has X in its



domain. Let p(X| C(X)) be this potential and
let u(X,C(X)) =

∑
u∈UX

u. Finally, we set:

P∗ = PX \ {p(X| C(X)) ∈ PX},

U∗ = U \ UX ∪ U−X, (4)

where U−X = {
∑

Xp(X| C(X)) · u(X,C(X))} de-
notes the resulting set of UFs (even though
|U−X| = 1). Notice that if UX = ∅, then U∗ = U.
Later the marginalization operation is extended
to produce a set of UFs.

3.1.2 Continuous Random Variables

The marginalization of X ∈ ΓC from a po-
tential π = (P,F,U) produces a new poten-
tial π∗

dom(π)−{X}
= (P,F∗,U∗) where F∗ and U∗

are computed as follows. A sequence of AR op-
erations to make X probabilistic barren in G(P∪
F) is performed. Let FX denote the result-
ing set of density functions, the factors P and
set of UFs U are unchanged by this opera-
tion. Since X is probabilistic barren a sin-
gle density function f ∈ FX has X in its do-
main. Let f(X| C(X)) be this density function
and let u(X,C(X)) =

∑
u∈UX

u. Finally, we set:

F∗ = FX \ {f(X| C(X)) ∈ FX},

U∗ = U \ UX ∪ U−X. (5)

where U−X =
{
(f(X| C(X)) · u(X,C(X)))↓C(X)

}

again denotes the resulting set of UFs
(again |U−X| = 1). Notice that if UX = ∅,
then U∗ = U. Later the marginalization of X ∈
ΓC is revised s.t. it may produce a set of UFs.

The operation (f(X| C(X)) · u(X,C(X)))↓C(X)

produces a UF u(C(X)) = [(q∗
ij), (r

∗
i), S

∗] where:

q∗
ij = qij + qikβj + βiqkj + qkk(βiβj),

r∗i = ri + 2αqki +
(

2qkkα + rk

)

βi,

S∗ = S + qkk

(

α2 + σ2
)

+ rkα,

where subscript k specifies the matrix/vector
entry corresponding to variable X. If I = C(X)∩
∆ 6= ∅, the formulas are indexed by the configu-
ration i of I (similarly for continuous decisions).

3.1.3 Discrete Decision Variables

The marginalization of X ∈ ∆D from a po-
tential π = (∅, ∅,U) s.t. dom(U) ⊆ ∆ produces

a new potential π∗
dom(π)−{X}

= (∅, ∅,U \ UX ∪

{maxD

∑
u∈UX

u}).

An optimal policy δX for X is determined as
the maximizing arguments of

∑
u∈UX

u.

3.1.4 Continuous Decision Variables

The marginalization of X ∈ ΓD from a poten-
tial π = (∅, ∅,U) s.t. dom(U) ⊆ ∆ ∪ Γ produces
a new potential π∗

dom(π)−{X}
= (∅, ∅,U∗). U∗ is

computed as:

U∗ = U \ UX ∪ {(
∑

u∈UX

u)↓{Z1 ,...,Zn}},

where (
∑

u∈UX
u)↓{Z1 ,...,Zn} = [(q∗

ij), (r
∗
i), S

∗],

q∗
ij = qij−

qikqkj

qkk

, r∗i = ri−
rkqki

qkk

, S∗ = S−
r2
k

4qkk

.

An optimal policy δX(z) for X is

δX(z1, . . . , zn) = −
rk + 2

∑n
i=1 qkizi

2qkk

.

A sufficient condition for the marginalization to
be well-defined is qkk < 0 (for all discrete con-
figurations with non-zero probability) as this
implies that the second order polynomial has
a unique maximum with respect to X (Madsen
and Jensen, 2005).

4 STRONG JUNCTION TREE

A SJT T with cliques C and separators S is used
to solve N. Basically, T is used as a computa-
tional caching structure to guide the solution
process, i.e., the order in which variables are
eliminated, as T induce a partial order on the
elimination order. T is constructed by moral-
ization and strong triangulation of G.

