
A novel scalable and correct Markov boundary
learning algorithm under faithfulness condition

Sergio Rodrigues de Morais
INSA-Lyon, LIESP, F-69622 Villeurbanne, France

Alex Aussem
University of Lyon 1, LIESP, F-69622 Villeurbanne, France

Abstract

In this paper, we propose a novel constraint-based Markov boundary discovery algorithm,
called MBOR, that scales up to hundreds of thousands of variables. Its correctness under
faithfulness condition is guaranteed. A thorough empiric evaluation of MBOR’s robust-
ness, efficiency and scalability is provided on synthetic databases involving thousands
of variables. Our experimental results show a clear benefit in several situations: large
Markov boundaries, weak associations and approximate functional dependencies among
the variables.

1 Introduction

In this paper, we aim to identify the minimal
subset of discrete random variables that is rele-
vant for probabilistic classification in data sets
with many variables but few instances (Guyon
and Elisseeff, 2003). A principled solution to
this problem is to determine the Markov bound-
ary of the class variable T , i.e., the minimal
subset of U (the full set), denoted by MBT in
the sequel, that renders the rest of U indepen-
dent of T (Nilsson et al., 2007).

Following (Peña et al., 2007), we present
a novel divide-and-conquer method, called
MBOR, in order to increase the efficiency of
the Markov boundary (MB for short) discov-
ery while still being scalable and correct under
the faithfulness condition. The problem with
constraint-based algorithms is that the condi-
tional independence tests become unreliable as
the size of the conditional set increases. Such er-
rors have usually a cascading effect that causes
many errors in the final graph.

To get around this problem, MBOR com-
bines rough and moderately accurate MB learn-
ers based on IAMB (Tsamardinos et al., 2003)
and keeps the conditional test sizes of the tests
as small as possible. A key difference between

MBOR and all correct divide-and-conquer al-
gorithms is the OR condition: two variables X
and Y are considered as neighbors by MBOR if
Y ∈ PCX OR X ∈ PCY , instead of the more
stringent AND condition. Clearly, the OR con-
dition makes it easier for true positive nodes
to enter the Markov boundary, hence the name
and the practical efficiency of our algorithm. In-
terestingly, some almost-deterministic relation-
ships are also handled by the OR condition. The
only difficulty was to maintain the correctness of
the algorithm under the faithfulness condition.

In (Rodrigues de Morais and Aussem, 2008),
we compared the ability of MBOR to solve real
FSS problems using real data bases from the
UCI Machine Learning Repository (e.g., Car
Evaluation, Chess, Molecular Biology, SPECT
heart, Tic-Tac-Toe, Wine and Waveform). In
this study, we assess the scalability and the
performance of MBOR through several exper-
iments on synthetic databases with very few in-
stances compared to the number of variables.
MBOR is proved by extensive empirical simula-
tions to be an excellent trade-off between run-
ning time and quality of reconstruction.



2 Notations and preliminaries

We denote a variable with an upper-case, X,
and value of that variable by the same lower-
case, x. We denote a set of variables by upper-
case bold-face, Z, and we use the correspond-
ing lower-case bold-face, z, to denote an assign-
ment of value to each variable in the set. In this
paper, we only deal with discrete random vari-
ables. We denote the conditional independence
of the variable X and Y given Z, in some dis-
tribution P by X ⊥P Y |Z. Similarly, we write
X ⊥G Y |Z if X and Y are d-separated by Z in
the DAG G.

A Markov blanket MT of the T is is any set of
variables such that T is conditionally indepen-
dent of all the remaining variables given MT .
A Markov boundary, MBT , of T is any Markov
blanket such that none of its proper subsets is a
Markov blanket of T . In general, in a Baysesian
network < G, P >, we would want an edge to
mean a direct dependency. As we know, the
faithfulness entails this:
Definition 1. Suppose we have a joint proba-
bility distribution P of the random variables in
some set U and a DAG G =< U,E >. We say
that < G, P > satisfies the faithfulness condi-
tion if, based on the Markov condition, G en-
tails all and only conditional independencies in
P .

Theorem 1. Suppose < G, P > satisfies the
faithfulness condition. Then for each variable
X, the set of parents, children of X, and parents
of children of X is the unique Markov boundary.

A proof can be found for instance in (Neapoli-
tan, 2004). A spouse of T is a another parent
of a T ’s child node. We denote by PCT , the
unique set of parents and children of T in G
when < G, P >, satisfies the faithfulness condi-
tion. Otherwise, PCU

X will denote the unique
set of the variables that remains dependent on
X conditioned on any set Z ∈ U \ {X, Y }.

