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Abstract

Credal nets generalize Bayesian nets by relaxing the requirement of precision of proba-
bilities. Credal nets are considerably more expressive than Bayesian nets, but this makes

belief updating NP-hard even on polytrees.

We develop a new efficient algorithm for

approximate belief updating in credal nets. The algorithm is based on an important rep-
resentation result we prove for general credal nets: that any credal net can be equivalently
reformulated as a credal net with binary variables; moreover, the transformation, which is
considerably more complex than in the Bayesian case, can be implemented in polynomial
time. The equivalent binary credal net is updated by L2U, a loopy approximate algorithm
for binary credal nets. Thus, we generalize L2U to non-binary credal nets, obtaining an
accurate and scalable algorithm for the general case, which is approximate only because
of its loopy nature. The accuracy of the inferences is evaluated by empirical tests.

1 Introduction

Bayesian nets (Sect. 2.1) are probabilistic
graphical models based on precise assessments
for the conditional probability mass functions
of the net variables given the values of their
parents. As a relaxation of such precise assess-
ments, credal nets (Sect. 2.2) only require the
conditional probability mass functions to belong
to convex sets of mass functions, i.e., credal sets.
Credal nets (CNs) are considerably more ex-
pressive than Bayesian nets,' and the price is
an increased complexity of inference: belief up-
dating in credal nets is NP-hard even on poly-
trees (de Campos and Cozman, 2005). The only
known exception to this situation is the algo-
rithm 2U (Fagiuoli and Zaffalon, 1998), as it
computes exact posterior beliefs on binary (i.e.,
with binary variables) polytree-shaped CNs in
linear time. A loopy version of 2U (L2U) has

!Greater expressiveness is a consequence of the fact
that Bayesian nets are a subset of credal nets. Expres-
siveness should not be confused with informativeness:
for example, it is thanks to the greater expressiveness
that credal nets can model much less informative states
of knowledge (including lack of knowledge) than those
Bayesian nets can model.

been proposed for multiply connected binary
credal nets by (Ide and Cozman, 2004). In-
ferences based on L2U are approximate, but a
good accuracy is typically observed after few it-
erations (Sect. 2.3).

In this paper we develop an efficient algorithm
for approximate belief updating of general CNs
(any topology, number of states per variable).
The algorithm is based on an important repre-
sentation result that we prove in Appendix A:
that any CN can be equivalently reformulated
as one with binary variables. The correspond-
ing transformation, which is considerably more
complex than in the Bayesian case, is based
on two distinct transformations: a decision-
theoretic specification (Antonucci and Zaffalon,
2008), which augments the CN with control
variables enumerating the multiple mass func-
tions owned by the nodes of the net (Sect. 3.2); a
binarization procedure (Antonucci et al., 2006)
that transforms each variable into a cluster of
binary variables (Sect. 3.1).

We prove that the sequential application of
these two transformations, originally developed
for independent reasons, returns an equiva-



lent binary representation of the original CN
(Sect. 4.1). Such equivalent binary CN can be
finally updated by L2U. Overall, that leads to
a generalized loopy 2U (GL2U) algorithm for
the updating in general CNs, whose only source
of approximation is the loopy part (Sect. 4.2).
The algorithm, which takes polynomial time
(Sect. 4.3), has been implemented in a software.
Experimental tests in Sect. 5 show that its ac-
curacy is comparable to that of state-of-the-art
approximate methods for CNs. This, together
with its scalability, should make of GL2U the
algorithm of choice especially for large nets.

2 Bayesian and Credal Nets

In this section we review the basics of Bayesian
nets (BNs) and their extension to convex sets of
probabilities, i.e., credal nets. Both the models
are based on a collection of random variables,
structured as a vector X := (X1,...,X,),% and
a directed acyclic graph (DAG) G, whose nodes
are associated with the variables of X. In our
assumptions the variables in X take values in
finite sets. For both models, we assume the
Markov condition to make G represent proba-
bilistic independence relations between the vari-
ables in X: every variable is independent of its
non-descendant non-parents conditional on its
parents. What makes BNs and CNs different
is a different notion of independence and a dif-
ferent characterization of the conditional mass
functions for each variable given the values of
the parents, which will be detailed later.

