
Complexity Results for Enumerating MPE and Partial MAP

Johan Kwisthout
Department of Information and Computer Sciences, Utrecht University

P.O. Box 80.089, 3508TB Utrecht, The Netherlands
johank@cs.uu.nl

Abstract

While the computational complexity of finding the most likely joint value assignment given
full (MPE) or partial (Partial MAP) evidence is known, less attention has been given to
the related problem of finding the k-th most likely assignment, for arbitrary values of k.
Yet this problem has very relevant practical usages, for example when we are interested in
a list of alternative explanations in decreasing likeliness. In this paper a hardness proof of
enumerating Most Probable Explanations (MPEs) and Maximum A-Priori Probabilities
(Partial MAPs) is given. We prove that finding the k-th MPE is PPP-complete, and prove
that finding the k-th Partial MAP is PPPPP

-complete.

1 Introduction

An important problem that rises from the prac-
tical usage of probabilistic networks (Jensen,
2007; Pearl, 1988) is the problem of finding the
most likely value assignment to a set of vari-
ables, given full or partial evidence. When the
evidence is equal to the entire complement of
that set in the network, the problem is known as
the Most Probable Explanation or MPE-
problem1. Finding, or even approximating,
such a value assignment is NP-hard (Shimony,
1994; Bodlaender et al., 2002; Abdelbar and
Hedetniemi, 1998). On the other hand, find-
ing the most likely value assignment, given ev-
idence for a subset of the complement set (the
Partial MAP-problem), is even harder: Park
and Darwich proved (2004) that this problem
is NPPP-complete and remains NP-complete on
polytrees.

In practical applications, one often wants to
find a number of different value assignments
with a high likeliness, rather than only the most
likely assignment (see e.g. Santos Jr. (1991)
or Charniak and Shimony (1994)). For exam-
ple, in medical applications one wants to sug-

1In the literature also denoted as Maximum Probabil-
ity Assignment (MPA) or Maximum A-posteriori Prob-
ability (MAP).

gest alternative (but also likely) explanations
to a set of observations. One might like to pre-
scribe medication that covers a number of plau-
sible causes, rather than only the most probable
cause. It may be useful to examine the second-
best explanation to gain insight in how good the
best explanation is, relative to other solutions,
or, how sensitive it is to changes in the parame-
ters of the network (Chan and Darwiche, 2006).

While algorithms exist that can sometimes
find k-th best explanations fast, once the best
explanation is known (Charniak and Shimony,
1994), it has been shown that calculating or
even approximating the k-th best explanation
is NP-hard (Abdelbar and Hedetniemi, 1998),
whether the best explanation is known or not.
Nevertheless, the exact complexity of this prob-
lem has not been established yet.

The complexity of finding k-th best assign-
ments to the Partial MAP-problem has, to
our best knowledge, not yet been investigated.
However, in many applications it is unlikely that
full evidence of the complement of the variables
of interest in the network is available. For ex-
ample, in the Oesophagus Network, a proba-
bilistic network for patient-specific therapy se-
lection for oesophageal cancer (van der Gaag
et al., 2002), a number of variables (like the

presence of haematogenous metastases or the
extent of lymph node metastases) are interme-
diate, non-observable variables. Likewise, the
ALARM network (Beinlich et al., 1989) has six-
teen observable and thirteen intermediate vari-
ables. Therefore, the problem of finding k-th
best assignments, given partial evidence, may
be even more relevant in practical applications
than the corresponding problem where full evi-
dence is available.

In this paper, we extend the problem of find-
ing the most likely value assignment to the prob-
lem of enumerating joint value assignments,
i.e., finding the k-th likely assignment for ar-
bitrary values of k, with either full or partial
evidence. We will prove that (decision variants
of) these problems are complete for the com-
plexity classes PPP and PPPPP

, respectively, sug-
gesting that these problems are much harder
than the (already intractable) restricted cases
where k = 1, and also much harder than the PP-
complete Inference problem. Furthermore,
while some problems are known to be PPP-
complete, finding the k-th Partial MAP is (to
our best knowledge) the first problem with a
practical application that is shown to be PPPPP

-
complete, making this problem interesting from
a more theoretical viewpoint as well.

This paper is organized as follows. First, in
Section 2, we will briefly introduce probabilis-
tic networks and introduce a number of con-
cepts from computational complexity theory.
We will discuss the complexity of enumerating
value assignment with full, respectively partial,
evidence in Sections 3 and 4. In Section 5 we
conclude this paper.

