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Abstract

Probabilistic and graphical independence models both satisfy the semi-graphoid axioms,
but their respective modelling powers are not equal. For every graphical independence
model that is represented by d-separation in a directed acyclic graph, there exists an
isomorphic probabilistic independence model, i.e. it has exactly the same independence
statements. The reverse does not hold, as there exists probability distributions for which
there is no perfect map. We investigate if a given probabilistic independence model can
be augmented with latent variables to a new independence model that is isomorphic with
a graphical independence model of a directed acyclic graph. The original independence
model can then be viewed as the marginal of the model with latent variables. We show
that for some independence models we need infinitely many latent variables to accomplish
this.

1 Introduction

Probabilistic models in artificial intelligence are
typically built on the semi-graphoids axioms of
independence. These axioms in fact are ex-
ploited explicitly in probabilistic graphical mod-
els, where independence is captured by topo-
logical properties, such as separation of vertices
in an undirected graph or d-separation in a di-
rected graph. A graphical representation with
directed graphs for use in a decision support
system has the advantage that it allows an intu-
itive interpretation by domain experts in terms
of influences between the variables.

Ideally a probabilistic model is represented as
a graphical model in a one-to-one way, that is,
independence in the one representation implies
independence in the other representation. The
probabilistic model then is said to be isomorphic
with the graphical model, and vice versa. Pearl
and Paz (1987) established a set of sufficient
and necessary conditions under which a proba-
bilistic model is isomorphic with an undirected
graph. In this paper we shall not consider rep-
resentations of independence with undirected
graphs, but focus on directed representations.
Contrary to undirected graphs directed graphs

allow the representation of induced dependen-
cies: if a specific independence has been estab-
lished given some evidence, it is possible that
this independence becomes invalid if more ev-
idence is obtained. Pearl (1988) gave a set of
necessary conditions for directed graph isomor-
phism. To the best of our knowledge there is no
known set of sufficient conditions.

Pearl (1988) also shows how a particular in-
dependence model that is not isomorphic with a
directed graphical model, can be made isomor-
phic by the introduction of an auxiliary vari-
able. In Pearl the isomorphism is then estab-
lished by conditioning on the auxiliary variable.
In this paper we choose a different approach.
We extend the model with auxiliary variables
to a directed graph isomorph and we then take
the marginal over the original variables of this
extended model. For this we introduce the con-
cept of the marginal of a formal independence
model. The model with auxiliary variables can
then be considered as a latent perfect map. We
show that it is possible to establish isomorphism
in this manner, but that we may need an infi-
nite number of auxiliary variables to accomplish
this. We also show that there exists a proba-
bilistic independence model that needs infinitely



many latent variables.
This paper is organised as follows. In

Section 2 we briefly review probabilistic and
graphical independence models, and the semi-
graphoid properties of these models. In Sec-
tion 3 we introduce the concept of marginals of
an independence model and latent perfect maps.
In Section 4 we discuss the existence of latent
perfect maps, and in Section 5 we wrap up with
conclusions and recommendations.

2 Preliminaries

In this section, we provide some preliminaries on
probabilistic independence models as defined by
conditional independence for probability distri-
butions, graphical independence models as de-
fined by d-separation in directed acyclic graphs,
and formal independence models that capture
the properties that probabilistic and graphical
model have in common.

2.1 Conditional independence models

We consider a finite set of distinct symbols
V = {V1, . . . , VN}, called the attributes or vari-
able names. With each variable Vi we associate
a finite domain set Vi, which is the set of possi-
ble values the variable can take. We define the
domain of V as V = V1 × · · · × VN , the Carte-
sian product of the domains of the individual
variables.

A probability measure over V is defined by
the domains Vi, i = 1, . . . , N , and a probabil-
ity mapping P : V → [0, 1] that satisfies the
three basic axioms of probability theory (Kol-
mogorov, 1950).

