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Abstract

A measure of efficiency for influence diagram models with continuous decision variables
that considers both the accuracy and complexity of the representation and solution tech-
nique is presented. Accuracy is determined by calculating the mean squared error between
influence diagram decision rules and an analytical solution. Complexity is assessed by cal-
culating the size of the functions in the numerical representation at each stage of the
solution to reflect both storage requirements and potential computational complexity of
downstream mathematical operations. The resulting efficiency score considers the pref-
erences of an individual decision maker for accuracy and complexity. Three influence
diagram models proposed for use with continuous decision variables are compared using
the efficiency measurement. The best model for a given problem may vary based on a
decision maker’s willingness to substitute accuracy and complexity.

1 Introduction

The influence diagram (ID) was introduced by
Howard and Matheson (1984) as a graphical and
numerical representation for a decision prob-
lem under uncertainty. The ID model is com-
posed of a directed acyclic graph that shows the
relationships among chance and decision vari-
ables in the problem, as well as a set of condi-
tional probability distributions for chance vari-
ables and a joint utility function. In addition to
providing a tractable, intuitive view that facil-
itates communication about the decision prob-
lem, the ID solution provides an optimal strat-
egy and maximum expected utility.

Since their invention, most subsequent im-
provements to exact solution procedures for
solving IDs (see, e.g., citations in Cobb (2008))
assume that all chance and decision variables
in the model are discrete. Cobb and Shenoy
(2008) introduce mixtures of truncated expo-
nentials (MTE) influence diagrams (MTEIDs),
which are influence diagrams where probabil-
ity density functions (pdfs) and utility functions
are represented by MTE potentials (Moral et al.

2001). Each piece of an MTE function is com-
posed of a sum of exponential terms where the
exponent contains a linear function of the inde-
pendent variables.

Discrete IDs and MTEIDs can only acco-
modate continuous decision variables if their
state spaces are limited to a countable number
of discrete values. In contrast, Shachter and
Kenley (1989) introduce Gaussian IDs, where
all continuous chance variables are normally
distributed, all decision variables are continu-
ous, and utility functions are quadratic. The
mixture-of-Gaussians ID (Poland and Shachter
1993, Madsen and Jensen 2005) requires contin-
uous chance variables to be modeled as mixtures
of normal distributions and allows continuous
decision variables.

Cobb (2007) introduces an ID model, the
continuous decision MTE influence diagram
(CDMTEID), which allows continuous decision
variables with one continuous parent and con-
tinuous chance variables having any pdf.

The aim of this paper is to define a measure-
ment that can be used to compare the efficiency
of ID models with continuous decision variables.



This measurement captures both the accuracy
and complexity of the ID solution, then weights
these in accordance with the preferences of an
individual decision maker. Using the efficiency
metric, the competency in performance of ID so-
lutions in three models—discrete IDs, MTEIDs,
and CDMTEIDs—are compared. Using the
measurements proposed in this paper, a deci-
sion maker can attempt to answer the question,
“Is a more accurate model worth the additional
computational complexity?”

The remainder of the paper is organized as
follows. Section 2 describes notation and defi-
nitions. Section 3 provides details of the accu-
racy, complexity, and efficiency measurements.
Section 4 provides an example of calculating ac-
curacy and complexity. Section 5 compares effi-
ciency results for the three ID models under con-
sideration. Section 6 concludes the paper. This
contribution is extracted from a longer working
paper (Cobb 2008).

2 Notation and Definitions

2.1 Graphical Representation

Chance and decision variables in IDs are de-
picted as ovals and rectangles, respectively.
Utility nodes appear as diamonds. An arrow
pointing to a chance node indicates that the dis-
tribution for this chance node is conditional on
the variable at the head of the arrow. An ar-
row pointing to a decision node means that the
value of the variable at the head of the arrow
will be known at the time the decision is made.

Example 1. Fig. 1 shows an ID model for a
capacity planning and pricing decision problem
under uncertainty (Göx 2002). Capacity (K)
and price (P ) are decision variables, the random
demand “shock” (Z) is a chance variable, and
u0 is the joint utility function.

2.2 Numerical Representation

In this paper, we assume all decision and chance
variables take values in bounded, continuous
(non-countable) state spaces. All variables are
denoted by capital letters in plain text, e.g., A,
B, C, with sets of variables denoted by capital
letters in boldface, e.g., X. If A and X are
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Figure 1: An influence diagram model.

one- and multi-dimensional variables, respec-
tively, then a and x represent specific values of
those variables.