2 Preliminaries

A probabilistic network B = (G,Γ) is defined
by a directed acyclic graph G = (V,A), where
V = {V1, . . . , Vn} models a set of stochastic
variables and A models the (in)dependences
between them, and a set of parameter proba-
bilities Γ, capturing the strengths of the rela-
tionships between the variables. The network
models a joint probability distribution Pr(V) =∏n

i=1 Pr(vi | π(Vi)) over its variables. We will

use bold upper case letters to denote sets of vari-
ables (i.e., subsets of V) and bold lower case
letters to denote particular value assignments
to these sets. The set of observed variables (the
evidence variables) will be denoted as E, and
the observations themselves as e. We will use
Pr(v |e) as a shorthand for Pr(V = v |E = e).

The MPE-problem is the problem of find-
ing a joint value assignment v to V \ E such
that Pr(v |e) is maximal. The Partial MAP-
problem is the problem of finding a joint value
assignment v to the so-called MAP-variables
VMAP (V \ E such that Pr(v | e) is maxi-
mal.

2.1 Complexity Theory

In the remainder, we assume that the reader is
familiar with basic concepts of computational
complexity theory, such as Turing Machines, the
complexity classes P, NP, PP, #P, and com-
pleteness proofs for these classes. For a thor-
ough introduction to these subjects we refer to
textbooks like Garey and Johnson (1979) and
Papadimitriou (1994). Furthermore, we use the
concept of oracle access. A Turing Machine M
has oracle access to languages in the class A,
denoted as MA, if it can query the oracle in
one state transition, i.e., in O(1). We can re-
gard the oracle as a ‘black box’ that can an-
swer membership queries in constant time. For
example, NPPP is defined as the class of lan-
guages which are decidable in polynomial time
on a non-deterministic Turing Machine with ac-
cess to an oracle deciding problems in PP, like
the well known Inference-problem, which is
PP-complete (Littman et al., 1998).

We will frequently use the fact that #P is
polynomial-time Turing equivalent to PP (Si-
mon, 1977). Informally, this implies that a class
that uses #P as an oracle, can also be defined as
using PP and vice versa. For example, the class
NPPP is equal to the class NP#P; however, the
former notation is more common. We will use
this property frequently in our hardness proofs.

The complexity class PPP is defined as the
class of languages, decidable by a determinis-
tic Turing Machine with access to a PP ora-
cle. While PPP is less known than the related

classes NPPP and co−NPPP, complete decision
problems have been discussed in Toda (1994).
Intuitively, while NP is associated with the exis-
tence of a satisfying solution, PP with a thresh-
old of satisfying solutions, and #P with the ex-
act number of satisfying solutions, PPP is asso-
ciated with the middle satisfying solution. For
this class, the canonical complete problems Mid
SAT and Kth SAT are the problems of de-
termining whether in the lexicographically mid-
dle (k-th) satisfying assignment x1x2 . . .xn ∈
{0, 1}n to a Boolean formula φ, the least sig-
nificant bit is odd (Toda, 1994).

The complexity results in this paper are based
on function—rather than decision—problems.
While a decision problem requires a yes or no
answer (like ‘Is there a satisfying truth assign-
ment to the variables in a formula?’), a function
problem requires a construct, like a satisfying
truth assignment. Formally, traditional com-
plexity classes like P and NP are defined on deci-
sion problems, using acceptor Turing Machines.
The functional counterparts of these classes, like
FP and FNP are defined using transducer Turing
Machines; on an input x a transducer M com-
putes y if M halts in an accepting state with y
on its output tape. In our opinion, the problem
of finding the k-th solution has a more ‘natural’
correspondence with function problems than de-
cision problems and require less technical details
in our hardness proofs.

To prove PPP (or FPPP) -hardness of a par-
ticular problem, one needs to reduce it from
a known complete problem like Kth SAT. To
prove membership of PPP (FPPP), one needs to
show that it is accepted (computed) by a metric
Turing Machine. Metric Turing Machines were
defined by Krentel (1988).

Definition 1 (Metric Turing Machine). A
metric Turing Machine (metric TM for short)
is a polynomial-time bounded non-deterministic
Turing Machine such that every computation
path halts with a binary number on an out-
put tape. Let M̂ denote a metric TM, then
OutM̂(x) denotes the set of outputs of M̂ on
an input x, and KthValueM̂(x, k) is defined to
be the k-th smallest number in OutM̂(x).