For any subset X = {Vi1 , . . . , Vik} ⊂ V , for
some k ≥ 1, we define the domain X of X as
X = Vi1 × · · · Vik . For a probability mapping P
on V we define its marginal mapping over X,
denoted by PX , as

PX(x) =
∑ {

P (x, y)
∣∣∣ y ∈ ×

{i |Vi 6∈X}
Vi

}
for x ∈ X . By definition P V ≡ P and P ∅ ≡ 1.

We denote the set of ordered triplets (X, Y |Z)
for disjoint subsets X, Y and Z of V as T (V ).
We shall use the notation I(X, Y |Z) to indicate

(X, Y |Z) ∈ I, for any ternary relation I on V .
For simplicity of notation we will often write
XY to denote the union X ∪ Y , for X, Y ⊂ V .
To avoid complicated notation we also allow Xy
to denote X ∪ {y}, for X ⊂ V and y ∈ V .

Definition 1 (Conditional independence). Let
X, Y and Z be disjoint subsets of V , with do-
mains X , Y, and Z, respectively. The sets X
and Y are defined to be conditionally indepen-
dent under P given Z, if for every x ∈ X , y ∈ Y
and z ∈ Z, we have

PXY Z(x, y, z) · PZ(z) = PXZ(x, z) · P Y Z(y, z)

Definition 2. Let V be a set of variables and P
a distribution on V . The probabilistic indepen-
dence model IP of P is defined as the ternary
relation IP on V for which IP (X, Y |Z) if and
only if X and Y are conditionally independent
under P given Z.

If no ambiguity can arise we may omit the
reference to the probability measure and just
refer to the probabilistic independence model.

2.2 Graphical independence models in
directed acyclic graphs

We first introduce the standard concepts of
blocking and d-separation in directed graphs.

We consider a directed acyclic graph (DAG)
G = (V,A), with V the set of vertices and
A the set of arcs. A path s in G of length
k − 1 from a vertex Vi1 to Vi2 is a k-tuple
s = (W1,W2, . . . ,Wk) with Wi ∈ V for i =
1, . . . , k, W1 = Vi1 , Wk = Vi2 and for each
i = 1, . . . , k − 1 either (Wi,Wi+1) ∈ A or
(Wi+1,Wi) ∈ A. Without loss of generality we
assume that a path has no loops, so there are no
duplicates in {W1, . . . ,Wk}. We define a path s
to be unidirectional if all the arcs in s point in
the same direction. More specifically, we define
s = (W1,W2, . . . ,Wk) to be a descending path
if (Wi,Wi+1) ∈ A, for all i = 1, . . . , k − 1. A
descending path is unidirectional.

Definition 3. Let Z be a subset of V . We say
that a path s is blocked in G by Z, if s contains
three consecutive vertices Wi−1, Wi, and Wi+1

for which one of the following conditions hold:



• Wi−1 ←Wi →Wi+1, and Wi∈Z,

• Wi−1 →Wi →Wi+1, and Wi∈Z,

• Wi−1 ←Wi ←Wi+1, and Wi∈Z,

• Wi−1 → Wi ← Wi+1, and σ(Wi) ∩ Z =
∅, where σ(Wi) consists of Wi and all its
descendants.

We refer to the first three conditions as blocking
by presence, and the last condition as blocking
by absence. We refer to node Wi in the last
condition as a converging or colliding node on
the path.

While the concept of blocking is defined for
a single path, the d-separation criterion applies
to the set of all paths in G.

Definition 4. Let G = (V,A) be a DAG, and
let X, Y and Z be disjoint subsets of V . The
set Z is said to d-separate X and Y in G, if
every path s between any variable x ∈ X to
any variable y ∈ Y is blocked in G by Z.

Based on the d-separation criterion we can
define the notion of a graphical independence
model.

Definition 5. Let G = (V,A) be a DAG. The
graphical independence model IG defined by G
is a ternary relation on V such that IG(X, Y |Z)
if and only if Z d-separates X and Y in G.

2.3 Formal independence models

Both a probabilistic independence model on a
set of variables V and a graphical independence
model on a DAG G = (V,A) define a ternary
relation on V . In fact we can capture this in a
formal construct of an independence model.

Definition 6. A formal independence model on
a set V is a ternary relation on V .

