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Abstract

This paper introduces a new scoring criterion, factorized normalized maximum likelihood,
for learning Bayesian network structures. The proposed scoring criterion requires no
parameter tuning, and it is decomposable and asymptotically consistent. We compare the
new scoring criterion to other scoring criteria and describe its practical implementation.
Empirical tests confirm its good performance.

1 Introduction

The popular Bayesian criterion, BDeu (Buntine,
1991), for learning Bayesian network structures
has recently been reported to be very sensitive
to the choice of prior hyperparameters (Silander
et al., 2007). On the other hand, general model
selection criteria, such as AIC (Akaike, 1973)
and BIC (Schwarz, 1978), are derived through
asymptotics and their behavior is suboptimal
for small sample sizes. The study of different
scoring criteria is further complicated by the
fact that learning the network structure is NP-
hard for all popular scoring criteria (Chickering,
1996), even if these criteria have a convenient
characteristic of decomposability, which allows
incremental scoring in heuristic local search
(Heckerman et al., 1995). Due to recent ad-
vances in exact structure learning (Koivisto and
Sood, 2004; Silander and Myllymäki, 2006) it
is feasible to find the optimal network for de-
composable scores when the number of variables
is less than about 30. This makes it possible
to study the behavior of different scoring crite-
ria without the uncertainty stemming from the
heuristic search.

In this paper we introduce a new decompos-
able scoring criterion for learning Bayesian net-
work structures, the factorized normalized max-
imum likelihood (fNML). This score features no
tunable parameters, thus avoiding the sensitiv-
ity problems of Bayesian scores. We show that
the new criterion is asymptotically consistent.

Unlike AIC and BIC, it is derived based on op-
timality criterion for finite sample sizes, and it
has a probabilistic interpretation.

The rest of the paper is structured as follows.
In Section 2, we will first introduce Bayesian
networks and the notation needed later. In Sec-
tion 3, we review the most popular decompos-
able scores, after which in Section 4, we are
ready to introduce the fNML criterion. We then
briefly discuss the implementation of this new
score in Section 5. Section 6 presents the empir-
ical experiments, and the conclusions are sum-
marized in Section 7.

2 Bayesian Networks

We assume that reader is familiar with Bayesian
networks (for tutorial, see (Heckerman, 1996)),
and only introduce the notation needed later in
this paper.

A Bayesian network defines a joint probabil-
ity distribution for an m-dimensional multivari-
ate data vector X = (X1, . . . ,Xm). We assume
that all variables are discrete, so that variable
Xi may have ri different values {1, . . . , ri}.

A Bayesian network consists of a directed
acyclic graph G and a set of conditional prob-
ability distributions. We specify the DAG with
a vector G = (G1, . . . , Gm) of parent sets so
that Gi ⊂ {X1, . . . ,Xm} denotes the parents
of variable Xi, i.e., the variables from which
there is an arc to Xi. Each parent set Gi has
qi (qi =

∏

Xp∈Gi
rp) possible values that are the



possible value combinations of the variables be-
longing to Gi. We assume a non-ambiguous
enumeration of these values and denote the fact
that Gi holds the jth value combination simply
by Gi = j.

The local Markov property for Bayesian net-
works states that each variable is independent
of its non-descendants given its parents. Func-
tionally this is equivalent to the following fac-
torization of the joint distribution

P (x | G) =
m
∏

i=1

P (xi | Gi). (1)

The conditional probability distributions
P (Xi | Gi) are determined by a set of parame-
ters, Θ, via the equation

P (Xi = k | Gi = j,Θ) = θijk,

where k is a value of Xi, and j is a value con-
figuration of the parent set Gi. We denote the
set of parameters associated with variable Xi by
Θi.

For learning Bayesian network structures we
assume a data D of N complete i.i.d instantia-
tions of the vector X, i.e., an N×m data matrix
without missing values. It turns out to be use-
ful to introduce a notation for certain parts of
this data matrix. We often want to select rows
of the data matrix by certain criteria. We then
write the selection criterion as a superscript of
the data matrix D. For example, DGi=j de-
notes those rows of D where the variables of Gi

have the jth value combination. If we further
want to select certain columns of these rows, we
denote the columns by subscripting D with a
corresponding variable set. As a shorthand, we
write D{Xi} = Di. For example, DGi=j

i selects

the ith column of the rows DGi=j.
Since the rows of D are assumed to be i.i.d,

the probability of a data matrix can be calcu-
lated just by taking the product of the row prob-
abilities. Combining equal terms yields

P (D | G,Θ) =

m
∏

i=1

qi
∏

j=1

ri
∏

k=1

θ
Nijk

ijk , (2)

where Nijk denotes number of rows in
DXi=k,Gi=j .

