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Abstract

The elicitation of prior beliefs about the structure of a Bayesian Network is a formal
step of full-Bayesian structural learning which offers the opportunity of exploiting the
knowledge accumulated by an expert of the problem domain over years of research in a
quantitative way. Motivating applications include molecular biomarkers in gene expression
or protein assays, where the use of prior information is often suggested as a promising
approach to face the curse of dimensionality. In this paper a general formalization based on
propositions describing network features is developed which comprises issues like anchoring
and revision. An algorithm is described to estimate the number of structures bearing a-
priori relevant features in problem domains characterized by a large number of nodes.

1 Introduction

The structure of a Bayesian Network (BN) and
its parameters are in many cases unknown or
affected by substantial uncertainty, therefore
network learning is performed on the basis of
collected data. A prior distribution over the
space of structures is a formal ingredient of the
Bayesian paradigm. Nevertheless, the elicita-
tion of expert’s prior information on network’s
structure suffers a major limitation due to the
super-exponential increase of structures to be
considered which becomes critical for five or
more random variables. Despite the above men-
tioned difficulties, there is a wide agreement on
the possibility of mitigating the ‘curse of dimen-
sionality’ occurring in many applied fields by
using prior information elicited from experts of
the problem domain.

Several approaches have been proposed to de-
fine a prior distribution on the set of DAGs for
a fixed set of variables. The early work of Bun-
tine (Buntine, 1991) is based on a total order-
ing of nodes and a full specification of beliefs for
each edge which could join pairs of nodes in a
DAG. The collection of nodes which precedes a
given node v is known given the order relation,
therefore the probability of a given parent set
Πv of node v may be calculated as the product

of probability for events of type ‘there is edge
y → v’ or ‘there is not an edge y → v’, for each y
preceding v. The subjective probability elicited
from an expert about structure Bs is defined as
the product of probability values for each parent
set marginally considered. In the seminal paper
of Heckerman (Heckerman et al., 1995) a prior
network, Bsc, is elicited and compared with can-
didate networks so that a high degree of belief
is assigned to structures closely resembling to
the prior network. The number δi of different
nodes in the parent set of node vi is calculated
for each node to quantify the overall degree of
dissimilarity δ =

∑
i δi. Given an elicited hy-

perparameter 0 < k < 1, the prior distribution
is proportional to kδ. Castelo and Siebes first
addressed the issue of partial prior knowledge
and they also provided automatic rules to ob-
tain a full prior for a Bayesian network (Castelo
and Siebes, 2000). Recent contributions include
the development of an informed score function
based on the BDe metric (Mascherini and Ste-
fanini, 2007). The use of several types of re-
strictions to code expert knowledge in structural
learning of BNs has been investigated by (de
Campos and Castellano, 2007), who also par-
ticularized the approach to the local search and
to the PC learning algorithms.

This paper is motivated by the need of elicit-



ing beliefs in a more general setup, e.g. avoiding
both the a-priori independence among parent
sets and the specification of a prior network. A
formal approach is developed with the aim of
supporting researchers of applied fields in the
elicitation and revision of causal and probabilis-
tic beliefs. An algorithm is described which is
useful in problem domains characterized by a
large number of nodes. A simple case study
is presented to illustrate the approach. The key
idea of this paper is that in large spaces of struc-
tures, elicitation may deal with a limited num-
ber of network features.

2 Material and Methods

2.1 Bayesian networks

A graph G is a pair (V,E) where V =
{v1, v2, . . . , vK} is a finite set of nodes and E ⊂
V × V is the set of edges. The set E represents
the structure of the graph because it defines
which nodes are linked by an edge and if such
edge is oriented (arrow) or not (undirected). If
(vi, vj) ∈ E but (vj , vi) /∈ E then the ordered
pair corresponds to the oriented edge vi → vj .
The set of nodes originating oriented edges that
enter into node vj is called parents set, denoted
as pa(vj). In a directed graph all edges are ori-
ented. In a directed graph without cycles a tour
following the direction of oriented edges never
visits the same node two times. A directed
graph without cycles is called Directed Acyclic
Graph (DAG). An auxiliary random variable Z
is introduced to map the set of DAGs for a fixed
V to the set of natural numbers. It follows that
a structure E is associated to an arbitrary num-
ber z in the set ΩZ = {1, 2, . . . , nz}, the sample
space of Z.