Toda showed (1994), that a function f is in
FPPP if and only if there exists a metric TM
M̂ such that f is polynomial-time one-Turing
reducible2 to KthValueM̂ (f ≤FP

1−T KthValueM̂
for short). Correspondingly, a set L is in PPP if
and only if a metric TM M̂ can be constructed,
such that KthValueM̂ is odd for an input x if
and only if x ∈ L. In the remainder, we will
construct such metric TMs for the MPE- and
Partial MAP-problems to prove membership
in FPPP and FPPPPP

.

3 Enumerating MPE

In this section we will construct a FPPP-
completeness proof for the Kth MPE prob-
lem. More specifically, we show that Kth MPE
can be computed by a metric TM in polyno-
mial time (proving membership of FPPP), and
we prove hardness of the problem by a reduc-
tion from Kth SAT. We formally define the
functional3 version of Kth MPE problem as
follows.

Kth MPE
Instance: Probabilistic network B = (G,Γ),
evidence variables E with instantiation e,
natural number k.
Question: What is the k-th most probable
assignment vk to the variables in V \E given
evidence e?

The functional version of Kth SAT, the
problem that we will use in the reduction, is
defined as follows.

Kth SAT
Instance: Boolean formula φ(x1, . . . , xn),
natural number k.
Question: What is the lexicographically k-th
assignment x1 . . . xn ∈ {0, 1}n that satisfies φ?

We will use the formula φex = ((x1 ∨ ¬x2) ∧
x3)∨¬x4 as a running example. We construct a

2A function f is polynomial-time one-Turing reducible
to a function g if there exist polynomial-time computable
functions T1 and T2 such that for every x, f(x) =
T1(x, g(T2(x))) (Toda, 1994, p.5).

3Note that we can transform this functional version
into a decision variant by designating a variable Vd ∈
V \ E with vd as one of its values, and asking whether
Vd = vd in vk.

¬

∧

Vφ

X3 X4X1 X2

∨ ¬

X

V

∨

Figure 1: Example of k-th MPE construction for the
formula φex = ((x1 ∨ ¬x2) ∧ x3) ∨ ¬x4

probabilistic network Bφ from a given Boolean
formula φ in the Kth SAT-instance with n vari-
ables xi, as illustrated in Figure 1. For all vari-
ables xi in the formula φ, we create a match-
ing stochastic variable Xi in V for the network
Bφ, with possible values true (T) and false (F).
These variables are roots in the network Bφ

and are denoted as the variable instantiation
part (X) of the network. The prior probabili-
ties p1, . . . , pn for the variables X1, . . . , Xn are
chosen such that the prior probability of a par-
ticular value assignment x is higher than x′,
if and only if the corresponding truth assign-
ment to X1, . . . , Xn is lexicographically higher.
More in particular, we choose prior probabili-
ties p1, . . . , pi, . . . , pn such that pi = 1

2 −
2i−1
2n+1 .

In our example with four variables, the prob-
ability distribution will be p1 = 15

32 , p2 = 13
32 ,

p3 = 9
32 , and p4 = 1

32 ; the reader can verify that
the probability of a value assignment x is higher
than an assignment x′, if and only if the corre-
sponding truth assignment x1 . . . xn ∈ {0, 1}n

is lexicographically smaller. Note that we can
formulate these probabilities, using a number of
bits which is polynomial in the input size.

For each logical operator in φ, we create
an additional stochastic variable in the net-
work, whose parents are the corresponding sub-
formulas (or single sub-formula in case of a
negation operator) and whose conditional prob-
ability table is equal to the truth table of that
operator. For example, the variable correspond-

ing to a ∧-operator would have a conditional
probability Pr(∧ = T) = 1 if and only if both
its parents have the value true, and 0 otherwise.
We denote the stochastical variable that is asso-
ciated with the top-level operator in φ with Vφ.
The thus constructed part of the network will
be denoted as the truth-setting part (V) of the
network. It is easy to see that, for a particular
value assignment of variables Xi in the network,
Pr(Vφ = T) = 1 if and only if the corresponding
truth setting to the variables in φ satisfies φ.

Theorem 1. Kth MPE is FPPP-complete.