For a given structure G, we use notation
P̂ (D | G) = supθ P (D | G, θ). The maximizing
parameters are simply the relative frequencies
found in data: θ̂ijk =

Nijk

Nij
, where Nij denotes

the number of rows in DGi=j , or 1.0 if Nij = 0.
We often drop the dependency on G when it is
clear from the context.

3 Decomposable scores

In general, a scoring function Score(G,D) for
learning a Bayesian network structure is called
decomposable, if it can be expressed as a sum
of local scores

Score(G,D) =
m
∑

i=1

S(Di,DGi
). (3)

Many popular scoring functions avoid over-
fitting by balancing the fit to the data with the
complexity of the model. A common form of
this idea can be expressed as

Score(G,D) = log P̂ (D | G) − ∆(D,G), (4)

where ∆(D,G) is a complexity penalty.
The maximized likelihood P̂ (D | G) decom-

poses by the network structure, and for the de-
composable scores handled in this paper, the
complexity penalty decomposes too. Hence, we
can write the penalized scores in the decom-
posed form (3), with the local scores given by

S(Di,DGi
) = log P̂ (Di | DGi

) + ∆i(Di,DGi
).
(5)

Different scores differ in how the local penalty
∆i(Di,DGi

) is determined.

3.1 AIC and BIC

Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) are
two popular decomposable scores for learning
Bayesian network structures. These scores do
not have any additional parameters so in this
sense they are similar to the proposed fNML
score. The penalty terms for these scores are
∆BIC

i = qi(ri−1)
2 ln N , and ∆AIC

i = qi(ri − 1).
Both of these complexities are independent of
the data, and only depend on the arities ri

of random variables and the structure of the
Bayesian network.



3.2 Bayesian Dirichlet scores

Bayesian Dirichlet (BD) scores assume that the
parameter vectors Θij are independent of each
other and distributed by Dirichlet distributions
with hyper-parameter vector ~αij. Given a vec-
tor of hyper-parameters ~α, the local score can
be written as

SBD(Di,DGi
, ~α) = log P (Di | DGi

, ~α)

=

qi
∑

j=1

log P (DGi=j
i | DGi=j

Gi
, ~αij)

=

qi
∑

j=1

log

(

B(~αij + ~Nij)

B(~αij)

)

,

where B is a multinomial Beta function

B(α1, . . . , αK) =

∏K
k=1 Γ(αk)

Γ(
∑K

i=1 αk)
.

With all αijk = 1 we get a K2-score (Cooper
and Herskovits, 1992), and with αijk = α

qiri
we

get a family of BDeu scores popular for giv-
ing equal scores to different Bayesian network
structures that encode the same independence
assumptions. BDeu scores depend only on a sin-
gle parameter, the equivalent sample size α. Re-
cent studies on the role of this parameter show
that network learning under BDeu is very sen-
sitive to this parameter (Silander et al., 2007).

For comparison, we can write the BD-score as
a penalized maximized likelihood with penalty

∆BD
i (Di,DGi

) = (6)
qi
∑

i=i

log

(

P̂ (DGi=j
i | DGi=j

Gi
)

P (DGi=j
i | DGi=j

Gi
, ~αij)

)

.

We immediately notice that this penalty
is always positive. The complexity is data-
dependent and it is controlled by the hyper-
parameters αijk. The asymptotic behavior of
this Bayesian regret is well studied (Grünwald,
2007). However, when learning Bayesian net-
works, the data parts DGi=j

i are often very
small, which makes asymptotic result less in-
formative.

4 fNML

The factorized normalized maximum likelihood
(fNML) score is based on the normalized max-
imum likelihood (NML) distribution (Shtarkov,
1987; Rissanen, 1996). The NML distribution
for the model class M (which may or may not
be a Bayesian network) is the unique distribu-
tion solving the minimax problem

min
Q

max
D′

P̂ (D′ | M)

Q(D′ | M)
, (7)

where Q ranges over all distributions.
As originally shown by Shtarkov (1987) the

solution of the above minimax problem is given
by

PNML(D | M) =
P̂ (D | M)

∑

D′ P̂ (D′ | M)
, (8)

where the normalization is over all data sets D′

of a fixed size N . The log of the normalizing
factor is called parametric complexity or regret.