Regarding notation, for each X; € X, Qx, =
{mi0, zi1, - -, i(g,—1)} denotes the possibility
space of X;, P(X;) is a mass function for X; and
P(z;) the probability that X; =x;, where x; is a
generic element of Qx,. A similar notation with
uppercase subscripts (e.g., Xg) denotes vectors
(and sets) of variables in X. Finally, the par-
ents of X;, according to G, are denoted by II;,
while for each m; € Q,, P(X;|m;) is the mass
function for X; conditional on II; = 7;.

2The symbol “="is used for definitions.

2.1 Bayesian nets

For BNs, a conditional mass function P(X;|m;)
for each X; € X and m; € Qy, should be defined;
and the standard notion of probabilistic inde-
pendence is assumed in the Markov condition.
A BN can therefore be regarded as a joint prob-
ability mass function over X that, according to
the Markov condition, factorizes as follows:

n

P(x) =[] P(xi|m), (1)

i=1

for all the possible values of x € Qx, with the
values of x; and m; consistent with x. In the fol-
lowing, we represent a BN as a pair (G, P(X)).
Posterior beliefs about a queried variable X,
given evidence Xp=xp , are defined as:

Z:{:M,xq zn:l P($Z|7T2)7

where X := X\ ({X,} U XEg), the domains
of the arguments of the sums are left implicit
and the values of z; and m; are consistent with
x = (24,20, 2g). Evaluating Eq. (2) is an NP-
hard task, but for polytrees, Pearl’s propagation
allows for efficient updating (Pearl, 1988).

P(zylep) = (2)

2.2 Credal sets and credal nets

CNs relax BNs by allowing for imprecise proba-
bility statements: in our assumptions, the con-
ditional mass functions of a CN are required to
belong to a finitely generated credal set, i.e., the
convex hull of a finite number of mass functions
for a certain variable. Geometrically, a credal
set is a polytope. A credal set contains an infi-
nite number of mass functions, but only a finite
number of extreme mass functions correspond-
ing to the wertices of the polytope. Updating
based on a credal set is equivalent to that based
only on its vertices (Walley, 1991). A credal
set over X will be denoted as K(X) and the
set of its vertices as ext[K(X)]. Given a non-
empty 0% C €y, an important credal set for
our purposes is the vacuous credal set relative
to Q%, i.e., the set of all the mass functions
for X assigning probability one to Q%. We
denote this set by Kqs (X). In the following



we will use the well-known fact that the ver-
tices of Kos (X) are the? |Q%| degenerate mass
functions assigning probability one to the sin-
gle elements of 2%. Marginalization general-
izes to credal sets as follows: the marginaliza-
tion K (X) of a joint credal set K(X,Y) to X
is the convex hull of the mass functions P(X)
obtained from the marginalization of P(X,Y")
to X for each P(X,Y) € K(X,Y).

In order to specify a CN over the variables
in X based on G, a collection of conditional
credal sets K(Xj;|m;), one for each m; € Q,,
should be provided separately for each X; € X;
while, regarding the Markov condition, we as-
sume strong independence (Cozman, 2005). A
CN associated with these local specifications is
said to be with separately specified credal sets.
Fig. 1 reports a CN, whose specification requires
the (separate) assessment of an unconditional
credal set for X, and two and eight conditional
credal sets for Xs and Xj3. The specification
becomes global considering the strong extension
K (X) of the CN, i.e., the convex hull of the fol-
lowing collection of joint mass functions:

{ [T o) s P(Sim) € K(Xalm) G750
i=1

3)
We represent a CN as a pair (G, P(X)), where
P(X) = {P.(X)};2, = ext[K(X)]. Clearly,
for each k = 1,...,n,, (G, P,(X)) is a BN. For
this reason a CN can be regarded as a finite
set of BNs. For CNs updating is intended as
the computation of tight bounds of the posterior
probabilities of a queried variable given some
evidence, i.e., Eq. (2) generalizes as:

. Dy ey Pi(@i|mi)
min ,
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and similarly for upper probabilities P(zq|zf).
Exact updating in CNs displays high complex-
ity. Updating in polytree-shaped CNs is NP-
complete, and NPPP-complete in general CNs
(de Campos and Cozman, 2005). The only
known exact linear-time algorithm for updat-
ing a specific class of CNs is the 2U algorithm,
which we review in the following section.

