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Abstract

We introduce the DeMorgan gate, an Independence of Causal Interactions (ICI) model
that is capable of modeling opposing influences, i.e., a mixture of positive and negative
influences of parents on a child. The model is a noisy version of a conjunctive normal
form of Boolean functions and is an extension and a combination of the popular Noisy-
OR and Noisy-AND models, preserving their intuitive semantics. We report the results
of a simple experiment testing the usefulness of the proposed model for elicitation of
conditional probability distributions.

1 Introduction

Bayesian networks (BNs) (Pearl, 1988) offer
a sound framework for reasoning in uncertain
problem domains. A Conditional Probability
Table (CPT) in a BN specifies the relation be-
tween a variable and its immediate predecessors
(parents) in the graph. A fundamental problem
of CPTs is their exponential growth in the num-
ber of parent variables. For nodes with more
than a handful of parents, common in practical
models, eliciting the CPT from human experts
is daunting. So is learning it from data, as there
are typically not enough cases to learn every dis-
tribution in a CPT reliably.

Independence of Causal Influences (ICI) mod-
els (see Dı́ez and Druzdzel (2008) for a compre-
hensive review of the existing ICI models), pro-
vide a solution by assuming that parent vari-
ables cause the effect independently of each
other. The benefit of this assumption is such
that the number of required parameters is lin-
ear, rather than exponential, in the number of
parent variables. One of the main practical lim-

itations of the existing ICI models is that they
cannot model opposing influences, i.e., combi-
nations of influences that increase, and decrease
the posterior probability of the child variable.
Existing attempts to address this problem are,
we believe, weak. In this paper, we propose
a new ICI model based on a combination of
OR and AND gates in a Conjunctive Normal
Form (CNF) of a Boolean expression that com-
bines opposing influences, yet retains a clear
parametrization.

A few words about the notation. We will use
uppercase letters to denote random variables
(e.g., X) and lowercase letters to denote their
states (e.g., x). Because all variables in this pa-
per will be Boolean, a variable X will take only
two states, x and x. Bold uppercase letters will
denote sets of random variables (e.g., X) and
bold lowercase letters (e.g., x) will denote value
assignments to sets of random variables. We
will use Pr(X) to denote the probability distri-
bution over a variable X.



2 Foundations

2.1 The Noisy-OR Model

The Noisy-OR model (Pearl, 1988; Henrion,
1989) is a probabilistic extension of the log-
ical OR relation. Its variables, e.g., X, are
binary and can be either present, denoted as
x, or absent, denoted as x. Each present
parent event can independently produce the
child effect. Noisy-OR’s amechanistic property
assumes that if none of the parent variables
X1, ..., Xn are present, then neither is the child
variable Y , i.e.,

Pr(y|x1, . . . , xn) = 1 . (1)

We define the probability that xi produces y as

Pr(y|x1, ..., xi, . . . , xn) = zi . (2)

The ICI assumption allows us to derive the
probability of X producing y as

Pr(y|X) = 1−
∏

Xi=xi

(1− zi) .

Repeating this process for all possible
parent configurations gives us the CPT.
Henrion (1989) extended the Noisy-OR model
by introducing a leak probability zL, yielding

Pr(y|X) = 1− (1− zL)
∏

Xi=xi

(1− zi) . (3)

The leak variable zL represents the probability
that the child variable is in its present state,
even when all the parents are absent. An intu-
itive interpretation of leak is that it represents
the effect of unmodeled causes of Y .

2.2 The Amechanistic Property

Amechanistic ICI models (Heckerman and
Breese, 1996) are a subclass of ICI models that
make two additional assumptions: (1) each vari-
able has a typical state, referred to as the distin-
guished state. This is usually the default state
for that variable. (2) If all parent variables are
in their distinguished states, then so is the child
variable. For example, if all possible causes of
coughing are absent, then coughing is absent

as well. In the course of elicitation, we can re-
duce the mental load needed to imagine a causal
influence and estimate its strength by assum-
ing that all other nodes are in the state that
is not active and does not interfere with the
cause that we are focusing on. The parameters
for an amechanistic ICI model can be obtained
by asking simple and clear questions and, ef-
fectively, such a model is particularly suited for
parametrization by human experts.