The finite, continuous state space of X is de-
noted by ΩX. The state space for a single vari-
able B is defined as ΩB = {b : bmin ≤ b ≤
bmax}. At certain points in the ID represen-
tation and solution, a variable B’s continuous
state space, ΩB, may be replaced by a discrete
approximation, Ω(d)

B .
A probability potential, φ, for a set of vari-

ables X is a function φ : ΩX → [0, 1]. A utility
potential, u, for a set of variables X is a function
ΩX → R.

All piecewise functions are implicitly under-
stood to equal zero in undefined regions.

Example 2. In the ID shown in Fig. 1, product
demand is determined as Q(p, z) = 12 − p + z.
Assume Z ∼ N (0, 1) and that the firm’s utility
(profit) function is

u0(k, p, z) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p− 1) · (12− p+ z) − k
if (12 − p+ z) ≤ k

(p− 1) · k − k

if (12 − p+ z) > k .

(1)

The state spaces of the variables are: ΩK =
{k : 0 ≤ k ≤ 14}; ΩP = {p : 1 ≤ p ≤ 9}; and
ΩZ = {z : −3 ≤ z ≤ 3}.
2.3 Combination

Combination of potentials is pointwise multipli-
cation. Let ψ1 and ψ2 be probability and/or
utility potentials for X1 and X2. The com-
bination of ψ1 and ψ2 is a new potential for
X = X1 ∪ X2 defined as

ψ(x) = (ψ1 ⊗ ψ2) (x) = ψ1(x↓ΩX1) · ψ2(x↓ΩX2)



for all x ∈ ΩX. If either ψ1 or ψ2 is a util-
ity potential, the result of the combination will
be a utility potential; otherwise, the result is a
probability potential.

2.4 Marginalization of Chance
Variables

Marginalization of chance variables corresponds
to integrating over the chance variable to be re-
moved. Let ψ be a potential for X = X′ ∪ Z,
where Z is a chance variable. The marginal of
ψ for X′ is a potential computed as

ψ↓X′
(x′) =

∫
ΩZ

ψ(x) dz

for all x′ ∈ ΩX′ , where x = (x′, z).

2.5 Marginalization of Decision
Variables

Marginalization with respect to a decision vari-
able is only defined for utility potentials. Let u
be a utility potential for X ∪ D, where D is a
decision variable. The marginal of u for X is a
utility potential computed as

u↓X(x) = max
d∈ΩD

u(x, d) (2)

for all x ∈ ΩX. The mechanics of performing
the maximization operation in Eq. (2) vary with
each ID model compared in this paper.

2.6 Fusion Algorithm

IDs are solved in this paper by applying the
fusion algorithm of Shenoy (1993). This al-
gorithm involves deleting the variables in an
elimination sequence that respects the informa-
tion constraints in the problem. The sequence
is chosen so that decision variables are elimi-
nated before chance or decision variables that
are immediate predecessors. When a variable is
to be deleted from the model, all probability
and/or utility potentials containing this vari-
able in their domains are combined, then the
variable is marginalized from the result.

3 Measuring Accuracy, Complexity,
and Efficiency

3.1 Analytical Solution

In the problem from Examples 1 and 2, the firm
knows the true value, Z = z, of the demand
shock Z when it chooses capacity, so it would
logically set K = 12−P+z. Göx (2002) finds an
analytical solution to the problem with optimal
values for P and K of

p∗ = Θ∗
1(z) = 2 +

10 + z

2
(3)

and

k∗ = Θ∗
2(z) =

10 + z

2
. (4)

3.2 Accuracy

Since analytical decision rules are available for
K and P , the mean squared error (MSE) (Win-
kler and Hays 1970) can be used as a measure
of the difference between the analytical and ID
decision rules. For instance, define Θ2 as a de-
cision rule for K as a function of Z determined
using an ID method. The MSE of this function
is calculated as

MSE = E
[
(Θ2(z) − Θ∗

2(z))
2
]

=
∫
ΩZ

φ(z) · (Θ2(z) − Θ∗
2(z))

2 dz ,
(5)

where φ is the pdf shown in Figure 2. The MSE
between the decision rule Θ1 developed in the
ID models for P as a function of K and Z and
the analytical decision rule Θ∗

1 is similarly cal-
culated as

MSE = E
[
(Θ1(Θ2(z), z)− Θ∗

1(z))
2
]

=
∫
ΩZ

φ(z) · (Θ1(Θ2(z), z)− Θ∗
1(z))

2 dz .