3 Some problems with
constraint-based methods

Constraint-based (CB for short) procedures sys-
tematically check the data for independence re-

lationships to infer the structure. The associ-
ation between two variables X and Y given a
conditioning set Z is a measure of the strength
of the dependence with respect to the data base
D. It is usually implemented with a statisti-
cal measure of association (e.g. χ2, G2). CB
methods have the advantage of possessing clear
stopping criteria and deterministic search pro-
cedures. On the other hand, they are prone to
several instabilities: namely if a mistake is made
early on in the search, it can lead to incorrect
edges which may in turn lead to bad decisions in
the future, which can lead to even more incor-
rect edges. This instability has the potential to
cascade, creating many errors in the final graph
(Dash and Druzdzel, 2003).

Insufficient data presents a lot of problems
when working with statistical inference tech-
niques like the independence test mentioned
earlier. This occurs typically when the expected
counts in the contingency table are small. The
decision of accepting or rejecting the null hy-
pothesis depends implicitly upon the degree
of freedom which increases exponentially with
the number of variables in the conditional set.
So the larger the size of the conditioning test,
the less accurate are the estimates of condi-
tional probabilities and hence the less reliable
are the independence tests. Another difficulty
arises when true- or almost-deterministic rela-
tionships (ADR) are observed among the vari-
ables. Loosely speaking, a relationship is said to
be almost deterministic when the fraction of tu-
ples that violate the deterministic dependency
is at most equal to some threshold. True DR
are source of unfaithfulness but the existence
of ADR among variables doesn’t invalidate the
faithfulness assumption. Several proposals have
been discussed in the literature in order to re-
duce the cascading effect of early errors that
causes many errors to be present in the final
graph. The general idea is to keep the size of the
conditional sets as small as possible in the curse
of the learning process. Another idea is to re-
duce the degree of freedom of the statistical con-
ditional independence test by some ways. The
aim is twofold: to improve the data efficiency
and to allow an early detection of ADR. Theses



strategies are not discussed here for conciseness,
see (Yilmaz et al., 2002; Luo, 2006; Aussem et
al., 2007; Rodrigues de Morais et al., 2008) for
instance.

4 New method

In this section, we present in detail our learning
algorithm called MBOR. We recall that MBOR
was designed in order to endow the search pro-
cedure with the ability to: 1) handle efficiently
data sets with thousands of variables but very
few instances, 2) be correct under faithfulness
condition, 3) handle implicitly some approxi-
mate deterministic relationships (ADR) with-
out detecting them. We discuss next how we
tackle each problem.

First of all, MBOR scales up to hundreds of
thousands of variables in reasonable time be-
cause it searches the Markov boundary of the
target without having to construct the whole
Bayesian network first. Like PCMB (Peña et
al., 2007) and MMMB (Tsamardinos et al.,
2006), MBOR takes a divide-and-conquer ap-
proach that breaks the problem of identifying
MBT into two subproblems : first, identify-
ing PCT and, second, identifying the parents
of the children (the spouses SPT ) of T . Ac-
cording to Peña et al., this divide-and-conquer
approach is supposed to be more data efficient
than IAMB (Tsamardinos et al., 2003) and its
variants, e.g., Fast-IAMB (Yaramakala, 2004)
and Interleaved-IAMB (Yaramakala and Mar-
garitis, 2005), because MBT can be identified
by conditioning on sets much smaller than those
used by IAMB. Indeed, IAMB and its variants
seek directly the minimal subset of U (the full
set) that renders the rest of U independent of T ,
given MBT . Moreover, MBOR keeps the size
of the conditional sets to the minimum possible
without sacrificing the performance as discussed
next.

The advantage of the divide-and-conquer
strategy in terms of data efficiency does not
come without some cost. MMMB (Tsamardi-
nos et al., 2006) and PCMB (Peña et al., 2007)
apply the ”AND condition” to prove correctness
under faithfulness condition. In other words,

two variables X and Y are considered as neigh-
bors if Y ∈ PCX AND X ∈ PCY . We be-
lieve this condition is far too severe and yields
too many false negatives in the output. In-
stead, MBOR stands for ”Markov Boundary
search using the OR condition”. This ”OR con-
dition” is a major difference between MBOR
and all the above mentioned correct divide-
and-conquer algorithms: two variables X and
Y are considered as neighbors with MBOR if
Y ∈ PCX OR X ∈ PCY . Clearly, the OR
condition makes it easier for true positive nodes
to enter the Markov boundary, hence the name
and the practical efficiency of our algorithm.
Moreover, the OR condition is a simple way to
handle some ADR. For illustration, consider the
sub-graph X ⇒ T → Y , since X ⇒ T is an
ADR, T ⊥ Y |X so Y will not be considered as
a neighbor of T . As Y still sees T in its neigh-
borhood, Y and T will be considered as adja-
cent by application of the OR condition. The
main difficulty was to demonstrate the correct-
ness under the faithfulness condition despite the
OR condition.