Evaluation of the normalizing sum is often
hard due to exponential number of terms in the
sum. Currently, there are tractable formulas
for only a handful of models; for examples, see
(Grünwald, 2007). In the case of a single r-ary
multinomial variable and the sample size n the
normalizing sum is given by

Cr
n =

∑

k1+k2+...+kr=n

n!

k1! k2! · · · kr!

r
∏

j=1

(

kj

n

)kj

,

(9)
where the sum goes over all non-negative inte-
ger vectors (kj)

r
j=1 that sum to n. A linear-time

algorithm for the computation of Cr
n was intro-

duced recently by Kontkanen and Myllymäki
(2007).

Given a data set D, the NML model selection
criterion proposes to choose the model M for
which the PNML(D | M) is largest. After taking
the logarithm the score is in a form of penalized
log likelihood with complexity penalty describ-
ing how well the model can fit any equal size
dataset D′.

Because of the score equivalence of the max-
imum likelihood score, the NML score is score



equivalent as well. However, it is not decom-
posable, and the parent assignment problem is
known to be NP-hard (Koivisto, 2006). Sacrific-
ing the score equivalence we propose a decom-
posable version of this score, which penalizes
the complexity locally similarly to the other de-
composable scores. Specifically, we propose the
local score

SfNML(Di,DGi
) = log PNML(Di | DGi

) (10)

= log

(

P̂ (Di | DGi
)

∑

D′

i
P̂ (D′

i | DGi
)

)

,

where the normalizing sum goes over all the
possible Di-column vectors of length N , i.e.,
D′

i ∈ {1, . . . , ri}
N .

Since equation (10) defines a (log) conditional
distribution for the data column Di, adding
these local scores together yields a total score
that defines a distribution for the whole data.
In this sense fNML can be seen as an alterna-
tive way to define the marginal likelihood for
the data

log PfNML(D | G) =

m
∑

i=1

log PNML(Di | DGi
).

At the same time, combining the local scores
yields an enumerator that equals the decom-
position of the maximum likelihood, thus the
whole score can be seen as a penalized maxi-
mum log-likelihood with local (data-dependent)
penalties

∆fNML
i (DGi

) = log
∑

D′

i

P̂ (D′
i | DGi

). (11)

The following observation follows from the
factorization of the maximum likelihood by the
parent configurations, and it is crucial for effi-
cient calculation of the local penalty term.

Theorem 1. The local penalty of fNML can be
expressed in terms of multinomial normalizing
constants

∆fNML
i (DGi

) =

qi
∑

j=1

log Cri

Nij
,

where Cri

Nij
is the normalizing constant of NML

for an ri-ary multinomial model with sample
size Nij .

The theorem follows by noting that the maxi-
mized likelihood P̂ (Di | DGi

) factorizes into in-
dependent parts according to the values of DGi

.
To conclude this section we show that asymp-

totically, and under mild regularity conditions,
the fNML score belongs to the (large) class of
BIC-like scores that are consistent. Other scores
in this class include most Bayesian and MDL
criteria. The regularity conditions required for
BIC-like behavior typically exempt a measure
zero set of generating parameters, such as the
boundaries of the parameter simplex. The fol-
lowing theorem gives sufficient conditions on the
penalty term that guarantee consistency for ex-
ponential family models.

Theorem 2 (Remark 1.2 in (Haughton, 1988)).
For (curved) exponential families, if data is gen-
erated by an i.i.d. distribution p, and the penalty
term is given by 1

2 k aN , where k is the number
of parameters and aN is a sequence of positive
real numbers, satisfying

aN/N → 0, and aN → ∞,

as N → ∞, then, symptotically, the model con-
taining p that has the least number of parame-
ters will be chosen.

Since Bayesian networks are curved exponen-
tial families (Geiger et al., 2001; Chickering,
2002), it now remains to prove that the penalty
term of fNML satisfies this property.

Theorem 3 (Asymptotically fNML behaves
like BIC). Assuming that the maximum like-
lihood parameters are asymptotically bounded
away from the boundaries of the parameter sim-
plex, the local penalty of fNML behaves as

∆fNML
i (DGi

) =
qi(ri − 1)

2
log N + O(1),

almost surely, where the O(1) term is bounded
by a constant wrt. N .

Proof. By Thm. 1, the local penalty is a
sum of logarithms of multinomial normalizing
constants. The latter is known to grow as
log Cri

Nij
= ri−1

2 log Nij +O(1), (Rissanen, 1996).
Under the assumption that the maximum like-
lihood parameters are bounded away from the



boundaries, the counts Nij grow linearly in the
total sample size N almost surely, which im-
plies that we have log Nij = log([η + o(1)]N) =
log N + O(1) with some 0 < η < 1. Adding
together the qi terms yields the result.