(6)
The accuracy of a given ID model for this

example will be denoted by A and will be de-
fined as the sum of the MSEs calculated using
Eqs. (5) and (6).



3.3 Complexity

The ID models in this paper are solved us-
ing Mathematica software (www.wolfram.com).
This package provides a function called
LeafCount that gives the total “size” of an ex-
pression defined using the Piecewise represen-
tation, based on applying the FullForm func-
tion (Wolfram 2003). LeafCount (denoted by
L) will be used to measure the complexity of
potentials in the ID solution procedures.

Example 3. Consider the expression

f(z) =

{
−84.0 + 81.1 exp{0.0119(z+ 3)}

if − 3 ≤ z ≤ 3 .
(7)

Using the Piecewise environment, this function
is defined in Mathematica as

f [z ] :=
Piecewise{{−84.0
+81.1 exp{0.0119(z+ 3)}, −3 ≤ z ≤ 3}} .

Applying the FullForm function in Mathemat-
ica to this expression yields

Piecewise[List[List[ Plus[-84, Times[81.1,
Power[E, Times[ 0.0119, Plus[3, z]]]]],

LessEqual[-3, z, 3]]], 0] .

Each word, number, or variable in the FullForm
expression increases the LeafCount of the ex-
pression by one. In this case, L{f} = 19.

LeafCount captures the total size of all pieces
of an MTE approximation or decision rule, in-
cluding both the parameters of the function and
the inequalities required to define the domains
of each piece.

The complexity of the various ID methods
will be determined by measuring the LeafCount
of the potentials stored in memory after each
combination or marginalization operation (or
sub-operation thereof) performed in the solu-
tion technique. This measure of complexity is
used because the size of the potentials at each
step of the solution technique affects both the
storage required and the subsequent number of
calculations needed to solve the ID model.

Suppose the ID solution procedure for a par-
ticular problem requires n operations (or sub-
operations) and denote the probability poten-
tials, utility potentials, and decision rules re-
maining after operation i as φij, j = 1, . . . , mi.
The total complexity, C, of the ID solution is
the sum of the complexity measurements, Ci,
i = 0, . . . , n, taken after each operation in the
procedure. The total complexity of the solution
for a particular ID model is determined as

C =
n∑

i=0

Ci =
n∑

i=0

mi∑
j=1

L{φij} .

The value C0 represents the complexity of the
potentials in the initial ID model.

3.4 Normalized Measurements

Since the MSE accuracy measurement, A, and
the complexity measurement determined by
compiling LeafCount formulas, C, are stated on
different numerical scales, it is advantageous to
normalize these two measurements onto a com-
mon scale to determine the trade-off between
accuracy and complexity.

Select any two positive real numbers, Nmin

and Nmax. Throughout the remainder of the pa-
per, we assume Nmin = 1 and Nmax = 2. When
comparing the accuracy and complexity of ID
solutions for multiple models, we denote by A
and C the measurements for the least accurate
and most complex models, respectively, mea-
sured for all models under consideration. Like-
wise, we denote by A and C the measurements
for the most accurate and least complex models,
respectively. In the case of both accuracy and
complexity, note that smaller measurements are
desirable. The normalized accuracy measure-
ment for a given model is determined as

Â = Nmin +
(Nmax −Nmin) · (A−A)

A−A . (8)

Similarly, the normalized complexity measure-
ment for a given model is calculated as

Ĉ = Nmin +
(Nmax −Nmin) · (C − C)

C − C . (9)



3.5 Efficiency

Once the normalized accuracy and complexity
measurements are determined, the efficiency of
the model is calculated as

E = Âα · Ĉ1−α , (10)

The exponent α is a parameter assigned by the
decision maker that conveys an individual pref-
erence for solutions that are either more accu-
rate or less complex. If α > 0.5, the decision
maker values accuracy over complexity, and vice
versa. Two properties of the functional form
in Eq. (10) that make the expression a useful
model for production and consumer utility in
economics (see, e.g., Baye (2006)) also make it
valuable for measuring the efficiency of ID solu-
tions:

1. If two ID models have equivalent accuracy,
the model with a better complexity score
will have greater efficiency, and vice versa.

