
A Bayesian approach to estimate probabilities in classification
trees

Andrés Cano and Andrés R. Masegosa and Seraf́ın Moral
Department of Computer Science and Artificial Intelligence

University of Granada
18071, Granada, Spain

Abstract

Classification or decision trees are one of the most effective methods for supervised clas-
sification. In this work, we present a Bayesian approach to induce classification trees
based on a Bayesian score splitting criterion and a new Bayesian method to estimate
the probability of class membership based on Bayesian model averaging over the rules
of the previously induced tree. In an experimental evaluation, we show as our approach
reaches the performance of Quinlan’s C4.5, one of the most known decision tree inducers,
in terms of predictive accuracy and clearly outperforms it in terms of better probability
class estimates.

1 Introduction

Decision trees or classification trees (decision
trees where is predicted a probability of class
membership instead of the class label simply)
have been one the most used and better stud-
ied predictive models. Several reasons appear
examining their wide popularity such as their
simplicity and their easy interpretability. At the
same time, they are fast and effective as classi-
fiers (Lim et al., 2000) even at very large data
sets (Provost and Kolluri, 1999) and there have
been available several software packages for
learning classification trees (CART (Breiman et
al., 1984) and C4.5 (Quinlan, 1993)).

One of the main problems of classification
trees is the poor estimates of class probabilities
they usually produce (Breiman, 1996a; Pazzani
et al., 1994). In many situations, a good esti-
mate of the probability class is a strong require-
ment, specially, when it is needed a ranking of
the samples by the class they belong to. E.g.,
most of the web search engines ranks the web
pages based on their probability of being rele-
vant for a given query.

Let us see an example of the problem to assign
class probabilities in a classification tree. Sup-
pose we have induced a classification tree for a

two-class classification problem and we find that
a leaf node defines a subset of 3 samples, all of
them belonging to the positive class. Maximum
likelihood estimate shall assign a probability of
1.0. The question that arises now if there is
enough evidence with 3 samples to assess such
a strong statement.

In (Provost and Domingos, 2003) a survey
study of different methods for better probabil-
ity of class estimates was carried out based on
C4.5. They compare three different methods:
Laplace estimate, C4.5 pruning (Quinlan, 1993)
and, specially, bagging (Breiman, 1996b). They
conclude with a positive evidence in favor of
Laplace and Bagging, but they do not find a
definitive conclusion for pruning.

In this work, we present a Bayesian approach
to induce classification trees with the aim to
maintain the predictive accuracy of one of the
state-of-the-art classification tree inducers J48
(an advanced version of Quinlan’s C4.5) and
produce significative improvements in the es-
timates of probability class beyond the use of
Laplace correction or a post-pruning process.
We conduct an experimental study over 27 UCI
databases to evaluate our Bayesian approach.

The rest of the paper is organized as follows.
In Section 2 we introduce the necessary nota-



tions and we briefly explain classification trees
and C4.5 tree inducers (Quinlan, 1993). After
that, in Section 3 we describe our Bayesian ap-
proach to induce classification trees. The exper-
imental evaluation and the results are shown in
Section 4. Finally, Section 5 is devoted to the
final conclusions and future works.

2 Previous Knowledge

In a classification problem, we have a target or
dependent variable C with k cases (c1, ..., ck),
|C| = k, and a set of predictive or indepen-
dent variables X = (X1, ..., Xn). The goal is
to induce a probability function for every un-
seen sample x to a probability distribution of
C: (L(X) → P(C)). This function is repre-
sented as a posterior probability of C given a
sample x: P (C|x) = P (C|X1 = x1, ..., Xn = xn).

This posterior probability has to be inferred
from a limited set of samples of the joint distri-
bution (X, C), the learning data D1.

2.1 Classification Trees

A classification tree, T is an efficient represen-
tation of this posterior probability of C as a tree
recursive structure, such as the one in Figure 1.
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Figure 1: Classification Tree

Each path in the tree from the root node to
another descendant node t (not necessarily to a
leaf node) defines a configuration xt for the vari-
ables in Xt, Xt ⊆ X, where Xt is the set of vari-
ables that labels the internal nodes contained in
the path from the root node to the descendant
node t without considering the variable at node
t. We also denote as X̄t = X − Xt the set of
attributes not included in Xt. E.g., supposing
for the tree of Figure 1 that X = {X, Y, Z}, we

1Absence of missing values and continuous attributes
in D are assumed.

have at the node t: xt = {X = x2, Y = y1},
Xt = {X, Y } and X̄t = {Z}.