Since qi(ri − 1) is the number of parameters
(associated with the ith variable), the property
of Thm. 2 holds for the fNML penalty.

5 Implementation

We now provide information for practical im-
plementation of the fNML score for Bayesian
networks. Due to the decomposability of the
score the only new implementational issue for
the fNML is to calculate the terms Cr

n of the
Thm. 1. For reasonable N and R (R = max ri)
these values can be stored in an N × R table,
which can be done before structure learning.
Moreover, this table does not depend on data
or any parameters, so it can be done just once.

The calculation of the C-table with N rows
and R columns proceeds as follows. First of all,
Cr

0 = 1 for all r, and C1
n = 1 for all n. For r = 2

we can use the formula (9), which yields

C2
n =

n
∑

h=0

(

n

h

)(

h

n

)h(n − h

N

)n−h

, (12)

and for r > 2 we can use the recursion (Kontka-
nen and Myllymäki, 2007)

Cr
n = Cr−1

n +
n

r − 2
Cr−2

n . (13)

Calculating the column C2
∗ using the formula

(12) takes time O(N2), and the calculation of
the rest of the table using the formula (13) takes
just O(NK). For very large N , the complexity
of calculating the column C2

∗ may be prohibitive.
In this case a very accurate Szpankowski ap-
proximation (Kontkanen et al., 2003)

C2
n =

nπ

2
e

q

8

9nπ
+ 3π−16

36nπ (14)

can be used.
If the space for storing the table is critical,

one may just store 1000 first entries of column
C2
∗ , use Szpankowski approximation for the rest

of the column, and use formula (13) for calcu-
lating the values for r > 2.

6 Experiments

It is not obvious how to compare different crite-
ria for learning Bayesian network structures. If
the data is generated from a Bayesian network,
one might call for selecting the data generating
network, but if the generating network is com-
plex, and the sample size is small, it may be
rational to pick a simpler model.

This simplicity requirement is often backed
up by arguments about the generalization ca-
pability of the model. However, it is not always
clear how the network structure should be used
for prediction.

A softer version of discovering the generating
model is to compute a structural distance mea-
sure between the selected and the generating
network structures. A common choice is to cal-
culate an editing distance with operations such
as arc additions, deletions and reversals. Even
if we take the generating structure as a golden
standard, this approach is problematic, since
these editing operations are not independent.
For example, fixing a certain arc can lead to
several other changes to the network structure
if the selection by a score is made only among
the structures having the fixed arc present.

Despite of these problems in the empirical
testing, we conducted a golden standard exper-
iment. We first generated data from different
networks with five nodes, and then studied how
the generating network structures were ranked
among all the possible networks by different
scoring criteria.

For BDeu and fNML scores that both calcu-
late the probability P (D | G), we also compared
the scores for the real data sets. This experi-
ment can be seen as the result of a sequential
prediction competition, since by the chain rule
we can write

P (D | G) =

N
∏

i=1

P (di | G, di−1), (15)

where di is the ith data vector, and di−1 =
{d1, . . . , di−1} denotes the first i−1 vectors. The
idea follows the principle of prequential model
selection (Dawid, 1984).
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(b) Dir(1/2,. . . ,1/2) Scheme

Figure 1: The median curves for different scoring criteria as a function of sample size when the
parameters for a 5-node, 7-edge network were generated by the BDeu and Dir(1/2,. . . ,1/2) schemes.
Errorbars indicate upper and lower quartiles.

We will now explain the experiments in more
detail.

6.1 Artificial data

We first compared the ability of different scoring
criteria to discover the data generating struc-
ture. For this purpose we generated 100 differ-
ent 5-node Bayesian network structures with 4
edges and another 100 structures with 7 edges.
The variables were randomly assigned to have
2 – 4 values (ri ∈ {2, 3, 4}). For each net-
work, we generated parameters by two differ-
ent schemes. The first scheme exactly matched
the assumptions of the BDeu score with α = 1,
i.e., the parameters were distributed by θij ∼
Dir( 1

riqj
, . . . , 1

riqj
). The other scheme was to

generate the parameters independently from a
Dirichlet distribution θij ∼ Dir(1/2, . . . , 1/2).
This distribution was selected instead of the
uniform distribution in order to make the gen-
erating structure more identifiable.

For each network (structure + parameters),
we generated 100 data sets of 1000 data vec-
tors, and studied how different scoring criteria
ranked the structure of the generating network
among all the 5-node networks as a function of
(sub)sample size.