2. There is a diminishing marginal rate of sub-
stitution between accuracy and complexity.

4 Example

This section describes the calculation of the ac-
curacy and efficiency measurements in the con-
text of the CDMTEID solution to the problem
from Examples 1 and 2. Details of calculations
for the discrete ID and MTEID can be found in
(Cobb 2008).

4.1 Representation

The MTE potential φ with μ = 0 and σ2 = 1
that approximates the normal distribution (as
defined by Cobb and Shenoy (2006)) for the
random demand shock (Z) is shown in Fig. 2,
overlaid on the actual N (0, 1) distribution.

The decision variable K is limited to dis-
crete outcomes. A v-point discrete approxima-
tion to a continuous decision variable K with
ΩK = {k : kmin ≤ k ≤ kmax} has values
kt = kmin + (t − 0.5) · (kmax − kmin) /v for
t = 1, . . . , v. Thus, the discrete state space is
defined as Ω(k)

K = {k1, k2, . . . , kv}. To illustrate
this example, we assume v = 6.

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

Figure 2: MTE probability density.

The function f1(p) = p on the in-
terval [1, 9] is modeled by the MTE
potential uP (p) = −107.056144 +
108.102960 exp{0.0089234(p− 1)} for all
p ∈ ΩP . Note that uP (1) = 1.047,
uP (5) = 4.975, and uP (9) = 9.046, so the
MTE approximation fits f1(p) reasonably well.
More accurate approximations can be obtained
by dividing the state space of P and defining
separate approximations over each region, at
the expense of increasing the representation’s
complexity measurement (as defined in Sec-
tion 3.3). The function f2(z) = z on [−3, 3]
is modeled with a similar approximation uZ .
With K assigned v discrete values, the MTE
utility function is defined as

u1(kt, p, z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(uP (p)− 1)·
(12− uP (p) + uZ(z))− kt

if (12− p+ z) ≤ kt

(uP (p)− 1) · kt − kt

if (12− p+ z) > kt ,
(11)

for t = 1, . . . , v. For instance, with v = 6 and
K = k3 = 5.83, the MTE utility function is
defined as

u1(5.83, p, z) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3789.32 + 15328.9 exp{0.00892338p}
−11479.5 exp{0.0178468p}
+9002.5 exp{0.00892338p+ 0.0118978z}
−9079.3 exp{0.0118978z}

if p− z ≥ 6.17
−636.2 + 625.0 exp{0.00892338p}

if p− z < 6.17 .
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Figure 3: The utility functions u1(k3, pu, z) for
u = 1, . . . , 6.

The CDMTEID solution has initial complex-
ity C0 = L{φ} + L{u1} = 517.

4.2 Solution

The elimination sequence employed in the fu-
sion algorithm is P , K, Z.

Price (P ) is a continuous decision variable;
however, the first step in marginalizing this
variable is accomplished by using the discrete
approximation Ω(d)

P . The values pu, u =
1, . . . , 6 are inserted in the utility potential u1

to form the utility functions u1(kt, p1, z), . . .,
u1(kt, p6, z) for t = 1, . . . , 6. After this step,
both these new potentials and the existing MTE
utility function u1 remain, so the complexity is

C1 = C0 +
6∑

t=1

6∑
u=1

L{u1(kt, pu, z)} = 1313 .

The second step in removing P is to create a
piecewise linear decision rule for P as a function
of Z for each value kt, t = 1, . . . , 6. For K =
k3 = 5.83, the utility functions u1(k3, pu, z)
for u = 1, . . . , 6 are shown in Fig. 3 and we
can conclude that P = 5.67 is optimal over
[−3,−0.45), P = 7 is optimal over [−0.45, 1.15),
and P = 8.33 is optimal over [1.15, 3]. These
values are used to create the piecewise linear
decision rule

P (z) = Θ1,3(z) =⎧⎪⎨
⎪⎩

6.775100 + 0.642570z if − 3 ≤ z < −0.35
6.729469 + 0.772947z if 0.35 ≤ z < 2.9375
9 if 2.9375 ≤ z ≤ 3 .

Similar decision rules Θ1,1, . . ., Θ1,6 are deter-
mined corresponding to values kt, t = 1, . . . , 6
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Figure 4: The piecewise linear decision rules
Θ1,t corresponding to values kt, t = 1, . . . , 6.
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Figure 5: The utility functions u2(kt, z).