Proof. To prove membership, we will show that
a metric TM can be constructed for the Kth
MPE-problem. Let M̂ be a metric non-
deterministic TM that, on input B, calculates
Pr(V). Since Pr(V) =

∏n
i=1 Pr(vi | π(Vi)), M̂

calculates Pr(V | e) by non-deterministically
choosing instantiations vi, consistent with ev-
idence e, at each step i, and multiplying the
corresponding probabilities. The output is, for
each computation path, a binary representa-
tion (e.g., in fixed precision notation) of 1 −
Pr(v |e) with sufficient precision. Then, clearly
KthValueM̂ returns the k-th probable explana-
tion of Pr(V | e). This proves that Kth MPE
is in FPPP.

To prove hardness, we reduce Kth SAT to
Kth MPE. Let φ be an instance of Kth SAT
and let Bφ be the network constructed from φ
as described above. Observe that Pr(X = x |
C = T) = 0 if x represents a non-satisfying
value assignment, and Pr(X = x | C = T) is
equal to the prior probability of X = x if x rep-
resents a satisfying value assignment. Further-
more note that the values of the variables that
model logical operators are fully determined by
the values of their parents. Then, given evi-
dence C = T , the k-th MPE corresponds to the
lexicographical k-th satisfying value assignment
to the variables in φ. Thus, given an algorithm
for calculating the k-th MPE, we can solve the
Kth SAT problem as well. Clearly, the above
reduction is a polynomial-time one-Turing re-
duction from Kth SAT to Kth MPE. This
proves FPPP-hardness of Kth MPE.

Observe, that the problem remains FPPP-
complete when all nodes have indegree at most
two, and all variables are binary.

4 Enumerating Partial MAP

While the MPE-problem is complete for the
class NP (solvable by a nondeterministic TM),
Partial MAP is complete for NPPP, i.e., solv-
able by a nondeterministic TM with access to
an oracle for problems in PP. In the previous
section we have proven that the Kth MPE-
problem is complete for FPPP, thus solvable by
a metric TM. Intuitively, this suggests that the
Kth Partial MAP-problem is complete for
FPPPPP

, the class of function problems solvable
by a metric TM with access to a PP-complete
oracle. To our best knowledge, no complete
problems have been discussed for this complex-
ity class. We introduce the Kth NumSat-
problem, defined as follows.

Kth NumSAT
Instance: Boolean formula
φ(x1, . . . , xm, . . . , xn), natural numbers k, l.
Question: What is the lexicographically k-th
assignment x1 . . . xm ∈ {0, 1}m such that
exactly l assignments xm+1 . . . xn ∈ {0, 1}n−m

satisfy φ?

We will prove in the appendix that Kth

NumSAT is FPPPPP
-complete. To prove hard-

ness of Kth Partial MAP, we will use a ver-
sion of this problem with bounds on the proba-
bility of the MAP variables.

Kth Partial MAP
Instance: A probabilistic network
B = (G,Γ), evidence variables E with
instantiation e, observable variables
VMAP ⊂ V \E, natural number k, rational
numbers 0 ≤ q ≤ r ≤ 1 .
Question: What is, within the interval [q, r],
the k-th most probable assignment vk to the
variables in VMAP given evidence e?

Note that the Kth Partial MAP problem
without boundary constraints is a special case
where q = 0 and r = 1, and that we can use
binary search techniques to find a solution to

¬

∧

Vφ

X3 X4X1 X2

∨

Eφ

¬

C

E

X

V

∨

Figure 2: Example of k-th Partial MAP construction for
the formula φex = ((x1 ∨ ¬x2) ∧ x3) ∨ ¬x4, with MAP
variables x1 and x2

the bounded problem variant, using an algo-
rithm for the unbounded problem variant, so
we can transform a bounded problem variant
into an unbounded problem variant in poly-
nomial time, and vice versa. However, using
the bounded problem formulation facilitates our
hardness proof.

We will prove FPPPPP
-completeness of Kth

Partial MAP by a reduction from Kth Num-
SAT. We will again use the formula φex =
((x1∨¬x2)∧x3)∨¬x4 as a running example (see
Figure 2). We want to find the lexicographically
k-th assignment to {x1, x2} such that exactly l
instantiations to {x3, x4} satisfy φex.