We also have for each xt in the tree T an esti-
mate of the a posteriori conditioned probability
of C given xt, P̂T (C|xt).

Let us XT be the set of configurations xt as-
sociated to set of nodes (internal or leaf) in
a tree T and P̂XT their associated set of esti-
mated probabilities. We say that a configura-
tion xt ∈ XT is consistent with a sample x,
xt ∼ x, if for each Xi ∈ Xt, xt and x contains
the same value xi for Xi. In the previous exam-
ple, if x = {X = x2, Y = y1, Z = z2} then x is
consistent with xt = {X = x2, Y = y1}.

Let us denote as X x
T = {xt ∈ XT : xt ∼ x}

to the set of configurations xt consistent with
the sample x. It can be seen that this set con-
tains the configurations xt of the nodes t in
the path from the root node until one of the
leaf nodes. This set shall contain p elements,
X x

T = {xt0 ,xt1 , ...,xtp}, where t0 is the root
node (xt0 is an empty configuration), t1 is the
children of t0 in the previous path (xt1 is con-
figuration for the variable at the root node) and
so on until tp, which is the leaf node in the pre-
vious defined path. For the previous example,
X x

T = {∅, {X = x2}, {X = x2, Y = Y1}}.
The largest configuration, xtp , is taken to

make the classification through the use of the
estimated conditional probability P̂T (C|xtp).

In order to build or induce a classification tree
there are two main elements that need to be
defined: a splitting criterion and a stop crite-
rion. The splitting criterion is based on a mea-
sure or score, SCt, to decide which attribute is
placed in the node t′ of the tree as descendent
of the node t. Usually it is taken the attribute
Xt = arg maxXi∈X̄t SCt(Xi).

The stop criterion at the branch of the node
t is normally associated with SCt and it decides
when no more attributes are added to the actual
configuration xt.

We shall use x instead of xt for simplicity
reasons when there is no possibility of confusion.

2.2 C4.5: A classification tree inducer

As we have already commented, C4.5 (Quinlan,
1993) is one of the most known and widely used



classification tree inducers.
J48 is an advanced version of C4.5 imple-

mented in Weka (Witten and Frank, 2000) uses
the following score as splitting criterion known
as Info-Gain Ratio (Quinlan, 1993) based on
the Info-Gain measure, IG, and the entropy
measure, H:

SCt(X) =
IG(X, C)

H(X|xt)

The attributes X that does not verify that
its Info-Gain measure is greater than the mean
value of the Info-Gain measure of the rest of
candidate variables are discarded. SCt(X) =
0 if IGxt(X, C) < Average{IGxt(Xi, C) : Xi ∈ X̄t}.
This C4.5 version stops at xt when ∀Xi ∈ X̄t :

SCxt(Xi) ≤ 0.
Once the tree is built, C4.5 applies a post-

pruning process (Quinlan, 1993) in order to re-
duce the size of the tree and avoid an overfitting
to the data. This pruning process is a single
bottom-up pass where the estimated error rate
for each subtree is computed as an upper bound
of the misclassification rate with a confidence
level of 0.25 through the use of a binomial trial
process. A subtree is removed if there is not
reduction in the estimated error rate. We shall
call C4.5ρ the version with pruning and C4.5¬ρ

the version without pruning.
In both cases, a Laplace estimate is used in

order to smooth the probabilities of class mem-
bership.

3 A Bayesian Approach for
classification tree induction

In this section, our approach is presented.
Firstly, we describe the splitting criterion prob-
lem as a Bayesian model selection problem. Sec-
ondly, we express the problem of probability
class estimates as a Bayesian model averaging
problem. And finally, we present a method to
introduce non-uniform priors in the two previ-
ous Bayesian approaches.

3.1 Bayesian Model Selection to
Classification Tree induction

Bayesian model selection (BMS) (Wasserman,
2000) is an approach to choose among a set

of alternative models in a model space M =
{M1, ...,Mk} where Mi is a set of probability
densities with unknown parameters θi: Mi =
{Pθi(x) : θi ∈ Ωi}. In this approach the qual-
ity of a model is estimated by the posterior
probability of the model given the learning data
D. Where P (M |D) can be computed through
Bayes’ rule as:

P (M |D) =
P (D|M)P (M)

P (D)
=

P (M)
R L(θ)P (θ)dθ

P (D)

where L(θ) is the likelihood of the parameters
given the data (P (D|M, θ)) and P (θ) the prior
distributions over the parameters of the model.