(see Fig. 4). When combined, these func-
tions form the decision rule Θ1 with complexity
L{Θ1} = 259. Since φ and u1 also remain after
this step, the complexity of the model is now
C2 = 517 + 259 = 776.

The last step in removing P from the model
is to substitute the values of the decision rule
Θ1 into the utility function u1 to form the util-
ity functions, u2(kt, z) = u1(kt,Θ1,t(z), z), for
t = 1, . . . , 6. With φ and u2 as the remaining
potentials in the network, the complexity stands
at

C3 = L{φ}+
6∑

t=1

L{u2(kt, z)} = 61+530 = 591 .

A plot of the functions u2(k1, z), . . ., u2(k6, z)
(Fig. 5) shows that u2(3.5, z) ≈ u2(5.83, z) at
Z = −1.25. The resulting decision rule Θ2

specifies that K = 3.5 if −3 ≤ z < −1.25 and
K = 5.83 if −1.25 ≤ z ≤ 3. After creating this
decision rule, the complexity of the model is

C4 = L{φ} + L{u2} + L{Θ2} = 610 .

To complete the marginalization ofK, we cre-
ate a new utility function u3(z) = u2 (Θ2(z), z).



The complexity after this operation is C5 = 278,
which captures the LeafCount of the potentials
φ and u3.

To remove Z, the potentials φ and u3 are
combined, with the resulting complexity C6 =
L{(φ ⊗ u3)} = 569. Integrating the result over
the state space of Z completes the solution. The
total complexity of the ID model is

C =
6∑

i=0

Ci = 4654 .

The MSE of the CDMTEID solution is cal-
culated according to Eqs. (5) and (6) as A =
0.7760.

5 Results

This section discusses the effects on model effi-
ciency of changing the number of states in the
discrete approximations to continuous decision
variables used in each of the methods

In each of the three ID methods illustrated,
the state space of continuous variables is either
permanently or temporarily discretized. To in-
vestigate the efficiency of models with a varying
number of pieces in the discrete approximation,
we consider the three ID models with approx-
imations of six through twelve pieces. Thus,
the best and worst solutions in terms of accu-
racy and complexity are chosen from among 21
models when calculating the values of A, A, C,
and C.

Figs. 6 and 7 show efficiency scores for accu-
racy parameters of α = 0.1 and α = 0.9. When
accuracy is a low priority, the efficiency of the
models decreases with additional discrete pieces
in the approximations as computational com-
plexity overburdens the solution. In this case,
both the CDMTEID and MTEID models pro-
vide comparable efficiency. When accuracy is a
high priority, the efficiency of the models gener-
ally increases with additional pieces in the dis-
crete approximations and the CDMTEID pro-
vides the best efficiency. In some cases, the
placement of the mid-points of the discrete bins
within the state space of the continuous deci-
sion variable adversely affects accuracy, which

explains the low efficiency of the solutions with
eight-piece approximations.
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Figure 6: Efficiency scores with α = 0.1.

Fig. 8 displays the efficiency scores for the ID
solutions over the entire range of possible accu-
racy values. To make the graph simpler to com-
prehend, only the efficiency scores for models
that gave the optimal efficiency over some range
of the accuracy parameter α are shown. The
un-normalized accuracy (MSE) and complexity
values for these models are also displayed on the
chart. For very low values of α, the MTEID so-
lution with six discrete states is optimal. How-
ever, as the decision maker’s preference for ac-
curacy increases somewhat, a model with seven
discrete states provides the best compromise
between accuracy and complexity. Once de-
sired accuracy increases beyond α ≈ 0.25, the
CDMTEID model with an increasing number of
discrete states in the temporary approximation
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Figure 7: Efficiency scores with α = 0.9.
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Figure 8: Efficiency values for ID solutions.

becomes optimal.

6 Conclusions

This paper has defined a measure of efficiency
for ID models with continuous decision variables
that considers both the accuracy and complex-
ity of the representation and solution. Accuracy
is measured by calculating the mean squared er-
ror between the final decision rule determined
using the ID and corresponding analytical deci-
sion rules. Complexity is determined by the size
of the potentials in the initial ID representation,
and after each subsequent operation involved
in solving the ID. The efficiency measurement
combining accuracy and complexity is able to
consider the preferences of an individual deci-
sion maker for both accuracy and complexity.

The details of additional comparisons and dis-
cussion of further results can be found in (Cobb
2008).
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