In the Noisy-OR gate, assumption (2) is cap-
tured by Eq. 1, while Eq. 2 expresses the ques-
tion needed for parameter elicitation. This
enables us to directly elicit the probabilistic
strength of the causal influence of a parent vari-
able Xi on a child variable Y by asking sim-
ple questions, such as “What is the probabil-
ity of coughing if a patient has pneumonia and
no other factors that may cause coughing are
present?” We believe that the unquestionable
popularity of the Noisy-OR model is in part due
to its amechanistic property. Some proposals
for canonical gates do not have the amechanis-
tic property and this, we believe, is their major
weakness at the outset.

3 Causal Interactions

We describe below four fundamental types of
causal interactions between an individual par-
ent X and a child node Y .

Cause This is the most common type of in-
teraction, modeled in the Noisy-OR gate: X is
a causal factor and has a positive influence on
Y . This influence, just as is the case in the
Noisy-OR gate, does not need to be perfect.
For example, smoking is quite likely a causal
factor in lung cancer. Yet, incidence of lung
cancer among smokers, while much larger than
incidence of lung cancer among non-smokers, is
still within a few percent. Hence, the condi-
tional probability of lung cancer given that a
person is a smoker is still fairly low.

The distinguished state of a cause is the state
in which the cause has no effect on the child.
For example, being a non-smoker has no effect
on lung cancer.



Barrier This is a negated counterpart of a
cause: X is a factor that decreases the prob-
ability of Y . For example, regular exercise de-
creases the probability of heart disease. While
it is a well established factor with a negative
influence on heart disease, it is unable by it-
self to prevent heart disease. One way of look-
ing at a barrier is that it is dual to a cause:
Absence of the barrier event is a causal factor
for the child, i.e., x is a cause. One might go
around the very existence of barriers in knowl-
edge engineering by using negated versions of
the variables that represent them. In the exam-
ple above, one might define a variable Lack of
regular exercise, which would behave as a cause
of the variable Heart disease. This, however,
might become cumbersome if Regular exercise
participated in other interactions in a model. It
might happen, for example, that it is a parent
of both Heart disease and Good physical shape.
Because Regular exercise decreases the proba-
bility of one and increases the probability of the
other, barrier, which is a negated cause, is a use-
ful modeling construct.

The distinguished state of a barrier is also the
state in which the barrier has no effect on the
child. For example, exercise may be thought
as not influencing the risk of heart disease and
it is the distinguished state in this interaction.
We should point out here that the concept of a
distinguished state is relative to an interaction
and the same variable can have different distin-
guished states in different interactions that it
participates in.

Requirement X is required for Y to be
present. There are perfect requirements, such as
being a female is a requirement for being preg-
nant but there are also requirements that are in
practice not absolutely necessary. For example,
a sexual intercourse is generally believed to be a
requirement for pregnancy, but it is not a strict
requirement, as pregnancy may be also caused
by artificial insemination.

The distinguished state of a requirement is
the state that is necessary for the effect to take
place at all. For example, being a female is a
requirement for becoming pregnant and it is the

distinguished state in this interaction.

Inhibitor X inhibits Y . For example, rain
may inhibit wild land fire or use of a condom
during intercourse with an infected individual
may inhibit contracting the HPV virus. Like
in the other types of interactions, the parent
may be imperfect in inhibiting the occurrence
of the child. Fire may start even if there is rain
and effectiveness of a condom in protecting from
the HPV virus is only around 70%. Similarly
to the relationship between causes and barriers,
inhibitors are dual to requirements: Absence of
an inhibitor event is a requirement for the child.