The use of Bayesian metrics (Heckerman et
al., 1994) are suitable to compute model qual-
ity because of the inherent penalty they give to
the more complex models in order to prevent
against over-fitting and they provide closed-
form equations to compute the posterior prob-
abilities of the model given the learning data.

The metric, denoted as β(M), computes these
probabilities assuming an uniform prior prob-
ability over the possible models, P (M), and a
prior Dirichlet distribution over the parameters,
θ, with independence for the parameters at the
different conditional distributions. Usually a
global or equivalent sample size, S, is consid-
ered and then it is assumed that for each vari-
able X the prior probability about the vector
σX = (σ1, ..., σ|X|)X is Dirichlet with the same
parameters αk = S/|X| for all values, where |X| is
the number of possible cases of X. P (D) can be
also discarded because is the same for all mod-
els. So that P (M |D) ∝ P (D|M). The score will
be the value β(M) = P (D|M) (usually the log
of this value for computational reasons).

In the classification tree induction process,
the model selection problem appears when we
have to choose between to stop the branching
or to branch by one of the available attributes.

Formally, we are at a given leaf node t. Let
us denote by Dt the learning data D restricted
to xt and projected over the variables (X̄t, C),
where X̄t are the variables not included at the
node t (or available variables for branching at
node t, Section 2.1).



In the model selection problem we face here,
our model space problemM is composed by the
following alternatives:

• Model M t: stop branching at node t.

• For each variable X ∈ X̄t, model M t
X :

branch node t by variable X and then stop.

Each one of these models M inM is scored by
P (Dt|M). In this computation, only the class
and available variables X̄t are relevant. If we
denote by ci and x̄t

i the actual values of class
variable and available attributes in case ri of Dt

and if we assume that each ri is independent
and identically distributed, the scores can be
expressed as:

P (Dt|M) =
Y

ri∈Dt

P (ci, x̄
t
i|M) = P (x̄t

i|M).P (ci|M, x̄t
i)

Models M t and M t
X only differs in the val-

ues P (ci|M, x̄t
i) as they not make any hypoth-

esis about the way in which the rest of the
variables are distributed, so that we could as-
sume equally distributed in both cases. Then
the score of model M will be proportional to∏

ri∈Dt
P (ci|M, x̄t

i). In the concrete models we
have, we obtain:

• In model M t, variable C is independent of
the rest of variables (no branching). So,
β(M t) = P (Dt|M t) ∝Qri∈Dt

P (ci|Mt).

• In models M t
X , C is only dependent of

the branching variable X, so that β(M t
X) =

P (Dt|M t
X) ∝ Q

ri∈Dt
P (ci|Mt, xi), where xi is

the value of the branching variable X in
case ri.

Assuming Dirichlet prior probabilities for the
class C with uniform parameters αk = S/|C|,
where S is a fixed equivalent sample size, then
these values can be obtained with the standard
expressions:

β(M t) ∝ Γ(S)

Γ(S + nt)

Q
k Γ(nck + αk)Q

k Γ(αk)

β(M t
X) ∝

|X|Y
j

Γ(S)

Γ(S + nxj )

Q
k Γ(nck,xj + αk)Q

k Γ(αk)

where Γ(.) is the gamma function (Γ(α + 1) =

α · Γ(α)), nck,xj is the number of occurrences of
{(C = ck, X = xj)} in the learning sample at node
t, Dt (analogously for nck

, nxj ) and nt is the
number of cases in Dt.

In that way, our approach branches at
the node leaf t by the variable X∗ =

arg maxX∈X̄t{β(M t
X)}. It stops branching when

β(M t) > β(M t
X∗), in other words, when the model

without branching has a higher probability.
Another important factor, which will be used

when estimating the probabilities at the leaves,
is that when variable X∗ is selected for branch-
ing, as the score is proportional to the posterior
probability of the data given the model, we have
that the value

Bt =
β(M t

X∗)

β(M t)
=

P (Dt|M t
X∗)

P (Dt|M t)

As only data in Dt are relevant at node t, we
can assume that the rest of data in D is equally
distributed in this node and that

Bt =
P (D|M t

X∗)

P (D|M t)
=

P (M t
X∗ |D)

P (M t|D)

So we also have a value equal to the ratio
between the probability of the model branching
at t with X∗ and not branching at all given the
data.