MBOR (Algorithm 1) works in three steps
and it is based on four subroutines called PCSu-
perset, SPSuperset and MBtoPC (Algorithms
2-4). Before we describe the algorithm step by
step, we recall that the general idea underly-
ing MBOR is to use a weak MB learner to cre-
ate a stronger MB learner. By weak learner,
we mean a simple and fast method that may
produce many mistakes due to its data ineffi-
ciency. In other words, the proposed method
aims at producing an accurate MB discovery
algorithm by combining fast and moderately in-
accurate (but correct) MB learners. The weak
MB learner is used in MBtoPC (Algorithm 4) to
implement a correct Parents and Children learn-
ing procedure. It works in two steps. First, the
weak MB learner called CorrectMB is used at
line 1 to output a candidate MB. CorrectMB
may be implemented by any algorithm of the
IAMB family because they don’t implement the
AND condition. In our implementation, we use
Inter-IAMB for its simplicity and performance
(Tsamardinos et al., 2003). The key differ-
ence between IAMB and Inter-IAMB is that the



shrinking phase is interleaved into the growing
phase in Inter-IAMB. The second step (lines 3-
6) of MBtoPC removes the spouses of the tar-
get.

In phase I, MBOR calls PCSuperset to ex-
tract PCS, a superset for the parents and chil-
dren, and then calls SPSuperset to extract SPS,
a superset for the target spouses (parents of chil-
dren). Filtering reduces as much as possible the
number of variables before proceeding to the
MB discovery. In PCSuperset and SPSuperset,
the size of the conditioning set Z in the tests is
severely restricted: card(Z) ≤ 1 in PCSuperset
(lines 3 and 10) and card(Z) ≤ 2 in SPSuperset
(lines 5 and 11). As discussed before, condition-
ing on larger sets of variables would increase the
risk of missing variables that are weakly associ-
ated to the target. It would also lessen the re-
liability of the independence tests. So the MB
superset, MBS (line 3), is computed based on
a scalable and highly data-efficient procedure.
Moreover, the filtering phase is also a way to
handle some ADR. For illustration, consider the
sub-graph Z ⇒ Y → T ⇐ X, since X ⇒ T and
Z ⇒ Y are ADRs, T ⊥ Y |X and Y ⊥ T |Z, Y
would not be considered as a neighbor of T and
vice-versa. The OR-condition in Phase II would
not help in this particular case. Fortunately, as
Phase I filters out variable Z, Y and T will be
considered as adjacent

Phase II finds the parents and children in the
restricted set of variables using the OR condi-
tion. Therefore, all variables that have T in
their vicinity are included in PCT (lines 7-8).

Phase III identifies the target’s spouses in
MBS in exactly the same way PCMB does
(Peña et al., 2007). Note however that the OR
condition is not applied in this last phase be-
cause it would not be possible to prove its cor-
rectness anymore.

The theorem below establishes MBOR’s cor-
rectness under faithfulness condition:

Theorem 1. Under the assumptions that the
independence tests are reliable and that the
database is an independent and identically dis-
tributed sample from a probability distribu-
tion P faithful to a DAG G, MBOR(T ) returns

MBU
T .

The proof may be found in (Rodrigues de
Morais and Aussem, 2008). It is omitted here
for conciseness. Note that the demonstration is
not completely straightforward because a dif-
ficulty arises: as MBS is a subset of U, a
marginal distribution PV of V ⊂ U may not
satisfy the faithfulness condition with any DAG
even if PU does. This is an example of embed-
ded faithfulness (Neapolitan, 2004) and every
distribution doesn’t admit an embedded faith-
ful representation.