The joint probability distribution of random
variables indexed in V , the random vector
Xv1,...,vK , is Markov with respect to a DAG G if
the following factorization holds:

p(xv1 , xv2 , . . . , xvK ) =
∏

vi∈V

p(xvi | xpa(vi))

where xpa(vi
) is random vector made by vari-

ables whose labels belong to the parents set of
vi. The lack of an arrow from vi to vj means ir-
relevance of Xvi in predicting Xvj if all random

variables defined by the parent set have been
observed, i.e. it is an instance of conditional in-
dependence. More general conditional indepen-
dence statements may be derived by means of
the D-separation theorem, or equivalently sepa-
ration theorems on moralized graphs (Cowell et
al., 1999). Under the stronger Markov Causal
Assumption a DAG represents relations among
variables which are stable under external ma-
nipulation (intervention) of a subset of them,
so that causal effects may be in principle esti-
mated.

Structural learning of a BN amounts to pro-
cess a database D = {d1, d2, . . . , dnd

} of nd con-
ditionally independent realizations of the ran-
dom vector Xv1,v2,...,vK to infer the conditional
independence relations existing in the joint dis-
tribution of the random vector. Following the
Bayesian approach to inference, the joint proba-
bility distribution of D and network’s unknowns
given the context ξ is

p(D, θ, z | ξ) = p(D | θ, z, ξ) · p(θ | z, ξ) · p(z | ξ),

where θ = (θv1,pa(v1), . . . , θvK ,pa(vK)) are vec-
tors of parameters which appear in the condi-
tional probability distributions of each pair Xvi ,
Xpa(vi). The likelihood function p(D | θ, z, ξ) is
a product of multinomials and the degree of be-
lief about elements of θ is often expressed as
a product of Dirichlet probability density func-
tions (Heckerman et al., 1995). The probability
mass function p(z | ξ) captures the expert’s de-
gree of belief about the unknown structure of a
BN.

2.2 Expert’s degree of belief about
network features

In typical problem domains, we expect that
an expert is willing to believe more on can-
didate structures showing some important fea-
tures which are a-priori plausible.

Definition 1 (Features). Network features
{P1,P2, . . .} are propositions qualifying graphs
defined on a fixed set of nodes V . Given a struc-
ture z, a proposition Pi(z) is either true or false.

Among the examples of features we have:
P1 = ‘is an ancestor of v4’, P2 = ‘maximum



cardinality of parents ≤ 2 ∀v ∈ V ’, P3 = ‘maxi-
mum cardinality of children ≤ 2 ∀v ∈ V ’, P4 =
‘node v3 is neighbor of v7’, P5 = ‘variable Xv2 is
an immediate cause of Xv7 ’. Features may ac-
commodate both probabilistic and causal beliefs
according to the choice of suitable propositions
and context.

Expert’s belief is typically elicited through
several network features which may or may not
hold at once. Nevertheless the straight specifi-
cation of p(z | P1,P2, . . .) may be difficult for a
general collection of statements due to relations
which might exist among propositions. A col-
lection of features may be organized into a basis
for the elicitation by defining canonical features.
Definition 2 (Canonical feature). Let R =
{Pi : i = 1, . . . , nf} be the set of reference fea-
tures selected by an expert for the elicitation.
A canonical feature Fj , j ∈ J , is a conjunc-
tion

∧nf

i=1 P̃i where P̃i is a proposition chosen
between Pi and its negation ¬Pi.