As in the previous section, we construct
a probabilistic network Bφ from a given
Kth NumSAT instance φ(x1, . . . , xm, . . . , xn).
Again, we create a stochastical variable Xi

for each variable xi in φ, but now with uni-
form probability. We denote the variables
Xi, . . . , Xm as the variable instantiation part
(X). These variables are the MAP variables in
our k-th Partial MAP construction. For each
logical operator in φ, we create additional vari-
ables in the network as in the previous section,
with Vφ as variable associated with the top level
operator in φ. Observe that, for a particu-
lar value assignment vk to the MAP variables

{X1, . . . , Xm}, Pr(Vφ = T) = l
n−m , where l is

the number of value assignments to the variables
{Xm+1, . . . , Xn} that satisfy φ.

Furthermore, we construct a enumeration
part (E) of the network by constructing a
log n-deep binary tree with the MAP vari-
ables X1, . . . , Xm as leafs and additional vari-
ables Ep,q, each with possible values true and
false. Without loss of generality, we assume
that the number of leafs is a power of two
(we can use additional dummy variables). A
variable Ep,1 has parents X2p−1 and X2p; vari-
ables Ep,q(q > 1) have parents E2p−1,q−1 and
E2p,q−1. Let π(Ep,q) = {X2p−1, X2p}, respec-
tively {E2p−1,q−1, E2p,q−1} denote the parent
configuration for Ep,1 and Ep,q(q > 1). Then
the conditional probability table for Ep,q is de-
fined as follows:

Pr(Ep,q = T |π(Ep,q) = {T, T}) = 0
Pr(Ep,q = T |π(Ep,q) = {T, F}) = 1

2p+n−m+1

Pr(Ep,q = T |π(Ep,q) = {F, T}) = 2
2p+n−m+1

Pr(Ep,q = T |π(Ep,q) = {F, F}) = 3
2p+n−m+1

The root of this tree will be denoted as Eφ. In
the example network, there are only two MAP
variables (m = 2) so Eφ = E1,1 with prob-
abilities Pr(Eφ = T) = 0, 1

16 ,
2
16 , and 3

16 for
the value assignments {T, T}, {T, F}, {F, T}
and {F, F}, respectively. Note that the above
construct ensures that lexicographically smaller
value assignments to the MAP variables, lead
to a higher probability Pr(Eφ = T), but that
this probability is always less than 1

2n−m .
We add an additional variable C with par-

ents Vφ and Eφ, with the following conditional
probability table:

Pr(C = T) =

1 if Vφ = T ∧ Eφ = T
1
2 if Vφ = T ∧ Eφ = F
1
2 if Vφ = F ∧ Eφ = T
0 if Vφ = F ∧ Eφ = F

We now have, that for a particular instan-
tiation to the MAP variables, the probability
Pr(C = T) is within the interval [l

2n−m ,
l+1

2n−m],
where l denotes the number of value assign-
ments to the variables Xm+1, . . . , Xn that make
φ true.

Theorem 2. Kth Partial MAP is FPPPPP
-

complete.

Proof. The FPPPPP
membership proof is very

similar to the FPPP membership proof of the
Kth MPE-problem, but now we use an oracle
for Exact Inference (which is #P-complete,
see Roth (1996)) to compute the probability of
the assignment vk. If it is within the interval
[q, r], we output 1 minus that probability; if not,
we output 1. Note that we really need the oracle
to perform this computation since we need to
marginalize on vk. Clearly, KthValueM̂ returns
the k-th Partial MAP, and this proves that Kth

Partial MAP is in FPPPPP
.

To prove hardness, we construct a prob-
abilistic network Bφ from a given instance
φ(x1, . . . , xm, . . . , xn), similar to the previous
section. The conditional probabilities in the
thus constructed network ensure that the prob-
ability of a value assignment vk to the variables
{X1, . . . , Xm} such that l value assignments to
the variables {Xm+1, . . . , Xn} satisfy φ, is in the
interval [l

2n−m ,
l+1

2n−m]. Moreover, Pr(C = T |
xk) > Pr(C = T | x′k) if the truth value that
corresponds with xk is lexicographically smaller
than x′k. Thus, with evidence C = T and ranges
[l
2n−m ,

l+1
2n−m], the k-th Partial MAP corresponds

to the lexicographical k-th truth assignment to
the variables x1 . . .xm for which exactly l truth
assignments to xm+1 . . .xn satisfy φ. Clearly,
the above reduction is a polynomial-time one-
Turing reduction from Kth NumSAT to Kth

Partial Map. This proves FPPPPP
-hardness

of Kth Partial MAP.