4.1 INITIALIZATION

The initialization of T consists of the following
steps: (1) associate π∅ with each clique C ∈ C,
(2) for each X ∈ ∆, Y ∈ Γ , assign P(X| pa(X)) ∈
P, f(Y | pa(Y)) ∈ F to the clique C closest to
strong root R s.t. fa(X), fa(Y) ⊆ C where fa(X) =

pa(X)∪ {X}, fa(Y) = pa(Y)∪ {Y} and (3) for each
UF u ∈ U, assign u to the clique C closest
to R s.t. dom(u) ⊆ C. After initialization each



clique C holds a potential πC = (P,F,U). The
potential πX =

⊗

C∈C πC on T is a decomposi-
tion of the expected UF over X:

(

⋃

X∈∆C

{P(X| pa(X))},
⋃

Y∈ΓC

{f(Y | pa(Y))},
⋃

u∈U

{u}

)

.

4.2 MESSAGE PASSING

The solution process in T proceeds by mes-
sage passing via the separators S. The sepa-
rator S = A∩B between two adjacent cliques A

and B stores the message passed between A

and B. Messages are passed from leaf cliques
toward R by recursively letting each clique A

pass a message to its parent B whenever A has
received a message from each C ∈ adj(A) \ {B}

where adj(C) is the set of cliques adjacent to C.

Hence, a clique A sends a message πA→B

to its parent B when it has received mes-
sages from all its children s.t. πA→B =
(

πA ⊗
(

⊗C∈adj(A)\{B}πC→A

))↓B
where πC→A is

the message passed from C to A.

5 SOLVING A CLQG ID

The solution of a CLQG ID N using LARP pro-
ceeds in two steps: 1) construction and initial-
ization of a SJT representation T of N and 2) a
round of message passing from the leaves of T

to its root R. In the process of eliminating a
DV X from a UF u, an optimal policy δX for X

is recorded as the maximizing arguments of u

as described in Sections 3.1.3 and 3.1.4.

Once the variables of X have been eliminated,
an optimal strategy ∆̂ = {δX : X ∈ XD} has been
identified and EU(∆̂) computed.

Since an ID over discrete variables only is a
special case of a CLQG ID, LARP can also be
used to solve discrete IDs.

5.1 DISTRIBUTIVE LAW

The distributive law of algebra (DL) may be ex-
ploited in the solution process, see e.g., (Madsen
and Jensen, 1999; Dechter, 2000; Pralet et al.,
2006). Consider the example where X ∈ ∆C is
to be eliminated from a sum of UFs:

U(Y, T, Z) =
∑

X

P(X) (U(X, Y, Z) + U(X, T)) .

Using DL the expression is rewritten:

U(Y,Z)+U(T) =
∑

X

P(X)U(X, Y, Z) +
∑

X

P(X)U(X, T).

This use of DL reduces the number of arith-
metic operations in the marginalization of X

and supports the decompositions of a UF into a
set of UFs. This may reduce the total num-
ber of arithmetic operations. In (4) and (5)
U−X is specified as a set of UFs to indicate a
possible use of DL. Figure 1 shows an example
where the application of DL reduces the com-
putational cost significantly.

X1 X2 X3 X4 X5 X6

U1 U2 U3 U4 U5 U6D

Y

Figure 1: Example of DL utilization.

If we assume ‖Y‖ = 100, ‖Xi‖ = 5 and
‖D‖ = 10, then the advantage of applying DL
becomes apparent. The optimal SJT for N con-
sists of a single clique including all variables.
Hence, there is no structure to exploit in the
graph G. The state space size of the largest fac-
tor when DL is not used is 15, 626, 000 whereas
it is 156, 250 when DL is used. In the former
case U−X = {U(X1, . . . , X6,D)} and in the latter
case U−X = {U(X1,D), . . . , U(X6,D)}.

The SPI principle (Shachter et al., 1990) may
be applied to combine UFs pairwise. The vari-
able X may be eliminated at any step of the
process, i.e., X may be eliminated from each
UF separately, from the sum of a subset of UFs
or from the sum of all UFs. The latter is the
traditional approach. Notice that the result of
eliminating X is a set of UFs with zero to n UFs
where n = |UX| (zero only when n = 0).

5.2 DECOMPOSITION

Decomposition of clique and separator poten-
tials facilitates, for instance, the exploitation of
irrelevant variables in the solution process. Fig-
ure 2 shows the jjd network (Jensen et al., 1994)
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Figure 2: The jjd network with mixed variables.

and Figure 3 shows a SJT representation (sepa-
rators are not shown while link directions spec-
ify the flow of messages towards the strong root
during the solution process).