A convenient index set is J =
{(1, . . . , nf ), . . . , (1, . . . , nf )} so that the
configuration of features in R which generate
a canonical feature Fj , j ∈ J , is self-evident.
Note that a canonical feature is defined in a
context ξ which includes a fixed collection of
random variables.
Definition 3 (Elicitation basis). A canonical
reference set F = {Fj : j ∈ J} built on refer-
ence set R is the collection of canonical features
defined by all the possible conjunctions in Def-
inition 2. It is a basis for the elicitation.

A canonical reference set induces a partition
on the set of structures, as stated in the propo-
sition below:
Proposition 1 (Canonical partition). Let F
be an elicitation basis on a fixed R. Let Cj =
{z : Fj(z)} be the set of structures satisfying the
assertion Fj ∈ F . The set C = {Cj : j ∈ J } is
a partition of the set of graphs built on a fixed
collection of nodes V .

Proof. By definition, canonical features are in-
compatible propositions.

We are now in the position of eliciting a quan-
titative preference relation on such a partition.

Definition 4 (Preference on F). Let F be
a canonical reference set. A preference re-
lation U induces an order on F and the re-
sulting ‘precede’ and ‘succeed‘ relations are re-
spectively indicated as ≺ and �. If U deter-
mines a partial ordering of features then E =
{E1, . . . , Ee, . . . , Ene} is the induced partition of
F into equivalence classes, with Ee a generic
member of partition E , ne the total number of
equivalence classes and F[e] a generic member
of Ee.

The preference relation U is not necessarily a
strict ordering because different canonical fea-
tures may be equally plausible for the expert.
A non-trivial elicitation basis F , contains at
least two distinct elements FL and FU , with
FL ≺ FU , that respectively precedes and suc-
ceeds other canonical features. Therefore de-
grees of belief satisfy the inequality: P [FL |
U , ξ] < P [FU | U , ξ]. A generic canonical fea-
ture Fj , j ∈ J , does not succeed to FU and it
does not precedes FL, that is FL � Fj � FU ,
therefore the degree of belief satisfies:

P [FL | U , ξ] ≤ P [Fj | U , ξ] ≤ P [FU | U , ξ].

Note that if Fj′ � Fj′′ and Fj′ � Fj′′ both
holds for two canonical features Fj′ and Fj′′ ,
then they belong to the same equivalence class,
namely Fj′ ∼ Fj′′ induced by U .

The numerical assignment of degrees of belief
is here performed using conditional odds.

Definition 5 (Conditional odds). Let Fa,Fb

two canonical features and U a preference rela-
tion on F . Conditional odds of Fa against Fb

given U , ξ are:

ωa,b =
P [Fa | U , ξ]
P [Fb | U , ξ]

(1)

with ωa,b ≥ 0.

It follows from (1) that the numerical assign-
ment for two features Fj′ ∼ Fj′′ belonging to
the same equivalence class is ωj′,j′′ = 1.0. The
direct numerical assignment of the degree of be-
lief for pairs of features belonging to distinct
equivalence classes Ea and Eb exploits an aux-
iliary experiment, here a hypothetical random



draw of one ball from an urn which contains
αr red balls and αw white balls, with αr + αw

conveniently set to 100 or more. Given two fea-
tures F[a] and F[b], the number of white and of
red balls in the urn has to be changed by the
expert up to the point in which the odds asso-
ciated to the proposition ‘the ball drawn from
the urn is white’ are equal to conditional odds
of F[a] against F[b]: ωa,b = αw

αr
.

Proposition 2 (Complete minimal ensemble).
Let U be an order relation on F and E the in-
duced partition into equivalence classes. An en-
semble is a collection of conditional odds {ωa,b}
elicited from the expert. The ensemble is com-
plete and minimal if it contains ne−1 odds val-
ues between pairs of features belonging to dis-
tinct equivalence classes, so that at least one
feature is taken from each equivalence class in
E.

Proof. The ensemble is complete because a
probability distribution on F is obtained
by transformation of elicited odds, that is∑

j∈J P [Fj | U , ξ] = 1 and P [Fj | U , ξ] ≥ 0.
The ensemble is minimal because its size can
not be further reduced without compromising
the full specification of a probability distribu-
tion on F .