Observe again, that the problem remains
FPPPPP

-complete when the MAP-variables have
no incoming arcs, when all nodes have indegree
at most two, and all variables are binary.

5 Conclusion

In this paper, we have addressed the compu-
tational complexity of finding the k-th MPE
or k-th Partial MAP. We have shown that the
Kth MPE-problem is PPP-complete, making
it considerably harder than both MPE (which

is NP-complete) and Inference (which is PP-
complete). The computational power (and thus
the intractability of Kth MPE) of PPP is il-
lustrated by Toda’s theorem (1991) that states
that PPP includes the entire Polynomial Hier-
archy. Yet finding the k-th MPE is arguably
easier than finding the most probable explana-
tion given only partial evidence (the Partial
MAP-problem) which is NPPP-complete. More-
over, when inference can be done in polynomial
time (such as in polytrees) then we can find the
k-th MPE in polynomial time (Sy, 1992; Srini-
vas and Nayak, 1996).

Finding the k-th Partial MAP, on the other
hand, is considerably harder. We have shown
that this problem is PPPPP

-complete in gen-
eral. Park and Darwiche (2004) show that the
Partial MAP-problem remains NP-complete
on polytrees, using a reduction from 3SAT4.
Their proof can be easily modified to reduce
Kth Partial MAP on polytrees from the PPP-
complete problem Kth 3SAT (Toda, 1994),
hence finding the k-th Partial MAP on poly-
trees remains PPP-complete. Nevertheless, the
approach of Park and Darwiche (2004) for ap-
proximating Partial MAP may be extended
to find the k-th Partial MAP as well.

For small or fixed k, these problems may be
easier, depending on the exact problem formu-
lation5. For example, it may be the case that
Kth MPE is fixed-parameter tractable, i.e. an
algorithm exists for Kth MPE which has a run-
ning time, exponentially only in k.

Acknowledgements

This research has been (partly) supported by
the Netherlands Organisation for Scientific Re-
search (NWO).
The author wishes to thank Hans Bodlaender
and Gerard Tel for their insightful comments on
earlier drafts of this paper, and Leen Torenvliet
for discussions on the Kth NumSAT problem.

4Technically, they reduce Partial MAP from MAX
SAT to preserve approximation results.

5The problem ‘Are there at least k value assign-
ments with a probability at least q’ is trivially in NP
for k ≤ log n, but when we want to know whether there
are exactly k such assignments the problem may be con-
siderable harder.

References

A. M. Abdelbar and S. M. Hedetniemi. 1998.
Approximating maps for belief networks is NP-
hard and other theorems. Artificial Intelligence,
102:21–38.

I. Beinlich, G. Suermondt, R. Chavez, and
G. Cooper. 1989. The ALARM monitoring sys-
tem: A case study with two probabilistic infer-
ence techniques for belief networks. In Proceed-
ings of the Second European Conference on AI
and Medicine, pages 247–256.

H. L. Bodlaender, F. van den Eijkhof, and L. C.
van der Gaag. 2002. On the complexity of the
MPA problem in probabilistic networks. In Pro-
ceedings of the Fifteenth European Conference on
Artificial Intelligence, pages 675–679.

H. Chan and A. Darwiche. 2006. On the robustness
of most probable explanations. In Proceedings of
the 22nd Conference on Uncertainty in Artificial
Intelligence, pages 63–71.

E. Charniak and S. E. Shimony. 1994. Cost-based
abduction and map explanation. Artificial Intel-
ligence, 66(2):345–374.

S. A. Cook. 1971. The complexity of theorem prov-
ing procedures. In Annual ACM Symposium on
Theory of Computing, pages 151–158.

M. R. Garey and D. S. Johnson. 1979. Comput-
ers and Intractability. A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., San
Francisco.

F. V. Jensen. 2007. Bayesian Networks and De-
cision Graphs. Berlin: Springer Verlag, second
edition.

M. W. Krentel. 1988. The complexity of optimiza-
tion problems. Journal of Computer and System
Sciences, 36:490–509.

M. L. Littman, J. Goldsmith, and M. Mundhenk.
1998. The computational complexity of proba-
bilistic planning. Journal of Artificial Intelligence
Research, 9:1–36.