P(zgrp) =

3The cardinality of a set Q is denoted as |€|.
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Figure 1: A separately specified CN over
(Xl,XQ,Xg), with ’QX1’:2, ‘QX2‘:‘QX3‘:4.

2.3 2U and its loopy extension

The adaptation of Pearl’s updating algorithm
to polytree-shaped binary CNs led to an exact
algorithm called 2-Updating (2U) (Fagiuoli and
Zaffalon, 1998). Remarkably, 2U updates bi-
nary polytrees in time linear in the input size.
Loopy propagation is a popular technique
that applies Pearl’s propagation to multiply
connected BNs: propagation is iterated until
probabilities converge or for a fixed number of
iterations. A loopy variant of 2U (L2U) can up-
date multiply connected binary CNs in an ap-
proximate way (Ide and Cozman, 2004). Ini-
tialization of variables and messages follows the
same steps used in the 2U algorithm. Then
nodes are repeatedly updated, until convergence
of probabilities is observed.* L2U is basically
an iteration of 2U and its complexity is there-
fore linear in the input size and in the number
of iterations. Overall, the L2U algorithm is an
excellent algorithm, it is fast and returns good
results with low errors after a few iterations.

3 Transformations of Credal Nets

In this section we review two different trans-
formations of CNs that have been recently pro-
posed for independent reasons. Their sequential
application is the basis to obtain an equivalent
representation of CNs based on binary variables.

3.1 Binarization algorithm

By definition, L2U (see Sect. 2.3) cannot be
applied to a non-binary CN in the example of
Fig. 1. To overcome this limitation, a binariza-
tion that transforms a CN into a binary CN has
been proposed in (Antonucci et al., 2006).
First, each variable is equivalently repre-
sented by a cluster of binary variables. Assume

1Despite the lack of a formal proof, convergence of
L2U has been always observed in the numerical tests.



d;, which is the number of states for X;, to be an
integer power of two, and let d; := log, |Qx,|.°
An obvious one-to-one correspondence between
the states of X; and the joint states of a vector of
d; binary variables X; := (X'ZQ, X'Z-l, e ,Xfi_l) is
established if the joint state (20,...,2%71) e
{0,1}% is associated with z; € Qx,, where
[ is the integer whose d;-bit representation is
- #13Y. Elements of X; are said bits of
X; and their position in the vector their order.

Overall, X denotes the vector of bits obtained

binarizing all the elements of X. We write

P(X) = P(X), if P(x) = P(x) for each x € Qx,
where x € (24 is the state corresponding to x.
A DAG G associated to the variables X can
be obtained from G as follows: (i) two nodes of
G corresponding to bits of different variables in
X are connected by an arc if and only if there
is an arc with the same direction between the
related variables in X; (ii) an arc connects two
nodes of G corresponding to bits of the same
variable of X if and only if the order of the bit
associated to the node from which the arc de-
parts is lower than the order of the bit associ-
ated to the remaining node. An example of this
transformation is depicted in Fig. 2.

~di—1
x; .

Figure 2: The binarization of the CN in Fig. 1.