The assignment of conditional odds has to be
performed according to the order induced by U
in units of subjective probability.

Two structures z1 and z2 may belong to the
same equivalence class Cj and in this case they
are on equal footing for what concerns expert’s
prior information. The probability P [Z =
z | Fj , ξ] represents the expert degree of belief
about the proposition: ‘the unknown structure
z is one of those structures characterized by Fj ’.
Proposition 3 (Beliefs on Z). Given the
canonical partition C induced by an elicitation
basis F , the probability mass function p(z | ξ)
is given by:

p(z | U , ξ) =
1

nj(z)
· P [Fj(z) | U , ξ] (2)

where j(z) is the element of the canonical par-
tition in which z is located, and with nj(z) the
cardinality of such subset.

Proof. The starting factorization is:

p(z | U , ξ) =
∑
j∈J

P [Z = z | Fj , ξ] · P [Fj | U , ξ]

but P [Z = z | Fj , ξ] is null for all but one condi-
tioning feature, say Fj(z). Moreover, under in-
difference among members within class Cj(z) the
probability P [Z = z | Fj(z), ξ] is one over nj(z),
the cardinality of such equivalence class.

2.3 The elicitation of p(z | U , ξ)

An elicitation basis is a general object, never-
theless it is convenient to describe some prac-
tical details both to support algorithms formu-
lation and to prepare the expert to variations
which also depend on the amount of information
being elicited. The conjunction of two or more
incompatible features, like Pi′ = ‘has vi → vj ’
and Pi′′ = ‘has vj → vi’, determines a canonical
feature which is indeed false for DAGs. There-
fore the probability of Pi′ ∧ Pi′′ is null. Similar
remarks hold if a feature implies another fea-
ture, say P2 ⇒ P1. In such case the degree
of belief in the conjunction ¬P1 ∧ P2 should be
zero.

Substantial prior information in the prob-
lem domain may result in a narrow partition,
nj(z) = 1,∀j ∈ J , and the burden of assess-
ment is equivalent to the one-by-one elicitation
of beliefs on structures. Nevertheless, in large
spaces of structures it is likely that the elicita-
tion brings to coarse partitions in which nj � 1,
and the number of DAGs belonging to an equiv-
alence class may be hard to assess.

An approximated solution to the counting
problem may be obtained by simulation. The
core of our algorithm is defined in (Ide et al.,
2002) who build a Markov Chain (MC) that at
convergence provides a DAG uniformly sampled
from the space of all DAGs on a fixed set of
nodes V . We extended the algorithm described
in (Ide et al., 2002, Algorithm 1) by adding steps
00, 09, 10, so that the auxiliary experiment
made by M runs of such a MC results in a sam-
ple of M DAGs:

INPUT: number of nodes n, number of
iterations N, number of DAGs M.



OUTPUT: a vector of counts.
00.Repeat M times:
01.Initialize a simple tree in which each

node has just one parent, except the
root node without parents;

02.Repeat the next loop N times:
03 Generate uniformly a pair of

distinct nodes i,j;
04 If arc(i,j) exists in the graph,

delete the arc providing the
graph remains connected;

05 else
06 Add the arc, provided that the

graph remains a DAG;
07 Otherwise keep the same state;
08.Return the current graph after N

iterations;
09.Assign the returned DAG to an

element of the partition;
10.Return the vector of counts after

M iterations;

Proposition 4 (MC estimate of cardinali-
ties). Given a Markov Chain algorithm provid-
ing DAGs uniformly sampled from the spaces of
DAGs on a fixed set V , an estimate of cardi-
nality nj , j ∈ J , of elements in the canonical
partition C is:

n̂j =
f(nK)

M
·

M∑
i=1

ICj (zi) (3)

with f(nK) the total number of DAGs on a fixed
set V and M the number of simulated chains.
The indicating function ICj (zi) is equal to 1 if
the structure zi belongs to Cj, zero otherwise.