Algorithm 1 MBOR
Require: T : target; D : data set (U is the set of vari-

ables)
Ensure: [PC,SP]: Markov boundary of T

Phase I: Find MB superset (MBS)
1: [PCS,dSep] = PCSuperSet(T, D)
2: SPS = SPSuperSet(T, D,PCS,dSep)
3: MBS = PCS ∪ SPS
4: D = D(MBS ∪ T ) i.e., remove from data set all

variables in U/{MBS ∪ T}

Phase II: Find parents and children of the target
5: PC = MBtoPC(T,D)
6: for all X ∈ PCS \PC do
7: if T ∈ MBtoPC(X,D) then
8: PC = PC ∪X
9: end if

10: end for

Phase III: Find spouses of the target
11: SP = ∅
12: for all X ∈ PC do
13: for all Y ∈ MBtoPC(X, D) \ {PC ∪ T} do
14: Find minimal Z ⊂ MBS\{T ∪ Y } such that

T ⊥ Y |Z
15: if (T 6⊥ Y |Z ∪X) then
16: SP = SP ∪ Y
17: end if
18: end for
19: end for

5 Experimental validation

In this section, we assess the scalability and the
accuracy of MBOR through several experiments
on synthetic databases with very few instances
compared to the number of variables. We eval-
uate first the accuracy, the data-efficiency and
running time of MBOR as the number of vari-
ables increases. Then, we compare the accu-
racy of MBOR against InterIAMB and PCMB



Algorithm 2 PCSuperSet
Require: T : target; D : data set (U is the set of vari-

ables)
Ensure: PCS: PC superset of T ; dSep: d-separation

set;

Phase I: Remove X if T ⊥ X
1: PCS = U \ T
2: for all X ∈ PCS do
3: if (T ⊥ X) then
4: PCS = PCS \X
5: dSep(X) = ∅
6: end if
7: end for

Phase II:Remove X if T ⊥ X|Y
8: for all X ∈ PCS do
9: for all Y ∈ PCS \X do

10: if (T ⊥ X | Y ) then
11: PCS = PCS \X
12: dSep(X) = Y ; go to 15
13: end if
14: end for
15: end for

Algorithm 3 SPSuperSet
Require: T : target; D : data set (U is the set of vari-

ables); PCS: PC superset of T ; dSep: d-separation
set;

Ensure: SPS: SP superset of T ;

1: SPS = ∅
2: for all X ∈ PCS do
3: SPSX = ∅
4: for all Y ∈ U \ {T ∪PCS} do
5: if (T 6⊥ Y |dSep(Y ) ∪X) then
6: SPSX = SPSX ∪ Y
7: end if
8: end for
9: for all Y ∈ SPSX do

10: for all Z ∈ SPSX \ Y do
11: if (T ⊥ Y |X ∪ Z) then
12: SPSX = SPSX \ Y ; go to 15
13: end if
14: end for
15: end for
16: SPS = SPS ∪ SPSX

17: end for

Algorithm 4 MBtoPC
Require: T : target; D : data set
Ensure: PC: Parents and children of T ;

1: MB = CorrectMB(T, D)
2: PC = MB
3: for all X ∈ MB do
4: if ∃Z ⊂ (MB \X) such that T ⊥ X | Z then
5: PC = PC \X
6: end if
7: end for

on six well-know BN benchmarks. To evalu-
ate the accuracy, we combine precision (i.e., the
number of true positives divided in the out-
put by the number of nodes in the output)
and recall (i.e., the number of true positives di-
vided by the true size of the Markov Boundary)
as

√
(1− precision)2 + (1− recall)2, to mea-

sure the Euclidean distance from perfect pre-
cision and recall, as proposed in (Peña et al.,
2005). To implement the conditional indepen-
dence test, we calculate the G2 statistic as in
(Spirtes et al., 2000), under the null hypothesis
of the conditional independence. The signifi-
cance level of the test is fixed to 0.05 for all
algorithms. It might very well happen that sev-
eral variables have the same association value
with the target in data sets with very few in-
stances. In this particular case, somewhat arbi-
trary (in)dependence decisions are taken. This
can be seen as a source of randomness inherent
to all CB procedures. To handle this problem,
our implementation breaks ties at random: a
random permutation of the variables is carried
out before each algorithm is run.

5.1 Scalability

We compare first the accuracy of PCMB and
MBOR through experiments on the INSUR-
ANCE (27 nodes/52 arcs) benchmark replicated
several times (up to 1000 times) to increase the
number of variables. We run MBOR and PCMB
with the variable ’RiskAversion’ as the target.
The latter has 10 variables in its MB. Each net-
work is obtained by tiling several copies of the
initial INSURANCE network. The tiling is per-
formed in a way that maintains the structural
and probabilistic properties of the original net-
work in the tiled network. We focus here on the
accuracy and efficiency of the algorithms as a
function of the number of variable in the tiled
network (up to 27,000 variables). Clearly, the
additional variables are all independent on the
target. We report the number of conditional
independence tests that were conducted (in log-
log scale), the distribution of the conditioning
test sizes and the Euclidean distance from per-
fect precision and recall, as a function of the
number of variables in the tiled network. The



average and standard deviation values are es-
timated over 50 databases. As may be seen,
MBOR requires fewer independence conditional
tests than PCMB. The number of tests directly
influences the execution time. It grows linearly
with the number of nodes for both algorithms.
The number of conditional tests of MBOR is
48% that of PCMB. As can be seen from Fig.1
(middle), while PCMB conducts (proportion-
ally) fewer conditional tests which indicates im-
proved test reliability, MBOR yields a signifi-
cantly shorter distance in all cases Fig.1 (bot-
tom).