Finally, regarding the quantification of the
conditional credal sets, we have:

P(&]|7}) = min Py(z[x]),  (5)

where the index k is defined like in Eq. (4). De-

noting by II; the parents of X corresponding

to the binarization of 1I;, i.e., those that are not
in the same cluster of X7, the probabilities to

5This is not a limitation as a number of dummy states
up the the nearest power of two can be always added.
From now on we assume for all the variables a number
of possible values equal to an integer power of two.

be minimized on the right-hand side are:

pk(fg’fg_l,...,i'?,ﬁi) XX Z:Pk(xil’ﬂ'i)y (6)
where the sum > " is restricted to the states
xy € Qx, such that [ mod i+l is the integer
whose (j+1)-bit representation is 77, ..., Z}, &Y,
m; is the joint state of the parents of X; corre-
sponding to the joint state 7; for the bits of the
parents of X;, symbol o denotes proportional-
ity, and the relations are considered for each
i=1,...,n,j=0,...,d; — 1, and 7; € Q.

If both the states of XZ] produce zero in
Eq. (6), the corresponding conditional mass
functions can be arbitrarily specified (we set
a degenerate mass function). Note that mini-
mization in Eq. (5) can be obtained by simply
considering the vertices of K (X;|m;) in Eq. (6).

The overall procedure returns a well-defined
CN, which is called the binarization of the orig-
inal CN. Given an updating problem on a CN
as in Eq. (4), we can consider the corresponding
problem on its binarization. E.g., the computa-
tion of P(x33|x19) for the CN in Fig. 1 corre-
sponds to P(X{ =1, X3 = 1|X9 = 0). Accord-
ing to (Antonucci et al., 2006, Th. 2) this is an
outer approzimation (i.e., the posterior interval
includes that of the original updating problem),
which can be approximately estimated by L2U.

This approach entails a twofold approxima-
tion: (i) the approximation introduced by the
binarization and (ii) that due to the loopy prop-
agation. Approximation (i) can be regarded as
originated by replacing each credal set of the
original net with an enclosing polytope that can
have a smaller number of vertices. By construc-
tion, the latter number cannot be controlled and
could be too low to lead to a satisfactory ap-
proximation of the original credal set, which in
turns leads approximation (i) to be quite crude.
In the next section, we recall an independently
developed transformation that will be used to
remove approximation (i).

3.2 Decision-theoretic specification

In (Antonucci and Zaffalon, 2008), a general
graphical language for CNs based on the so-
called decision-theoretic specification (DTS) has



been proposed. A DTS of a CN is obtained aug-
menting the original CN by a number of control
nodes, used to enumerate the vertices of the
conditional credal sets. That turns the orig-
inal nodes into precise-probability ones, while
the control nodes can be formulated as chance
nodes with vacuous credal sets.

Let us briefly describe this transformation in
the case of a CN (G,P(X)). First, we obtain
from G a second DAG G’ defined over a wider
domain X’ := (Xy,...,Xo,). This is done by
iterating, for each ¢ = 1,...,n, the following
operations: (i) add a node X;;,; (ii) draw an
arc from each parent of X; to X;i,; (iii) delete
the arcs connecting the parents of X; with Xj;
(iv) draw an arc from X;,, to X;. An example
of this transformation is shown in Fig. 3.
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Figure 3: The output of the transformation de-
scribed in Sect. 3.2 for the CN in Fig. 1.

Note that, for each i = 1,...,n, I}, = II;,
i.e., the parents of X;,,, in G’ are the parents of
X; in G, and also II, = X1, i.e., X1, is the
only parent of X; in G’ and is therefore called
the control variable of X;.

We assume a one-to-one correspondence be-
tween the possible states of a control variable
Xi+n and the collection of all the (distinct)
extreme mass functions of all the conditional
credal sets specified over X;, ie., Qx,,,
Ureqpn ext[K(Xilm;)], foreach i =1,...,n. As
an exarhple, assuming the number of vertices for
the credal sets of the CN in Fig. 1 equal to the
number of possible states of the relative vari-
ables, we have that X, in Fig. 3 is a binary
variable, whose states correspond to the two
vertices of K (X1); X5 has eight possible states
corresponding to the four vertices of K (Xso|z1)
and the four of K (Xs|—z1); X has 32 possible
states corresponding to the vertices, four per
each set, of the conditional credal sets over X3.