3.2 Bayesian Model Averaging to
estimate class probabilities

Most of approaches to predictive learning are
based on the assumption of the whole database
had been completely generated by one model,
the ”right” one, ignoring the underlying model
decision uncertainty involved in the classifier in-
ducing process. This problem specially happens
to model selection processes in classification tree
inducers, because as smaller the learning sam-
ple size is as more uncertain model selection be-
comes. In a classification tree, the sample size
decreases exponentially with the depth of the
branch, so decision of branching at final leaves
accumulates a big uncertainty.

Bayesian Model Averaging (BMA) (Wasser-
man, 2000; Hoeting et al., 1999) provides



a foundation to deal with this uncertainty
through the use of a weighting scheme for each
candidate hypothesis of the hypothesis space
computing its posterior probability given the
learning data.

Formally, we start with a hypothesis space H
and a set of learning data D. So, the poste-
rior probability of C given a new sample x is
computed by:

P (C|x,D,H) =
X
h∈H

P (C|x, h)P (h|D)

Our application of BMA is an alternative to
pruning the final tree: as for each inner nodes
t we can compute the value Bt which is pro-
portional to the ratio of the probability of the
model branching by variable X∗ and the prob-
ability of the model without branching, instead
of deciding by one of the models, we can make
the average of the probabilities estimated with
each one of the models weighted by a value pro-
portional to their probability. This averaging is
applied in each leaf node for all the nodes in the
path from this node to the root.

One advantage of this application of BMA is
that only the final estimation of the probabili-
ties at the leaves change, having only one deci-
sion tree structure.

In this way, for each inner node ti we compute
a weight proportional to the posterior proba-
bility that the induced tree stops at this point
(that is denoted as the hypothesis hti) and it
is computed using the Bayes factors Btj in the
following way:

P̂ (hti |D) ∝
i−1∏

j=1

Btj =
i−1∏

j=1

P (M tj
X∗ |D)

P (M tj |D)

where P̂ (ht1 |D) = 1.
So, the estimated probability in a leaf node

tp is computed as follows:

P (ck|xtp) ∝
p∑

i=1

nckxti + αk

nxti + S
P̂ (hti |D)

where nxti is the size of the learning sample at
the node ti, Dti , and nckxti is the number of oc-
currences of {C = ck} in this set Dti . The αk and

S values correspond to the same Dirichlet prior
probability used in the induction process of the
previous Section 3.1. Finally, a normalization is
required.

This approach has the advantage that all
these probabilities can be efficiently computed
at the same time that the tree is built, with only
a linear increasing in the complexity.

3.3 A non-Uniform Priors Approach

In all the previous developments we have as-
sumed uniform values, αk = S/|C|, for the pa-
rameters of the prior Dirichlet distributions. In
this subsection, we are giving a new approach
to define non-uniform priors in the induction of
decision trees, which will be incorporated in the
computation of the Bayesian split criterion, Sec-
tion 3.1, and in the computation of averaging
probabilities, Section 3.2, trough the definition
of new αk values.

To justify this approach, we start with the
following idea: if at some node ti the frequency
nck

is zero, then ∀j > i at tj descendant nodes
the frequency nck

shall also be zero. So it makes
sense to assume that nckx will probably be zero
or close to zero for most of future samples x. So
decreasing the prior probability for ck at xti+1

is coherent.
We propose the following heuristic to modify

the parameters of the Dirichlet priors distribu-
tions: Let us δi = |{nck = 0 : ck ∈ C}| in Dti , if
δi > 1 we define α

ti+1
k as follows:

α
ti+1
k =

S

(|C| − δi + 1)
: nckxti 6= 0

α
ti+1
k =

S

(|C| − δi + 1)δi
: nckxti = 0

As we can see, those cases with non-null
frequency have the same prior probability,

1
(|C|−δi+1) , while all those cases with null fre-
quency share among them the same probabil-
ity mass of one non-null frequency case, i.e.,

1
(|C|−δi+1)δi

. Let us point out that for a two-
class problem we get with this heuristic a uni-
form prior.



4 Experimental Results

In this section, we present the experimental
evaluation of our approach. Firstly, the evalu-
ation methodology is described and, after that,
the experimental results of the different ap-
proaches are presented.