Both probabilistic and graphical indepen-
dence models satisfy a set of axioms of indepen-
dence. A special class within the set of formal
independence models is defined based on these
axioms.

Definition 7. A ternary relation I on V is
a semi-graphoid independence model, or semi-
graphoid for short, if it satisfies the following
four axioms:

A1: I(X, Y |Z)⇒ I(Y, X|Z),

A2: I(X, Y W |Z)⇒ I(X, Y |Z) ∧ I(X, W |Z),

A3: I(X, Y W |Z)⇒ I(X, Y |ZW ),

A4: I(X, Y |Z)∧I(X, W |ZY )⇒ I(X, Y W |Z).

for all disjoint sets of variables W,X, Y, Z ⊂ V .
The axioms convey the idea that learning

irrelevant information does not alter the rele-
vance relationships among the other variables
discerned. The four axioms are termed the sym-
metry (A1), decomposition (A2), weak union
(A3) and the contraction axiom (A4), respec-
tively.

The axioms were first introduced by
Dawid (1979) for probabilistic conditional
independence. These properties were later in-
troduced in artificial intelligence as properties
of separation in graphs by Pearl and Paz (1987)
and Pearl (1988), and are since known as the
semi-graphoid properties.

In the formulation that we have used so far
we can allow X and Y to be empty, which leads
to the so-called trivial independence axiom:

A0: IP (X, ∅|Z),

This axiom trivially holds for both probabilistic
independence and graphical independence.

An axiomatic representation allows us to de-
rive qualitative statements about conditional in-
dependence, which may not be immediate from
a numerical representation of probabilities. It
also enables a parsimonious specification of an
independence model, since it is sufficient to enu-
merate the so-called dominating independence
statements, from which all other statements can
be derived by application of the axioms (Stu-
dený, 1998).

2.4 Graph-isomorph

Since both probabilistic independence models
and graphical independence models satisfy the
semi-graphoid axioms, it is interesting to in-
vestigate whether they have equal modelling
power. Can any probabilistic independence
model also be represented by a graphical model,
and vice versa? For this we introduce the no-
tions of I-maps and P-maps.



Definition 8. Let I be an formal independence
model on V, and G = (V,A) a DAG that defines
through d-separation a graphical independence
model IG on V .

1. The graph G is called an independence
map, or I-map for short, for I, if for all dis-
joint X, Y , Z ⊂ V we have: IG(X, Y |Z)⇒
I(X, Y |Z). If G is an I-map for I, and
deleting any arc makes G cease to be an
I-map for I, then G is called a minimal I-
map for I.

2. The graph G is called a perfect map, or P-
map for short, for I, if for all disjoint X, Y ,
Z ⊂ V we have: I(X, Y |Z)⇔ IG(X, Y |Z),

Definition 9 (DAG-isomorph). An indepen-
dence model I on V is said to be a DAG-
isomorph, if there exists a graph G = (V,A)
that is a perfect map for I.

Since a graphical independence model satis-
fies the semi-graphoid axioms, a DAG-isomorph
has to be a semi-graphoid itself. Being a semi-
graphoid is not a sufficient condition for DAG-
isomorphism, however. To the best of our
knowledge there does not exists a sufficient set
of conditions, although Pearl (1988) presents a
set of necessary conditions.

Some results from literature describe the
modelling power of the independence models of
the previous sections. Concerning the relation-
ship between probabilistic and graphical mod-
els Geiger and Pearl (1990) show that for every
DAG graphical model there exists a probabil-
ity model for which that particular DAG is a
perfect map. The reverse does not hold, there
exists probability models for which there is no
DAG perfect map (Pearl, 1988).

In (Studený, 1989) it is shown that the semi-
graphoid axioms are not complete for proba-
bilistic independence models. Studený derives a
new axiom for probabilistic independence mod-
els that is not implied by the semi-graphoid ax-
ioms. He also shows in (Studený, 1992) that
probabilistic independence models cannot be
characterized by a finite set of inference rules.