Finally, in order to obtain a well-defined
CN over X’ associated to G’, we quantify the

conditional credal sets as follows. For each
i=1,...,n, we set K'(Xj|itn) = P(Xi)a; .,
where P(X;),,,, is the element of ext[K (X;|m;)]
corresponding to Tjyn,. For the control
nodes {Xipn}iz,, we set K'(Xipn|mi,) =
Kom (Xi), where QY —~C Qx,,, is the set

of Ve}tcribces of K(X;|m;).

The CN returned by this transformation will
be denoted as (G', P'(X’)), and its strong exten-
sion as K'(X’). Remarkably, (G',P’(X")) pro-
vides an equivalent representation of (G, P(X))
being that K'(X) = K(X) as stated by Th. 2 in
(Antonucci and Zaffalon, 2008), where K'(X) is
the marginalization of K'(X') to X.

4 Exact Binarization & GL2U

Now we present the original contributions of
this paper, consisting of a general representa-
tion result (Sect. 4.1), the definition of GL2U
(Sect. 4.2), the study of its computational com-
plexity, and its empirical evaluation (Sect. 5).

4.1 Exact binarization

Consider the sequential application of the trans-
formations detailed in Sect. 3.2 and Sect. 3.1.
Thus, given a CN (G, P(X)), obtain (¢’, P/(X’))
by a DTS, and hence (G/,P’(X’)) through bina-
rization. The latter CN is said the exact bina-
rization of the first, a terminology justified by
the following result.

Theorem 1. Consider a CN (G,P(X)) and
its exact binarization (G',P'(X")). Let K(X)
and K'(X') be their corresponding strong exten-
sions. Then:

K(X) = K'(X), (7)

with K'(X) marginalization of K'(X') to X.

According to Eq. (7), (G, P'(X')) is an equiv-
alent binary representation of (G,P(X)). It
should be pointed out that, even if we focus
on the case of CNs with separately specified
credal sets, Th. 1 holds also for so-called non-
separately specified CNs, for which a DTS can
be provided as well. Similarly, the algorithm
presented in the next section can be applied to
any CN, separately or non-separately specified.



4.2 GL2U

Th. 1 is a basis for the solution of general in-
ference problems, as stated by the following
straightforward corollary.

Corollary 1. Any inference problem on a CN
can be equivalently computed in its exact bina-
712a110M.

According to Cor. 1, we can consider a
so-called generalized L2U algorithm (GL2U),
where given an updating problem on a CN, we
solve by L2U the corresponding updating prob-
lem on the exact binarization of the original CN.
The overall procedure is still approximate, but
differently from the case without DTS consid-
ered in (Antonucci et al., 2006), the only source
of approximation is the loopy component.

4.3 Complexity issues

According to the discussion in the previous sec-
tion, the computational time required by GL2U
to update a CN (G, P (X)) is basically that re-
quired by L2U to update (G, P/(X’)). This
is O(t - 2%), where t is the number of itera-
tions and a the maximum indegree of G'. It

can be checked that X:idi_l has the maximum
indegree among the d; binary nodes in the

cluster X;; similarly, Xﬁ;"_l has the maxi-
mum indegree among the d;1,, nodes of X:Hn.
Note also that the number of nodes in II; is
>_j/x;et, dj- Therefore, the indegrees of Xidi_l

and Xﬁi@”_l are respectively CZZ + JHn —1 and

ditn +225/x; e, Jj — 1. Thus, considering that
by definition 2% = d;,% the local complexity of
the algorithm for these two worst cases is re-
spectively O(t - (d; - di1n)?) and O(t - (diyr -
IT;/x,em, 47)%)-

Globally, any iteration of 2U is linear in the
size (i.e., the longest path) of the net, and the
size of the exact binarization grows of a factor
at most equal to 2 - max?ﬁld,- with respect to
the original net. The factor depends (i) on the
decision-theoretic transformation that doubles

6 Asin Sect. 4.1, the number of states for each variable
in X’ is assumed to be an integer power of two. The

discussion of the general case is omitted because of lack
of space and will be presented in a future work.

the number of nodes, and on (ii) the binariza-
tion that makes of each node X; € X’ a cluster
of binary nodes X; whose size depends on the
logarithm d; of its number of states d;. We can
approximate the global complexity by assuming
that a not-too-big constant bounds both the log-
arithms of (i) the maximum number of states
for each variable in X, and (ii) the maximum
overall number of vertices of the credal sets as-
sociated to these variables. Thus, we conclude
that any iteration of GL2U is roughly linear in
the size of the net.