BD1EFD

BEDC BCA

FD3H D3HK HKJ

ED2G D2GD4I D4IL

Figure 3: A SJT for jjd.

From Figure 2 and the definition of relevance,
it is clear that RV D is irrelevant for deci-
sions D2, D3 and D4. In the root clique the
elimination process may proceed as:

EU(∆̂) =
∑

B

P(B)max
D1

(

U1(D1)

+
∑

D

P(D|B,D1)(
∑

E

P(E|D)U(E)

+
∑

F

P(F|D)U(F))
)

.

This more efficient calculation violates the
strong elimination order, but it is facilitated
by the decomposition which enables the algo-
rithm to exploit the irrelevance of D, Figure 4
shows G(πBD1EFD).

U1

B

D1

D

E

F

UE

UF

Figure 4: Domain graph for πBD1EFD.

6 COMPARISON

Due to space constraints comparisons are brief.

6.1 JENSEN ET AL

The HUGIN architecture solves an ID by mes-
sage passing in a SJT representation. The ab-
sorption algorithm is derived based on a variable
elimination approach. The initialization process
combines all probability distributions assigned
to a clique to form the initial clique probabil-
ity potential. Similarly, for the initial utility
potential. Messages are passed from the leaf
cliques towards the strong root. Since an ID
is solved by a collect operation from the leaves
to the root, the HUGIN architecture extended
to CLQG IDs reduces to a scheme, which in
principle is equivalent to the Shenoy-Shafer ar-
chitecture (Madsen and Jensen, 2005).

6.2 MADSEN AND JENSEN

Madsen and Jensen (2005) describe Shenoy-
Shafer and LP schemes for solving a CLQG ID
by message passing in a SJT. The two archi-
tectures are based on the [p,A,B,C] CG poten-
tial and the p · [A,B,C] CG potential represen-
tation, respectively. Madsen and Jensen (2005)
assume that appropriate conditioning opera-
tions have been performed as a preprocessing
step before eliminating a continuous RV as CG
potentials, in general, may have multiple head
variables. This may require complex matrix op-
erations. In LARP each regression is uni-variate
due to the use of the AR operation. This elim-
inates the need for complicated combination,
conditioning and matrix operations and it sim-
plifies the implementation of the architecture.

6.3 COBB AND SHENOY

Since the class of CLQG IDs is quite restricted,
MTEs have been considered for solving hybrid
IDs (Cobb and Shenoy, 2004; Cobb and Shenoy,
2007) using approximation. The use of MTEs
implies that there are no constraints on the re-
lation between XΓ and X∆ as long as the distri-
butions of the model can be approximated us-
ing MTEs. The approach requires a multiplica-
tive decomposition of the UF and | pa(X)| ≤ 1



for X ∈ ΓD. These are important limitations.
Also, the numerical stability and the number of
terms in mixtures are major concerns.

7 PERFORMANCE ANALYSIS

7.1 RANDOM NETWORKS

We compare the performance of LARP and
the HUGIN algorithm (Jensen et al., 1994) as
implemented in the HUGIN Decision Engine
(HDE) on a set of randomly generated net-
works. The random networks — generated
using a revised version of the algorithm used
by Vomlelová (2003) — are all discrete as the
HDE does not support CLQG IDs. We include
this performance comparison as LARP can be
used to solve discrete IDs. Table 11 shows the
results of experiments on eight selected net-
works. Networks where both algorithms ran out
of memory and networks that were solved in less
than a few milliseconds were disregarded. In the
table, an N/A specifies that the solution algo-
rithm ran out of memory. The results indicate

Table 1: Statistics on random networks.
Time Space

‖X‖ LARP HDE LARP HDE

20 4.27 N/A 1, 953, 125 N/A
20 0.93 1.25 390, 625 1, 953, 125
20 0.03 0.24 3, 125 390, 625
25 0.13 N/A 15, 625 N/A
25 0.64 1.74 78, 125 1, 953, 125
50 4.67 10.16 1, 048, 576 8, 388, 608
50 24.31 N/A 4, 194, 304 N/A
50 7.22 28.64 1, 048, 576 16, 777, 216

that LARP is most efficient on the networks
solved by both algorithms and that it is able
to solve more complex networks. The HDE per-
forms both a collect and a distribute on the SJT
though, but it has more efficient data structures
and operations. LARP achieves its efficiency by
maintaining decompositions of potentials.