The distinguished state of an inhibitor is the
state that has no effect on the child, i.e., the
inhibiting factor being absent. For example,
Rain is an inhibitor of Wild land fire. Its distin-
guished state is No rain, in which case the fire
may happen.

4 The DeMorgan Model

We start with the deterministic version of the
DeMorgan gate and later extend it to accom-
modate noise.

4.1 Deterministic DeMorgan Gate

Promoting Influences Promoting influ-
ences (causes and barriers) are modeled well by
the Noisy-OR gate, which is a noisy version of
the following Boolean formula

Y = X1 ∨X2 ∨ . . . ∨Xm , (4)

where Xs stand for causes or barriers. The dis-
tinguished state of Y is absent.

Inhibiting Influences Presence of any in-
hibitor Ui is sufficient to cancel the child effect.
We can express the effect that a set of inhibiting
influences (requirements and inhibitors) have on
Y by the following Boolean function

Y ≡ U1 ∨ U2 ∨ . . . ∨ Un , (5)

where Us stand for requirements and inhibitors.
Eq. 5 is similar to Eq. 4 but now the par-

ents cancel the child event instead of producing
it. Variable Y is absent if at least a single Ui is
present. We assume that the distinguished state



of Us is absent. However, contrary to our previ-
ous example, we assume the distinguished state
of the child Y to be present. This assumption is
based on common sense: We cannot cancel an
event that is not present.

Combining Influences We can combine
promoting and inhibiting influences by first ap-
plying one of De Morgan’s laws to Eq. 5. We
get

Y ≡ U1 ∧ U2 ∧ . . . ∧ Un . (6)

A logical proposition that combines (4) and (6)
can only be true for a particular parent con-
figuration if both (4) and (6) are also true for
that same configuration. This implies that both
equations form a conjunction

Y = (X1 ∨X2 ∨ . . .∨Xm)∧U1 ∧U2 ∧ . . .∧Un .

We now have the logical proposition that we
need in order to define the interaction for the
combined model with Xs and Us and the child
variable Y . Note that the proposition on the
right hand-side of Eq. 4.1 is in the CNF. Because
each of the conjuncts, save one, consists of a
single variable, we can build a simple model to
represent this proposition, using only a single
OR and a single AND gate.

4.2 Modeling Uncertainty

Noise for Promoting Influences Noise for
promoting influences is best modeled by mim-
icking the Noisy-OR gate, i.e., specifying a
causal strength parameter vi for each of the pro-
moting influences and adding a leak parameter
vL. vi is the probability of y given that parent
i is not in its distinguished state and all other
parents are in their distinguished states (please
note that we need to choose a different distin-
guished state for causes and barriers). Eq. 3, the
formula for leaky Noisy-OR gives the probabil-
ity of y as a function of vis and vL (the formula
uses zs instead of vs).

Noise for Inhibiting Influences The dis-
tinguished state of a parent that models an in-
hibiting influence is its absent state, i.e., when
the parent is absent it is certain not to inhibit
the child event, but when present, it will inhibit

the child event with some probability. When a
parent Ui is in its non-distinguished state, we
assign a probability di that it will inhibit the
child event. We include this uncertainty in the
network by adding a noise variable Wi that has
the following behavior

Pr(wi|Ui) =

{
0 if Ui = ui

di if Ui = ui
,

and the child variable Y is equivalent to the
conjunction of variables W 1, . . . ,Wn, as given
by Eq. 6. We have shown by De Morgan’s laws
that the Eq. 5 is the logical equivalent of Eq. 6.
Eq. 3 gives us the probability of Y occurring

Pr(y|U) =

{ ∏
ui∈+u(1− di) if +u 6= ∅

1 if +u = ∅ .

We define +u to be the subset of U that
contains all parents that are in their non-
distinguished states.