4.1 Evaluation Methodology

We used the following 27 databases from the
UCI repository: anneal, audiology, autos, breast-

cancer, colic, credit-german, diabetes-pima, glass-2, hep-

atitis, hypothyroid, ionosphere, kr-vs-kp, labor, letter,

lymph, mfeat-pixel, mushrooms, optdigits, segment, sick,

solar-flare, sonar, soybean, sponge, vote, vowel and zoo.
The features of the databases are very different
among them: from 2 to 24 class cases, from 57
to 20000 samples and from 9 to 240 attributes.

The classification tree inducers were imple-
mented in Elvira platform (Consortium, 2002)
and evaluated in Weka (Witten and Frank,
2000). And then we preprocessed the data re-
placing the missing values (with the mode value
for nominal attributes and with the mean value
for continuous attributes) and discretized with
an equal-frequency method with 5 bins using
Weka’s own filters.

Two evaluation or performance measures
are employed in this experimental evaluation:
the classical prediction accuracy (noted as
Accuracy); and the logarithm of the likelihood
of the true class, computed as: log-likelihood=
ln(P̂ (cri |x)), where cri is the true class value of
the example of the test data set. This last score
is introduced with the aim to evaluate the pre-
cision of probability class estimates. The use-
fulness of this score for this task is justified in
many ways, as for example in (Roulston and
Smith, 2002; Gneiting and Raftery, 2005).

The evaluation of the classifiers was achieved
by a 10-fold-cross validation repeated 10 times
scheme for each database. So, 100 train and
test evaluations are carried out. With these es-
timates, the comparison among classifiers was
achieved using a corrected paired t-test (Nadeau
and Bengio, 2003) implemented in Weka with
a 1% of statistically significant level. In this
way, a classifier is fixed as reference (marked

with ?) and then each proposed classifier is com-
pared against it. The comparison is made sum-
ming up the times that the proposed classifier
gets a statistically significant difference respect
to the reference classifier in accordance with
the corrected paired t-test in a given database.
The test result can show an statistically signif-
icant improvement or Win (marked with W),
a not statistically significant difference or Tie
(marked with T) and a statistically significant
deterioration (marked with D) in the evaluation
measures. These results are shown in the rows
starting with W/T/D. E.g., in Table 1, βS=1

gets a statistically improvement or win in the
accuracy respect to C4.5ρ in 3 databases, there
is no differences in 23 databases and it looses or
gets a significant deterioration in the accuracy
respect to C4.5ρ in 1 databases.

As it is commented, our approach is three
fold: a Bayesian model selection (BMS) ap-
proach as splitting criterion, Section 3.1; a
Bayesian model averaging approach (BMA) to
estimate the probabilities class membership,
Section 3.2; and a non-uniform prior (NUP) def-
inition approach, Section 3.3. In all cases, we
use the same prior Dirichlet distributions with
the same global sample size, S.

Let us define the four combinations we eval-
uate: βS : only BMS; β̂S : BMS + BMA; βθ

S :
BMS + NUP; β̂θ

S : BMS + BMA + NUP.
In all cases, three different global sample sizes

are evaluated: S = 1, S = 2 and S = |C|.

4.2 Bayesian Metric as splitting
criterion for inducing CT

We test the use of a Bayesian metric as a split-
ting criterion for inducing classification trees
(CT), previously describe in Section 3.1. In or-
der to compare its efficiency as a CT inducer, we
compare, in Table 1, the performance of their in-
duced trees respect to the trees induced by C4.5
with pruning (C4.5ρ) and without pruning pro-
cess (C4.5¬ρ).

The results of Table 1 show as the use of a
Bayesian metric with S = 1 and S = 2 as splitting
criterion is competitive to C4.5ρ and C4.5¬ρ

in terms of accuracy: it wins in three to five
databases (always databases with high number



Table 1: Bayesian metric as Splitting Criterion

Classifier ?C4.5ρ βS=1 βS=2 βS=|C|
Accuracy 85.50 85.30 85.56 84.03
W/T/D 3/23/1 3/24/0 1/23/3

log-likelih. -0.79 -0.79 -0.78 -0.78
W/T/D 4/20/3 6/20/1 5/21/1

Classifier ?C4.5¬ρ βS=1 βS=2 βS=|C|
Accuracy 84.08 5/22/0 5/22/0 1/24/2

log-likelih. -0.84 7/19/1 9/17/1 9/17/1

Tree Size 482.5 482.1 459.9 319.6

of classes) and it looses once in sick database (a
very imbalanced two class data set). In terms
of log-likelihood the behavior of βS is competi-
tive and slightly better (significance differences
in 6 databases of S = 2), which is important
considering the absence of a complex and costly
pruning process of our approach.