Proof. The above algorithm generates a sam-
ple of M DAGs. Each DAG is assigned to the
equivalence class in C which corresponds to the
canonical feature Fj(z). The total number of
DAGs on a fixed set of nodes V is obtained by
recursion (Robinson, 1977):

f(nK) =
nK∑
i=1

(−1)i+1 ·
(

nK

i

)
·2i·(nK−i) ·f(nK−i)

(4)
where f(1) = 1, f(0) = 1 and nK ≥ 2.

2.4 Coherence, stability and revision

The elicitation of expert beliefs is not made by
one straight operation. It is closer to a self-
untangling adaptive procedure which increase in
clarity during its dynamic. In this perspective
the need of revision and elaboration of elicited
values is pretty understandable and generally
accepted in practice. The psychological nature
of the elicitation process may lead to poorly
elicited quantities, as it has been discussed in
the literature (Garthwaite et al., 2005, and ref-
erences therein). For this reason it is conve-
nient to elicit more quantities than needed, that
is a redundant collection of conditional odds is
elicited.

Definition 6. (Coherent anchoring) Let ω̃R be
the collection of distinct complete minimal en-
sembles based on R, that is ensembles in which
at least one value among conditional odds is
built on features taken from different equiva-
lence classes. Then degree of beliefs are coher-
ently anchored if all complete minimal ensem-
bles provide the same distribution of subjective
probability values on F .

Elaboration of elicited quantities is performed
to improve the correspondence between expert’s
belief and numerical assignments. Coherent an-
choring leads to the definition of a probability
measure on the algebra of features A(F). Sub-
jective probability values for marginal canoni-
cal features may be compared to actual expert
beliefs about the same joint statements for the
unknown structure.

Definition 7 (Reduced reference set). LetR be
a set of reference features. A reduced reference
set Rr is a proper subset of R.

Proposition 5 (Stability). Let R̃ be the collec-
tion of all reduced reference sets obtained from
a given reference set: R̃ = {Rr : Rr ⊂ R.}. Let
ω̃Rr be a collection of distinct complete minimal
ensembles, as in Definition 6, based on Rr and
the preference relation Ur. Then elicited degree
of beliefs are stable under reduction Rr if:

P [Fj | Ur,Rr, ξ] = P

[∨
s∈S

Fs | U ,R, ξ

]
, (5)



where S is the collection of index values denot-
ing canonical features based on R which appear
in the disjunction producing the canonical fea-
ture Fj based on Rr. The elicited degree of be-
liefs are stable if they are stable for all reduc-
tions in R̃.

Proof. If one or more features are removed from
a reference set then the canonical basis of elici-
tation partially collapses to one of larger granu-
larity. The associated algebra is given by unions
of elements taken from the starting algebra.

Full stability may be heavy to check and a
useful compromise is to limit the number of re-
ductions, for example to the collection of all one-
feature reference sets. The revision of elicited
beliefs is mandatory if stability or coherent an-
choring are violated for some reductions.

2.5 A case study in breast cancer

Classical biomarkers in breast cancer studies
include progesterone receptors (PR), oestrogen
receptors (ER), age (AG), menopausal status
(MS), number of positive lymph nodes (PL).
Variables of interest for patients are tumor
grade (TG) and tumor size (TS). The refer-
ence set R contains the propositions below:
P1 =‘Nodes AG, MS precede all other nodes’;
P2 =‘TS, TG, NL follow all other nodes’;
P3 =‘The parent set is made by three or less
nodes for each node in V ’;
P4 =‘ER is independent on AG given MS’.