It makes little sense to ask for the effect of
rain on a bonfire, when the latter is absent.
By analogy, we cannot determine di directly if
we assume that the distinguished state of Y is
absent. Therefore, we determine di relative to
an arbitrary set of promoting influences (with a
joint effect v on Y ) or even the leak parameter,
although it seems that elicitation will be more
reliable for larger values of v.1 Suppose we know
the effect of a promoting influence Xi, denoted
as vi, and the effect of both Xi and inhibiting
influence Uj , denoted as qj , i.e.,

p = 1− (1− vL)(1− vi) ,
qj = (1− (1− vL)(1− vi))(1− dj) .

We have dj = 1− qj/p.

Derivation of the CPT The total effect of
simultaneous presence of noisy promoting and
inhibiting causes in a leaky noisy DeMorgan
gate can be combined into a CPT as follows:

Pr(y|X,U) = (1−(1−vL)
∏

xi∈+x

(1−vi))
∏

uj∈+u

(1−dj) .

1Thus, there are combinatorially many questions that
we can ask in order to obtain dj , something not unheard
of in probability elicitation.



Figure 1: DeMorgan model example network

5 Knowledge Engineering for the
DeMorgan Gate

A knowledge engineer has to most of all ensure
that a gate elicited can be viewed as DeMor-
gan gate. The conditions that have to be ful-
filled for the DeMorgan gate are similar to
those listed for other canonical gates by Dı́ez
and Druzdzel (2008): Each parent must be able
to cause or to inhibit the child node through
a separate causal mechanism and there may be
no significant interactions among these mecha-
nisms.

Now, for each type of interaction, qi, the pa-
rameter associated with the causal link from a
parent Xi corresponds to the probability of the
effect y happening if all parents but Xi are in
their distinguished states. The leak parameter
vL expresses the probability of y given that all
parents are in their distinguished states.

Consider the following network based on De-
Morgan gate with one cause (Fire Spreads
Quickly), one barrier (Fire Escapes Are Acces-
sible), one requirement (People Are Still In the
Building), and one inhibitor (Fire Is Quickly
Controlled).

We will now give example questions to be
asked of an expert. Please note that there is
a natural discrepancy between what one has to
say formally and what sounds clear to a human.
Each of the questions listed below can be ad-
justed to the needs of particular context, i.e.,
their elements can be rephrased or omitted if
they do not make sense.

The leak parameter “What is the proba-
bility of casualties if the fire does not spread
quickly, fire escapes are not accessible, people
are still in the building, and fire is not quickly
controlled? Please note that casualties may
happen due to other, unmodeled causes.”

Cause “What is the probability of casualties
if the fire spreads quickly, fire escapes are not
accessible, people are still in the building, fire is
not quickly controlled, and no other unmodeled
causal factors are present?”

Barrier “What is the probability of casualties
if the fire does not spread quickly, fire escapes
are accessible, people are still in the building,
fire is not quickly controlled, and no other un-
modeled causal factors are present?”

Requirement “What is the probability of ca-
sualties if the fire does not spread quickly, fire
escapes are not accessible, there are no people in
the building, fire is not quickly controlled, and
no other unmodeled causal factors are present?”
Please note that the possible casualties are due
to the fact that information concerning absence
of people in the building may be false or the
casualties may be that of the fire fighters.

Inhibitor “What is the probability of casual-
ties if the fire does not spread quickly, fire es-
capes are not accessible, there are people in the
building, fire is quickly controlled, and no other
unmodeled causal factors are present?”

6 Empirical Evaluation

To validate the DeMorgan model, we con-
ducted an experiment based on the method-
ology for evaluating probability elicitation
schemes introduced by Wang et al. (2002). Its
main advantage is that it controls for a-priori
domain knowledge on the part of the subjects.
The subjects are first asked to learn an ab-
stract domain, which they have never seen be-
fore (typically an abstract interactive computer
game). Since every subject may have a different
set of experiences in the course of their interac-
tion with the new domain, recording these pro-
vides us with a gold standard of the frequency



observed by the subject. A perfect elicitation
scheme should retrieve these frequencies and the
experimental setup aims at comparing elicita-
tion schemes on how well they do so.