5 Numerical Tests

In order to test the performance of GL2U,
we have chosen the Alarm and the Insurance
nets, as well as some random generated nets.
We work with random polytrees with 50 nodes
(Polyt-50), and random multiply connected nets
with 10 and 25 nodes (Multi-10 and Multi-25,
respectively). For the Alarm and the Insurance
nets, we use the original graph with the original
number of states. For the random polytrees, we
generate random graphs with 50 nodes and at
most 4 categories in each variable. With ran-
dom multiply connected nets, we work with 10
and 25 nodes, and 4 and 8 categories.

Table 1: Average mean square errors of
LS, GL2U and BIN. Maximum number of
states/vertices is indicated in the second col-
umn. Best accuracies are bolded.

LS GL2U BIN
Multi-10 4/2 0.0189 0.0140 0.0181
Multi-10 8/ 2 0.0195 0.0107 0.0338
Multi-10 4/ 4 0.0120 0.0175 0.0308
Multi-10 4/8 0.0027 0.0125 0.0222
Multi-10 8 /4 0.0234 0.0189 0.0693
Multi-25 4/2 0.0231 0.0160 0.0184
Multi-25 4/4 0.0248 0.0204 0.0303
Polyt-50 4/ 2 0.0112 0.0193 0.0289
Polyt-50 4/ 4 0.0145 0.0221 0.0392
Insurance 5/2 0.0055 0.0117 0.0175
Insurance 5/ 4 0.0113 0.0132 0.0193
Alarm 4/ 2 0.0290 0.0190 0.0302
Alarm 4/ 4 0.0331 0.0239 0.0423

We run marginal inferences using GL2U, the
“rough” binarization without DTS (BIN), the
approximate local search method (da Rocha et
al., 2003) (LS) limited to 20 iterations in or-
der to have running times similar to those of
GL2U, and the exact method presented in (de
Campos and Cozman, 2007). Tab. 1 shows



the mean square errors. GL2U improves, of-
ten substantially, the approximation accuracy
when compared to BIN; moreover, it has accu-
racy similar to LS. Moreover, the running time
and the amount of allocated memory for LS
rapidly increases with the size of the net, that
makes unfeasible a solution for large nets, which
can be instead quickly updated by GL2U (see
Fig. 4).7 As far as we know other existing al-
gorithms besides LS are at least exponential in
the treewidth of the moralized graph and suffer
from the same complexity issues. In fact, some
comparisons have been done also with the hill-
climbing algorithm in (Cano et al., 2007) and a
behavior very similar to that in Fig. 4 has been
observed. Hence, GL2U has a great expected
speed up with respect to them.

Figure 4: Average running time versus net size
for LS (triangles) and GL2U (circles). LS can-
not solve CNs with more than 80 nodes.

6 Conclusions

This paper has proposed a new approximate al-
gorithm for CNs updating. This task is achieved
augmenting the net by a number of nodes enu-
merating the vertices of the credal sets and
then transforming the CN in a corresponding
net over binary variables, and updating such bi-
nary CN by the loopy version of 2U. The proce-
dure applies to any CN, without restrictions re-
lated to the topology or the number of possible
states, and the only approximation is due to the
loopy propagation. Empirical analysis shows
that GL2U is a competitive procedure for ap-
proximate inference in CNs both in terms of ac-
curacy and scalability. The algorithm is purely

"A software implementation of GL2U is freely avail-
able at www.idsia.ch/~sun/g2lu.html. The running
times in Fig. 4 refer to an earlier implementation, while
the last release is significantly faster.