An important particularization of the general
elicitation scheme is obtained by a preference re-
lation U which sets the order over canonical fea-
tures according to the the number of true propo-
sitions making each canonical feature. The
canonical feature ¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4 pre-
cedes all the other canonical features, while
P1 ∧ P2 ∧ P3 ∧ P4 succeeds to all the other
canonical features. It follows that the first and
last equivalence classes are: E0 = {¬P1 ∧¬P2 ∧
¬P3 ∧ ¬P4} and E4 = {P1 ∧ P2 ∧ P3 ∧ P4}.
Four canonical features have just one proposi-
tion true and they define the equivalence class
E1 = {¬P1 ∧ P2 ∧ P3 ∧ P4,P1 ∧ ¬P2 ∧ P3 ∧
P4,P1 ∧ P2 ∧ ¬P3 ∧ P4,P1 ∧ P2 ∧ P3 ∧ ¬P4}
which follows E0. Equivalence classes E2 and E3

are defined in a similar way. The cardinality of
an equivalence class Ei in this case study is equal
to | Ei |=

(nf

i

)
, where nf is the total number of

propositions and i the number of true proposi-
tions for each canonical feature in the equiva-
lence class Ei: | E0 |= 1, | E1 |= 4, | E2 |= 6,
| E3 |= 4, | E4 |= 1. In this particular preference
relation the total number of equivalence classes
within the partition E is ne = nf + 1 = 5.

In the elicitation, three distinct complete
minimal ensembles are considered, say ω̃R =
{ω̃R,1, ω̃R,2, ω̃R,3}. The first ensemble is:
ω̃R,1 = {ω1,0 = 2.0, ω2,0 = 3.0, ω3,0 =
4.0, ω4,0 = 5.0}, with indices i = 0, 1, 2, 3, 4 de-
noting any canonical feature belonging to equiv-
alence class Ei. The second and third ensem-
bles are: ω̃R,2 = {ω1,0 = 1, ω2,1 = 3

2 , ω3,2 =
4
3 , ω4,3 = 5

4}, ω̃R,3 = {ω0,4 = 1
5 , ω1,3 = 1

2 , ω2,4 =
3
5 , ω3,2 = 4

3}. The anchoring is coherent because
the three ensembles provide the same probabil-
ity values: P [F[0] | U , ξ] = 1

48 , P [F[1] | U , ξ] =
1
24 , P [F[2] | U , ξ] = 1

16 , P [F[3] | U , ξ] = 1
12 ,

P [F[4] | U , ξ] = 5
48 .

The algorithm described in Section (2.3) run
with parameters M = 10000 and N = 294.
In (Ide et al., 2002) the authors motivated the
choice of N = K2 ∗ 6 through empirically find-
ings. We replicated the above simulation for one
hundred times to assess the variability of point
estimates of the fractions of DAGs in Cj , j ∈ J
(full results not shown): minimum and max-
imum standard deviations of n̂j observed for
the 24 = 16 elements of the canonical parti-
tion C are, respectively, 0.000475 and 0.004797
in 100 replicated simulations. The total number
of DAGs for seven nodes is f(7) = 1′138′779′265
(equation 4).

The stability of elicited values has been ex-
amined limited to four reduced reference sets:
R̃ = {Ri : i = 1, 2, 3, 4}, so that the re-
duced reference set Ri = {Pi} contains just
one proposition. An explicit expression exploit-
ing the already introduced index set J is eas-
ily obtained for such reductions, for example:
P [F[1] | U1,R1, ξ] =

∑
s∈S P [Fs | R,U , ω̃R, ξ],

where S = {(1, 2̄, 3̄, 4̄), . . . , (1, 2, 3, 4)}. In this
way we obtained four marginal probability val-



ues of each proposition Pi, i = 1, 2, 3, 4 and they
are all equal to 7

12 . The expert did not reject
the above values which follow from the unre-
stricted elicitation, so the revision did not take
place (see the discussion).

3 Discussion

The generality of the approach described in this
work is mainly due to the use of propositions de-
scribing network features. Nevertheless the use-
fulness also depends on the amount of work left
to the expert in actual problem domains. The
good scaling of the proposed elicitation with an
increasing number of nodes rests on a number of
propositions which is far smaller than the num-
ber of DAGs. Moreover structures counting is
left to simulation, and reasonable estimates in
equation (3) are obtained by sampling a number
of DAGs M which is much smaller than the total
number of DAGS f(nK). Even for an increasing
number of propositions and very large spaces of
structures the computation may remain feasi-
ble if the order relation U induces large equiva-
lence classes of canonical features. Nevertheless,
the overall computational burden partially de-
pends on the nature of features. For example,
features local to Markov blankets are quickly
checked, while features involving the considera-
tion of the whole structure are computationally
heavy to assess.