6.1 Subjects

Our subjects were 24 students in a graduate
course Decision Analysis and Decision Support
Systems in the School of Information Sciences,
University of Pittsburgh. The students were
familiar with, although not experts in, deci-
sion analysis, probability theory, and BNs. For
their participation, they received a small course
credit and a handful of M&Ms.

6.2 Experiment Design

The subjects were asked to play a simple, fic-
tional computer game resembling a black box
with four propositional inputs (X1, X2, X3,
and X4) and one propositional output (Y ) with
states Success and Failure. Their task was to
obtain Success at the output by means of se-
lecting a combination of inputs. Subjects were
allowed 160 trials, each trial consisting of three
phases: (1) selecting values for X1 through X4,
(2) pressing a key, and (3) observing the value
of Y . The value of Y was chosen randomly by
means of sampling from a DeMorgan gate, al-
though the subjects were not aware of it. Two
of the inputs (assigned randomly) were causes
and the remaining two inputs were barriers.
Model parameters were randomly chosen for
each of the subject from the intervals [0.5, 0.9]
(causes), [0.3, 0.9] (barriers) and [0.1, 0.3] (the
leak). Each subject faced thus a different prob-
abilistic model driving the game.

Because of a relatively small number of sub-
jects, we used a within-subject design. At
the conclusion of the training phase, the sub-
jects were asked (1) to give the full CPT
(Pr(Y |X1, X2, X3, X4), consisting of 16 entries,
and (2) indicate which inputs were promot-
ing and which were inhibiting influences, assess
their strengths and the leak probability. The
order of the two elicitations was randomized to
compensate for a possible carry-over effect.

6.3 Experiment Results

We used the probability distribution observed
by each subject as the gold standard of what
the subject knew. For each value OBSi of the
observed CPT, we calculated the maximum a-
posteriori estimate given the subject’s 160 ob-
servations, using a Beta prior distribution with
a very small equivalent sample size (in order to
avoid zero probabilities), i.e.,

OBSi =
si + 0.01
ti + 0.02

,

where si denotes the number of successful tri-
als, and ti the total number of trials for input
configuration i.

Of interest to us was the elicitation error, i.e.,
the difference between the observed CPT and
the elicited probability distributions. We mea-
sured the error by the averaged Euclidean and
Hellinger distances (Kokolakis and Nanopoulos,
2001). Because both measures are defined for
single distributions, we averaged errors across
all 16 distributions in the CPT.

The subjects each took between 30 and 45
minutes to complete the experiment. We judged
one of the subjects to be an outlier, and ex-
cluded the subject from further analysis. This
subject likely confused the concept of inhibiting
with promoting, as she reported very low prob-
abilities in cases where she observed very high
probabilities and vice versa.

Figure 2: Raw data (sorted by increasing distance for
the DeMorgan model)

Figure 2 shows raw data, i.e., the Euclidean
distance for each subject: (1) the distance be-



tween the observed CPT and the CPT gener-
ated by the elicited DeMorgan model, sorted
from the smallest to the largest distance, and
(2) the distance between the observed CPT and
the directly elicited CPT. We would like to
point out that the range of distances is lower for
the DeMorgan gate. Table 1 shows the aver-

Measure DeMorgan CPT
Averaged Euclidean Distance 0.2382 0.2566
Weighted Hellinger Distance 0.2481 0.2563

Table 1: Averaged Euclidean and Hellinger distances.

age Euclidean and Hellinger distances across all
subjects. A one-tailed paired t-tests performed
on both distance measures yielded p ≈ 0.14 for
the Euclidean, and p ≈ 0.29 for the Hellinger
distance, showing no significant difference in ac-
curacy at the commonly used α = 0.05 signifi-
cance level. Although the accuracy gain in favor
of the DeMorgan model was not statistically
significant, our results suggest that the CPT
generated by DeMorgan model is at least as
accurate as a directly elicited CPT. This be-
comes a non-trivial advantage when the number
of parent variables is larger. And so, for a family
with 10 parent variables, we have 21 questions
for the DeMorgan model, versus 1,024 ques-
tions needed to elicit the CPT directly.