3 Marginal of an isomorph

Pearl (1988) presents a set of necessary condi-
tions for a formal independence model to be a
DAG-isomorph. The conditions are based on
properties of d-separation in DAG’s. One of
the conditions that is not already implied by the
semi-graphoid axioms is the so-called chordality
condition:

I(x, y|zw) ∧ I(z, w|xy)⇒ I(x, y|z) ∨ I(x, y, w)

for all x, y, z, w ∈ V . Pearl shows in (Pearl,
1988, Section 3.3.3) by example how condition-
ing on an auxiliary variable can be used to dis-
pose of this chordality condition. In his example
the independence model is not DAG-isomorph,
but there exists a DAG with one extra vari-
able, that, when conditioned on the auxiliary
variable, is isomorphic with the independence
model.

In this paper we choose a different approach
where we introduce an auxiliary variable with-
out conditioning to create a DAG that is a P-
map for an independence model. We formulate
this in the following definition.

Definition 10. Let I be an independence
model on a set of variables V , and let A be a
subset of V . We define the marginal of I on A,
denoted by IA, as IA = I ∩ T (A).

We can now define a marginal version of
DAG-isomorphism.

Definition 11 (DAG-isomorph marginal). Let
V be a set of variables, and I an independence
model on V . We say that I is a DAG-isomorph
marginal, if there exists a finite set of variables
V ⊇ V , an independence model I on V and a
DAG G = (V ,A), such that G is a P-map for
I and IV = I. We then say that G is a latent
P-map of I.

As an example we present the variable set
V = {V1, V2, V3, V4} and the formal indepen-
denence model I on V defined by the following
non-trivial independence statements (and their
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Figure 1: G1, a minimal I-map for I

symmetric equivalents):

(S1) : I(V1, V2|∅) (S2) : I(V1, V2|V3)
(S3) : I(V2, V3|∅) (S4) : I(V1, V4|∅)
(S5) : I(V1, V2|V4) (S6) : I(V2, V3|V1)
(S7) : I(V1, V4|V2)

The DAG G1 = (V,A) defined on the variables
V as depicted in Figure 1, is a minimal I-map
for I, since the non-trivial graphical indepen-
dence statement that can be derived from the
DAG correspond to the statements (S1), (S2),
(S3), and (S6). It is not a P-map for I, since
the statements (S4), (S5), and (S7) are not re-
flected as graphical independence statements in
G1. An alternative minimal I-map is G2, as de-
picted in Figure 2. According to Dawid and
Studený (1999, Lemma 5.1) there does not ex-
ist a P-map for I on V , although I satisfies
the necessary conditions for DAG-isomorphism
of Pearl (1988).

We can, however, construct a DAG G on a
superset V of V for which the corresponding
graphical independence model IG satisfies all
the independence statements (S1)–(S7). This
DAG is depicted in Figure 3. It has an ex-
tra, latent, variable V0. The graphical inde-
pendence model IG satisfies more independence
statements than (S1)–(S7), like for instance
IG(V1, V2|V0). There are, however, no new inde-
pendence statements IG(X, Y |Z) in IG for sub-
sets X, Y , Z ⊂ V , other than (S1)–(S7). All
new independence statements involve the latent
variable V0 in one of the arguments. By Defini-
tion 10 I in the example above is the marginal
of IG on V , and G is a latent P-map of I.

For the example we have from Geiger and
Pearl (1990) that there exists a probability dis-
tribution P on V that has G of Figure 3 as a
perfect map. The structure of G implies that P

V1

V3 V4

V2

Figure 2: G2, a minimal I-map for I

V1

V3 V4

V2V0

Figure 3: G, a latent P-map for I

factorises as:

P (v0, v1, v2, v3, v4) =
p0(v0) p1(v1) p2(v2) p3(v3|v0v1)p4(v4|v0v2)

for some functions p1, . . . , p4. It can be shown
that the DAG’s G1 and G2 are minimal I-maps
for the marginal distribution of P on V . G1

corresponds to a factorisation of P as:

P (v1, v2, v3, v4) =
p1(v1) p2(v2) p′3(v3|v1) p′4(v4|v1v2v3)

(1)

and G2 corresponds to a factorisation of P as:

P (v1, v2, v3, v4) =
p1(v1) p2(v2) p′′3(v3|v1v2v4) p′′4(v4|v2)

(2)

In the example we thus have a probability distri-
bution P and the corresponding independence
model IP on V that is not DAG-isomorphic,
but it is the marginal of a distribution P that
corresponds to a DAG-isomorphic probabilistic
independence model.