Particularized instances of our approach may
serve as starting elicitation from which semi-
automatic prior distributions may be quickly
obtained. The preference relation U discussed
in the case study induces a partition in which
Ei collects all canonical features made by i true
propositions. A computationally efficient as-
signment of probability values to canonical fea-
tures is obtained by eliciting a value 0 < k < 1
and by setting P [F[i] | U , ξ] ∝ k(nf−i), so
that for two features F[i′] and F[i′′] satisfying
i′ − i′′ = δ we have ωi′,i′′ = k−δ. Reconciliation
of incoherent anchoring may be automatically
performed by defining an equally weighted mix-
ture of probability distributions obtained from
different ensembles. This reconciliation scheme
might be an automatic first step towards a de-

tailed revision and it could be useful in problem
domains with a large number of features and
weak prior information.

Simpler elicitation schemes may work in prac-
tice, and in these setups our formalization may
be useful in obtaining the elicitation bias, for
example, due to the assumption of a-priori in-
dependence among propositions. Sharp prior
information has been coded as structural re-
strictions in (de Campos and Castellano, 2007),
but it may be as well coded using canonical fea-
tures and degree of beliefs very close to 0 or
to 1, so that management of restrictions and
potential overstatement of beliefs are avoided.
A comparison of computational burden and of
flexibility between the two approaches in simi-
lar case studies is a theme for future research.
The elicitation based on network features and
conditional odds is more demanding than the
approach in (Castelo and Siebes, 2000), where
edges are units of elicitation that are combined
up to a full prior for a BN in a quite implicit
way. The use of oriented graphs and the dis-
tribution of the extra-DAGs amount of weight
lead to a prior distribution for BNs, but in large
sized problem domains the resulting prior distri-
bution may be difficult to submit to further in-
spection as regards non-local properties. Levels
of information including full structures, corre-
lation or causation among nodes, temporal or-
der (O’Donnell et al., 2006) may be also cap-
tured through features, while the implications
due to the use of a uniform distribution on the
space of Totally Ordered Models (O’Donnell et
al., 2006, TOM) has still to be investigated. Fi-
nally, at the best of our knowledge the approach
described in this work seems the only one to
reach full generality in considering global net-
work features, therefore numerical explorations
of its performances under common learners, like
greedy search, deserve research efforts.

A key step of our scheme is the auxiliary
Monte Carlo experiment which provides the
cardinality of equivalence classes when straight
counting DAGs is too heavy. The algorithm
discussed in (Ide et al., 2004) may be used to
count DAGs in restricted spaces, for example
for a sharply believed feature like “no more then



three nodes in each parent set” with a probabil-
ity equal to 1. The counting problem has been
also considered by (Peña, 2007), who provides
MCMC algorithms to approximately calculate
the ratio of DAG models to DAGs up to 20
nodes and the fraction of chain graph models
that are neither DAG models nor DAG models
up to 13 nodes. The extension of the approach
to elicitation described in this work for more
general classes of graphs deserves attention in
future work.

4 Conclusions

In this paper we proposed a formal proce-
dure to elicit expert beliefs on the structure of
a Bayesian network by means of propositions
which capture relevant features. While a de-
tailed elicitation may be overwhelming for the
expert in large problem domains, particulariza-
tions of the general approach offer automatic
completion and limited expert efforts.

Further work on elicitation is needed both
on theoretical and applied sides. An inferen-
tial engine could suggest sure-false and sure-true
canonical features given a reference set. More-
over a graphical user interface could make elici-
tation and revision easier to perform for applied
scientists. It is has been found that different
propositions embedding the same meaning may
lead to different elicited values. Finally, human
cognitive peculiarities related to the elicitation
of beliefs on plausible structures for a BN are
still largely unexplored.
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