It is interesting to see as the tree size is quite
similar to C4.5¬ρ for S = 1 and S = 2. But,
obviously, it is greater than C4.5ρ average tree
size: 306.6 nodes.

4.3 Bayesian Model Averaging for
probability class estimate

Here it is evaluated the introduction of our
BMA approach, β̂S . Firstly, we compare this
approach versus its respective version without
probability averaging, βS , using the same S in
each case. It is also evaluated respect to C4.5ρ.

Table 2: Bayesian Model Averaging

Classifier ?βS
bβS=1

bβS=2
bβS=|C|

Accuracy 85.50 85.82 83.98
W/T/D 0/27/0 0/27/0 0/23/1

log-likelih. -0.63 -0.63 -0.77
W/T/D 12/14/1 14/11/2 4/20/3

Classifier ?C4.5ρ
bβS=1

bβS=2
bβS=|C|

Accuracy 3/24/0 3/24/0 1/23/3

log-likelih. 12/15/0 11/15/1 4/22/1

Results are presented in Table 2. As we can
see, the introduction of the BMA approach do
not produce an improvement in terms of accu-
racy (although it avoids the defeat versus C4.5ρ

for S = 1). But, in terms of log-likelihood, there
is a clear outperforming for S = 1 and S = 2 re-

spect to the basic version, βS , and respect to
C4.5ρ, excepting S = |C|.
4.4 Non-Uniform Dirichlet Priors

Definition

Finally, we test the introduction of non-uniform
priors in both Bayesian approaches for model
selection and model averaging. In Table 3 the
comparative results are divided in 4 folds.

Firstly, we evaluate the introduction of non-
uniform priors in the Bayesian metric as split-
ting criterion, βθ

S , where it is compared respect
to the basic version, βS , with the same S value.
In the second part, it is evaluated the non-
uniform priors definition at the BMA approach,
β̂θ

S , also comparing against the basic version,
β̂S . And in the last two parts, we compare the
full approach β̂θ

S respect to the two versions of
C4.5.

Table 3: Non-Uniform Priors Definition

Classifier ?βS βθ
S=1 βθ

S=2 βθ
S=|C|

Accuracy 85.64 85.82 85.20
W/T/D 2/25/0 2/25/0 3/24/0

log-likelih. -0.82 -0.81 -0.78
W/T/D 0/21/6 0/21/6 0/25/2

Classifier ?bβS
bβθ

S=1
bβθ

S=2
bβθ

S=|C|
Accuracy 85.85 86.04 85.37
W/T/D 2/25/0 2/25/0 4/23/0

log-likelih. -0.61 -0.60 -0.69
W/T/D 3/23/0 5/21/0 10/17/0

Classifier ?C4.5ρ
bβθ

S=1
bβθ

S=2
bβθ

S=|C|
Accuracy 3/24/0 4/23/0 0/27/0

log-likelih. 13/14/0 11/15/1 10/16/1

Classifier ?C4.5¬ρ
bβθ

S=1
bβθ

S=2
bβθ

S=|C|
Accuracy 7/20/0 6/21/0 3/24/0

log-likelih. 12/15/0 12/14/1 11/15/1

Tree Size 596.2 591.2 491.2

Summarizing, we find that the effect of the in-
troduction of non-uniform priors is more clear
at β̂θ

S comparison. It supposes a slight improve-
ment in terms of accuracy (2 wins) but strong
in terms of log-likelihood (specially for S = |C|).
The evaluation respect to C4.5ρ remains quite



similar for S = 1 and S = 2 but suppose an im-
portant enhancement for S = |C|.

A close review of the results at database
level indicates that the introduction of non-
uniform priors implies better estimates in those
databases where the Bayesian approach with
uniform priors has already achieved them. That
is to say, non-uniform priors is suitable for
databases with a high number of classes.

5 Conclusions and Future Works

We have presented a new method to induce clas-
sification trees with a Bayesian model selection
approach as split criterion and with a Bayesian
model averaging approach to estimates proba-
bility class. We also introduce a new approach
to define non-uniform priors over the parame-
ters of the models.

We have carried out an experimental evalua-
tion over 27 different UCI data sets comparing
against one of the state-of-the-art tree inducers,
J48. We have shown as these approaches sup-
pose an slight but robust improvement in terms
of accuracy, while all of them offer an important
improvement in terms of better probability class
estimates by the induced decision trees.
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