7.2 MIXED NETWORKS

Since the HDE does not support CLQG IDs (in
fact we are not aware of any system implement-
ing CLQG IDs), we assess the performance of

1Networks with |X| ≤ 25 has ||X|| = 5 while networks
with |X| = 50 has ||X|| = 2

LARP by solving a set of CLQG IDs with the
same structure, but different fractions of contin-
uous and discrete variables. For the case of dis-
crete variables only, the network is solved with
both LARP and HDE. This will give a rough
estimate on the performance of LARP.

Table 2 shows statistics on the IDs jjd d,
jjd m and jjd c where s(C) =

∏
X∈∆∩C‖X‖

and s(C) =
∑

C∈C s(C). The structure of the
network is shown in Figure 2 where ‖X‖ = 25

for X ∈ ∆. jjd d has discrete variables only,
jjd m has mixed variables as indicated in Fig-
ure 2 and jjd c has continuous variables only.
In Table 3 the average time cost of the solu-

Table 2: Statistics on jjd d, jjd m and jjd c.
jjd |C| maxC∈C s(C) s(C)

d 9 9, 765, 625 10, 640, 625
m 9 9, 765, 625 10, 188, 826
c 9 1 1

tion process is shown for each network. Only
for jjd d a value is specified for HDE. The per-

Table 3: Average time costs in seconds.
Time Space

jjd HDE LARP HDE LARP

d 3.87 0.53 9, 765, 625 390, 625
m - 0.35 - 390, 625
c - 0.03 - 1

formance of the LARP on the jjd d network is
a factor of seven better than the performance
of HDE. The performance of LARP improves
as the fraction of continuous variables increases.
Each network is solved 25 times and the average
time cost is computed.

7.3 DISTRIBUTE LAW

To illustrate the potential impact of DL during
the solution process we solved the ID of Figure 1
using HDE, LARP and LARP with DL. The
average time costs in seconds (over ten runs) are
2.91, 16.73, and 0.49, respectively. Exploiting
DL produced an improvement of a factor of 34

in the time cost when ‖Y‖ = 100, ‖Xi‖ = 5 and
‖D‖ = 10. This (näıve) example was designed
to illustrate the potential improvement offered
by exploiting DL in the solution process.



A simple heuristic is used to guide the ap-
plication of DL on UFs. The rule is based
on the score sDL(pY,U) =

∑
u∈UY

‖ dom(pY) ∪
dom(u)‖. If the sum of the state spaces is less
than the total state space, i.e., sDL(pY,U) <

‖ dom(pY) ∪ dom(U)‖, then DL is applied.

8 DISCUSSION

The two main reasons for considering AR oper-
ations in a SJT are: 1) the structure of the SJT
serves as an efficient caching structure where
elimination orders are reconsidered dynamically
and 2) the SJT offers an opportunity to dis-
tribute information. The first point is relevant
if the decision problem is solved on-line (for in-
stance, if unexpected observations have become
available or the model is too large to be solved
off-line) while the second point is relevant for
computing probabilities of future decisions, i.e.,
the decision policies are encoded as conditional
probability distributions, which makes it possi-
ble to compute probabilities of future decisions
and events under the encoded strategy (Nilsson
and Jensen, 1998).

If the UFs of the model meet the requirements
of CLQG IDs, then expectation and maximiza-
tion calculations have closed form solutions.
This implies that the ID can be solved. In gen-
eral, a CLQG IDs can be solved in closed form
when all continuous variables can be eliminated
before discrete variables using closed form oper-
ations. Shenoy (2006) describes an approach to
modeling hybrid Bayesian networks using mix-
tures of Gaussian distributions. This approach
can also be applied to approximate continuous
distributions in mixed IDs. The resulting mixed
ID should meet the requirements of a CLQG ID
in order to be solvable with LARP.

Despite a significant difference in the effi-
ciency of table operations LARP is as efficient as
the HDE. The results of the performance eval-
uation indicate a large potential of LARP.
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