distributed and allows for simultaneous updat-
ing of all the variables in the net: these charac-
teristics are usually not shared by optimization-
based algorithms. Moreover, the computational
complexity of GL2U makes it possible to solve
large nets, which cannot be updated, at least
with the same accuracy, by existing algorithms.
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A  Proofs

Lemma 1. Consider a CN with o single node
X and vacuous K(X) := Kqs (X), where 0y C
Qx. Let K(X) denote the strong extension of
its binarization (as in Sect. 3.1). Then:

K(X)=K(X). (8)

Proof. Consider a generic P,(X) € ext[K(X)],
where X := (X°,..., X9 with d:=log, |Qx]|.
A corresponding mass function P, (X) := P,(X)
can be therefore defined. Thus:

-1
P() = [[ @)@ ,...,2%,  (9)
j=0

for each # € Qg such that (3%,...,3%°!) = 7.
For each j=0,... ,cz — 1 and each possible value
of their parents, the conditional mass functions
P,(X7|z771,...,2%) are vertices of their cor-
responding conditional credal sets because of
Proposition 1 of (Antonucci and Zaffalon, 2008).
Thus, the values of the conditional probabilities
on the right-hand side of Eq. (9) are obtained by
a minimization as in Eq. (5). The values to be
minimized are obtained from Eq. (6), where the
conditional probabilities on the right-hand side
are the vertices of K(X), i.e., the m := |Q%]
degenerate extreme mass functions of the vacu-
ous credal set Kos (X). This means that there
is only a non-zero term in the sum in Eq. (6)
and therefore each vertex of K a3, produces a de-
generate conditional mass function for the cor-
responding binary variable. Consequently, also
the extreme values returned by Eq. (5) will be



degenerate. We can therefore conclude that, ac-
cording to Eq. (9), also P,(X) and hence P,(X)
is a degenerate mass functions. Let z, € Qx be
the state of X such that P,(z.) = 1. Consid-
ering Eq. (9) for Z, € Qg, we conclude that
all the conditional probabilities on the right-
hand side are equal to one. Considering the
highest order bit, according to Eq. (6) and de-
noting by Pi(X) a vertex of Q.(X), we have
P (2% Yz9-2 ... 3% = Py(x,) = 1, that re-
quires z, € Q%. Thus, P(X) € ext[K(X)],
that implies ext[K(X)] C ext[K(X)], and fi-
nally K(X) € K(X). On the other side,
K(X) D K(X) because of Th. 2 in (Antonucci
et al., 2006), and hence the thesis. O

Proof of Th. 1. Given a P.(X') € ext[K'(X)],
the following factorization holds:

Plx) = ACALAE | EAC R )

(10)
for each X' € Qg,, where the values of the
other variables are consistent with x, and the
last equality follows from chain rule. Eq. (10)
defines PL(X;|x}) == P/(X?,..., X% 7)), As
noted in Sect. (3.2), for each ¢ = 1,...,n and
mi € Qm,, K'(X;|7]) is a credal set made of a
single point. Thus, as a corollary of Th. 1 in
(Antonucci et al., 2006), we have P/(X;|n}) €
ext[K'(X;|m})], being in fact the only element of
this credal set. Similarly, for each i = 1,...,n,
the credal set K'(Xjjn|mj,,) is vacuous. Thus,
regarding this credal set as a CN made of a
single node, we invoke Lemma 1 and obtain
from 15;()21-+n|7~r§+n) € ext[K’(Xi+n|ﬁg+n)] that
P(Xipn|m,) € ext[K'(Xjyn|mi,,)]. Over-
all, we proved that P/(X') is a combina-
tion of local vertices of the credal sets of
(G, P'(X")). Thus, P/(X') € ext[K'(X")], from
which ext[K’(X')] C ext[K'(X’)], and finally
K'(X') € K'(X'). According to Lemma 1 in
(Antonucci et al., 2006), K'(X') D K'(X').
Thus, K'(X’) K'(X'). Marginalizing on
both the sides we get K'(X) = K'(X). But
Th. 2 in (Antonucci and Zaffalon, 2008) states
K(X) = K'(X), from which the thesis. O
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