C. H. Papadimitriou. 1994. Computational Com-
plexity. Addison-Wesley.

J. D. Park and A. Darwiche. 2004. Complexity
results and approximation settings for MAP ex-
planations. Journal of Artificial Intelligence Re-
search, 21:101–133.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, Palo Alto.

D. Roth. 1996. On the hardness of approximate rea-
soning. Artificial Intelligence, 82(1-2):273–302.

E. Santos Jr. 1991. On the generation of alternative
explanations with implications for belief revision.
In Proceedings of the Seventh Conference on Un-
certainty in Artificial Intelligence, pages 339–347.

S. E. Shimony. 1994. Finding MAPs for be-
lief networks is NP-hard. Artificial Intelligence,
68(2):399–410.

J. Simon. 1977. On the difference between one and
many. In Proceedings of the Fourth Colloquium
on Automata, Languages, and Programming, vol-
ume 52 of LNCS, pages 480–491. Springer-Verlag.

S. Srinivas and P. Nayak. 1996. Efficient enumer-
ation of instantiations in Bayesian networks. In
Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence, pages 500–
508.

B.K. Sy. 1992. Reasoning MPE to multiply con-
nected belief networks using message-passing. In
Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 570–576.

S. Toda. 1991. PP is as hard as the polynomial-
time hierarchy. SIAM Journal of Computing,
20(5):865–877.

S. Toda. 1994. Simple characterizations of P(#P)
and complete problems. Journal of Computer and
System Sciences, 49:1–17.

J. Torán. 1991. Complexity classes defined
by counting quantifiers. Journal of the ACM,
38(3):752–773.

L. C. van der Gaag, S. Renooij, C. L. M. Witteman,
B. M. P. Aleman, and B. G. Taal. 2002. Prob-
abilities for a probabilistic network: a case study
in oesophageal cancer. Artificial Intelligence in
Medicine, 25:123–148.

Appendix

In Section 4 we reduced Kth NumSAT to
Kth Partial MAP. Here we show that Kth
NumSAT is FPPP#P

-complete, and thus also
FPPPPP

-complete.

Kth NumSAT
Instance: Boolean formula
φ(x1, . . . , xm, . . . , xn), natural numbers k, l.
Question: What is the lexicographically k-th
assignment x1 . . .xm ∈ {0, 1}m such that
exactly l assignments xm+1 . . .xn ∈ {0, 1}n−m

satisfy φ?

The hardness proof of Kth NumSAT is
based on the FPPP-hardness proof of Kth
SAT by Toda (1994), and uses a result by
Torán (1991) that states that the Counting Hi-
erarchy (and thus PPP#P

in particular) is closed
under polynomial time many-one reductions
(and consequently, the functional counterpart
FPPP#P

is closed under polynomial time one-
Turing reductions). Thus, any computation in
FPPP#P

can be modeled by a metric TM that
calculates a bit string q based on its input x,
then queries its #P oracle and writes down a
number based on q and the result of the oracle,
thus only querying the oracle once.

Theorem 3. Kth NumSAT is FPPP#P
-

complete.

Proof. Since Toda’s proof (Toda, 1994) rela-
tivizes, a function f is in FPPP#P

if there ex-
ists a metric TM M̂ with access to an oracle
for #P-complete problems such that f ≤FP

1−T

KthValueM̂. It is easy to see that a metric
TM, that nondeterministically computes a sat-
isfying assignment to x1 . . .xm (using an oracle
for counting the number of satisfying assign-
ments to xm+1 . . .xn), and writing the binary
representation of this assignment on its output
tape, suffices.

To prove hardness, let M̂ be a metric TM
with a #P oracle. Given an input x to M̂,
we can construct (using Cook’s theorem (1971))
a tuple of two Boolean formulas (φx(q), ψx(r))
such that φx is true if and only if q specifies a
computation path of M̂ that is presented to the
#P oracle, which returns the number l of satis-
fying instantiations to ψx(r), such that F (q, l) is
the output of M̂. Since the computation path
that computes q is uniquely determined, q is
the k-th satisfying assignment to φx for which
l instantiations to r satisfy ψx(r), if and only if
F (q, l) is the k-th output of M̂. Thus, we can
construct a ≤FP

1−T -reduction from every function
accepted by a metric TM with access to a #P
oracle to Kth NumSAT.