7 Related Work

Inhibitors are mentioned by Pearl (1988), who
calls them global inhibitors and lays the foun-
dations for both requirements and inhibitors,
as proposed in DeMorgan gate. Pearl stops
short, however, from combining logical OR and
AND gates with negation, which is what De-
Morgan gate does.

Srinivas (1993) generalizes the Noisy-OR
model to multiple states and proposed a model
that is known as the “feeding lines model,” em-
bodying a world of possible functions that tie a
node to its parents. It is quite likely that there
exist functions among all possible that will com-
bine positive and negative influences. Srinivas’
proposal for an extension of Noisy-OR has never
been adopted and we are not aware of any work
extending the “feeding lines model.”

Heckerman and Breese (1994) and later Lu-
cas (2005) discuss the foundations of ICI mod-
els and draw attention to so called decomposable
ICI models. Lucas analyzes in depth canonical
models based on Boolean functions, reminding
that there are 22n

different n-ary Boolean func-
tions and so is the potential number of causal
interactions. The DeMorgan model is decom-
posable, although it does not decompose into
identical functions. It is indeed one of a huge
number of possibilities, but as we argue in this
paper, it may well be one of few that are intu-
itive and potentially readily adopted in practice
ICI models.

A proposal for combining positive and neg-
ative influences has been the CAusal STrength
(CAST) model (Chang et al., 1994), which is an
extension of BNs that is able to model simulta-
neous opposing influences. Although very pop-
ular, particularly in government and military
applications, a major weakness of the CAST
model is its unclear parametrization. Parents
can influence a child variable in both of their
states and do not have a distinguished state,
hence, are not amechanistic.

Lemmer and Gossink’s recursive Noisy-OR
model (Lemmer and Gossink, 2004) deals with
positive and negative influences, although not
in the same model, i.e., a model includes either
all positive or all negative influences.

Finally, Xiang and Jia (Xiang and Jia, 2007)
proposed a general model based on combining
Noisy-AND gates with negation, apparently de-
veloped independently from this proposal. That
model is capable of modeling positive and neg-
ative influences similarly to our proposal.

8 Conclusions

An important property of the DeMorgan
model is that it is able to model any logical
interaction between inputs, when their influ-
ences on the output are independent, i.e., when
they are ICI. In particular, DeMorgan gate
can handle a combination of positive and neg-
ative influences, while preserving both proba-
bilistic soundness and the amechanistic prop-
erty, critical in probability elicitation. Proba-



bilistic soundness ensures that it is mathemat-
ically correct, and propositional logic, that lies
at its foundations, ensures that our model is
meaningful and intuitive for humans.

The results of our experiment indicate that
elicitation of a small DeMorgan model is
at least as accurate as direct elicitation of a
CPT. Yet, the DeMorgan model requires a
number of parameters that is linear, rather
than exponential, in the number of parent
variables. We expect that the DeMorgan
model will show a great advantage over di-
rect elicitation especially for larger models.
We have embedded the DeMorgan model
in SMILE and QGeNIe, a qualitative inter-
face to SMILE, our probabilistic reasoning en-
gine, and made it available to the community
(http://genie.sis.pitt.edu/). QGeNIe is
useful in rapid modeling of problems involv-
ing propositional variables. We are currently
working on extending the DeMorgan model
to multi-valued variables along the lines of the
Noisy-MAX and Noisy-MIN gates.
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