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

Number of Variables

Ca
lls

 to
 th

e I
nd

. T
es

t

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Conditional Set Size

Pr
op

ort
ion

 of
 C

all
s

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Variables

Eu
cli

de
an

 D
ist

an
ce

Figure 1: Insurance BN tiled several times. From top
to bottom: number of conditional independence tests,
distribution of the conditioning test sizes, Euclidean dis-
tance, as a function of the number of variables in the
tiled BN. MBOR in plain line, PCMB in dotted line.

5.2 Accuracy

We report now the results of our experi-
ments on six common benchmarks : BREAST-
CANCER or ASIA (8 nodes/8 arcs), INSUR-
ANCE (27/52), INSULINE (35/52), ALARM
(37/46), HAILFINDER (56/66) and CARPO
(61/74). For each benchmark, we sampled 100
databases containing 100, 500 and 1000 in-
stances respectively. The three algorithms were
run, first, with each node in the BN as the tar-
get, and second, with the node with the largest
MB in the BN as target. Figure 2 summarizes
the empirical distribution of the Euclidean dis-
tance over 100 databases in the form of triplets
of boxplots, one for each algorithm (PCMB,
Inter-IAMB and MBOR respectively). Boxplots
are convenient ways of graphically depicting the
distributions of the Euclidean distances through
their five-number summaries (the smallest ob-
servation, lower quartile, median, upper quar-
tile, and largest observation). The boxplots also
indicate (by the symbol ’+’) which observations,
if any, might be considered outliers. In the left
column of Fig.2, the distance is averaged over
all nodes in the BN. In the right column, the
distance for the node with the largest MB in
the BN (i.e., ASIA : ’OR’ (MB = 5 variables)
ALARM : ’Intubation’ & ’HR’ (8 variables) IN-
SULINE : ’IPA’ & ’GPA’ (18 variables) INSUR-
ANCE : ’RiskAversion’ & ’Accident’ (10 vari-
ables) HAILFINDER : ’CldShadeOth’ (8 vari-
ables), CARPO : ’N69’ (18 variables).

Several observations can be made from the
results in Fig.2. First, it is rather surprising to
observe that PCMB performs often worse than
interIAMB even if PCMB is meant to conduct
more reliable tests by conditioning on fewer
variables. Despite the more reliable tests, the
AND condition used in PCMB makes it hard
for true positives to enter candidate MB. Sec-
ond, the overall performance of MBOR and In-
terIAMB, when averaged over all nodes, is very
similar (left column). For larger MBs, however,
the advantages of MBOR against the other two
algorithms are far more noticeable (right col-
umn). For instance, MBOR consistently out-
performs the other algorithms, especially for



databases with 500 and 1000 instances. The
larger the MB size, and the greater the gain in
performance. As expected, the gain in accu-
racy is very significant on target variables ’IPA’
& ’GPA’ in INSULINE and on variable ’N69’
in CARPO which contain 18 variables in their
MB. The reason is that MBOR reduces drasti-
cally the average number of false negatives com-
pared to PCMB and InterIAMB and this bene-
fit comes at very little expense in terms of false
positives. Moreover, the gain in accuracy seems
to increase with the size of the database.

6 Conclusion

We discussed simple solutions to improve the
efficiency of current constraint-based Markov
boundary discovery algorithms. We proposed a
novel approach called MBOR. Our experimen-
tal results on well-known benchmarks show a
clear benefit in several situations: densely con-
nected DAGs, weak associations or approximate
functional dependencies among the variables.
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Figure 2: Empirical distribution of the Euclidean distance from perfect precision and recall over 100 databases.
Results are shown for 100, 500 and 1000 instances in the form of triplets of boxplots for PCMB (left), InterIAMB
(middle) and PCMB (right). From top to bottom: BREAST-CANCER, INSURANCE,, INSULINE, ALARM, HAIL-
FINDER and CARPO. Left column: distance is averaged over all nodes in the BN. Right plot: distance for the node
with the largest MB in the BN.