Not surprisingly, the results indicate that
when parameter generation mechanism matches
the assumptions of the BDeu-score, the BDeu

usually also ranks the generating structure
higher than the other scores (Figure 1(a)).
However, fNML usually behaves very similarly
to BDeu. The density of the network (4 vs. 7
edges) is not a very significant factor. If any-
thing, the similar behavior of fNML and BDeu
is more pronounced in networks with 7 edges.
For the parameter-free scores, AIC and BIC,
the underfitting tendency of BIC can be clearly
detected whereas AIC tends to rank the gener-
ating network higher. Qualitatively these two
scores seem to behave similarly to each other.

Switching the parameter generation scheme
to independent Dirichlets with αijk = 0.5 usu-
ally also switches the ranking ability of fNML
and BDeu, while the behavior of AIC and BIC
stays mostly unaffected. For example, Fig-
ure 1(b) was generated using the same network
structure as for Figure 1(a). Only the parame-
ter generation scheme was changed from BDeu
to Dir. For dense networks fNML often appears
as a clear winner.

6.2 Real data

Learning the structure with AIC or BIC does
not readily suggest any particular way to use
the learned structure for prediction, but the pre-
quential interpretation of the BDeu score and
the fNML allows comparison. However, the
BDeu score is known to be very sensitive to the



Table 1: Summary of the prediction experiment.

Data N m #vals α∗ BDeu1 BDeu* fNML

balance 625 5 4.6 48 -4549.06 -4445.64 -4478.36
iris 150 5 3.0 2 -452.21 -449.71 -450.90
thyroid 215 6 3.0 2 -577.52 -575.55 -572.42

liver 345 7 2.9 4 -1309.67 -1299.83 -1299.38

ecoli 336 8 3.4 8 -1715.92 -1661.34 -1643.64

abalone 4177 9 3.0 6 -15946.58 -15891.25 -15847.33

diabetes 768 9 2.9 4 -3678.57 -3662.31 -3654.02

post operative 90 9 2.9 3 -647.35 -642.98 -639.94

yeast 1484 9 3.7 6 -7938.60 -7873.21 -7848.98

breast cancer 286 10 4.3 8 -2781.62 -2737.20 -2739.34
shuttle 58000 10 3.0 3 -97635.72 -97620.78 -97714.22
tic tac toe 958 10 2.9 51 -9423.07 -9126.78 -9162.39
bc wisconsin 699 11 2.9 8 -3315.51 -3262.33 -3239.56

glass 214 11 3.3 6 -1288.93 -1255.73 -1233.18

page blocks 5473 11 3.2 3 -12455.60 -12438.01 -12410.69

heart cleveland 303 14 3.1 13 -3450.07 -3356.78 -3352.32

heart hungarian 294 14 2.6 5 -2376.53 -2348.23 -2343.65

heart statlog 270 14 2.9 10 -2867.54 -2819.37 -2814.28

wine 178 14 3.0 8 -1866.41 -1821.28 -1808.66

adult 32561 15 7.9 50 -329373.73 -326803.91 -326486.85

equivalent sample size parameter, which creates
an extra complication.

For predictive comparison we selected 20 UCI
data sets1 for which the score maximizing hy-
perparameter α has been reported (Silander
et al., 2007), and we compared the maximum
fNML scores to the maximum scores obtained
with BDeu1 (BDeu with α = 1.0) and BDeu*
(BDeu with score maximizing α). In reality,
we do not know the score maximizing α’s, and
searching structures with many α is usually
computationally too hard. Optimal structures
were obtained by the exact structure learn-
ing algorithm described in (Silander and Myl-
lymäki, 2006).

Table 1 lists for each data set the number
of data vectors N , the number of variables m,
the average number of values per variable #vals,
the BDeu maximizing equivalent sample size pa-
rameter α∗ (with integer precision), and the ac-

1 http://www.ics.uci.edu/∼mlearn/MLRepository.html

tual scores obtained with three different scoring
criteria. The score obtained with fNML is the
best of the three 14 times out of 20, and only
once BDeu1 yields higher score than fNML.

7 Conclusions

We have introduced a new probabilistic scoring
criterion, the factorized normalized maximum
likelihood, for learning Bayesian network struc-
tures from complete discrete data. The score
aims at being an efficient and parameter-free
criterion for finite sample sizes. The score is
also decomposable, which makes it possible to
use it with existing search heuristics and exact
structure learning algorithms.

Initial empirical tests are promising. We
are particularly pleased with fNML’s ability to
learn network structures with good predictive
capabilities. While lot more empirical work has
to be done, the current experiments already
show a great promise for a good and care free



scoring criterion for learning Bayesian network
structures.
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