For a probability measure we can now present
a refined definition of DAG-isomorph marginal
based on the probabilistic notion of a marginal.

Definition 12 (P-DAG-isomorph marginal).
Let V be a set of variables, P a probability
measure on V . We say that P is a P-DAG-
isomorph marginal, if there exists a finite set of
variables V = {V 1, . . . , V N} ⊇ V with domains
V i, i = 1, . . . , N , a DAG G = (V ,A), and a
probability measure P on V , such that



• The domains of the variables Vi in V for P
are the same as for P ,

• The marginal distribution P
V of P over V

is equal to P ,

• G is a perfect map for P .

The following lemma shows the relationship
between Definitions 11 and 12.

Lemma 1. Let V be a set of variables, P a
probability measure with probabilistic indepen-
dence model IP , and P a probability measure as
in Definition 12. If we let IP denote the proba-
bilistic independence model of P , then IV

P
= IP .

Proof. Let X, Y and Z be disjoint subsets of V ,
then the following holds:

IP (X, Y |Z)

⇔ P (X, Y, Z)P (Z) = P (X, Z)P (Y, Z)

⇔ P
V (X, Y, Z)P V (Z) = P

V (X, Z)P V (Y, Z)

⇔ P (X, Y, Z)P (Z) = P (X, Z)P (Y, Z)

⇔ IP (X, Y |Z)

4 Existence of a latent perfect map

Weak transitivity and chordality are necessary
conditions for DAG-isomorphism and therefore
they must also be valid properties for DAG-
isomorph marginals. This implies that any in-
dependence model that does not satisfy any of
these two properties, is not a DAG-isomorph
marginal. In the example of the previous
section, which satisfies weak transitivity and
chordality, we were able to construct a latent
perfect map for the given independence model.
In this section we show that a latent perfect map
does not always exists, even if the independence
model satisfies all Pearl’s necessary conditions
for a DAG-isomorph. The main result is cap-
tured in the following theorem.

Theorem 1. There exists an independence
model that satisfies the necessary conditions for
DAG-isomorphism and has no latent P-map.

We shall prove Theorem 1 by showing that
there is no latent perfect map for the following
independence model.

Definition 13. Let V = {B,C,D,E} and let
I∗ be the independence model on V , that con-
sists of the following three non-trivial indepen-
dent statements (and their symmetric equiva-
lents):

(T1) : I∗(B,E|CD)
(T2) : I∗(C,E|∅)
(T3) : I∗(C,D|B)

It is a straight-forward exercise to verify that
I∗ is indeed a semi-graphoid. Application of the
semi-graphoid axioms on (T1)–(T3) does not
yield any new non-trivial independence state-
ments. Moreover, I∗ satisfies Pearl’s necessary
conditions for DAG-isomorphism.

We prove by contradiction that I∗ is not a
DAG-isomorph marginal. The steps in the proof
are summarized in the following four lemmas.

Lemma 2. Assume that I∗, as defined in Def-
inition 13, is a DAG-isomorph marginal and G
is a latent P-map for I∗, then there exists at
least one path in G from C to E that is neither
blocked by B nor by D.

Proof. By contradiction: assume that there are
no paths in G between C and E. C and E
are then d-separated by any subset of V , which
contradicts, for instance, ¬I∗(C,E|BD).

Assume that all paths in G between C and
E are blocked by B or D. Since there is at
least one path in G from C to E, this again
contradicts ¬I∗(C,E|BD).

Lemma 3. Assume that I∗, as defined in Defi-
nition 13, is a DAG-isomorph marginal, G is a
latent P-map for I∗, and s is a path in G from
C to E, then s has at least one converging node.

Proof. Let s be a path from C to E. Due to
I∗(C,E|∅) s must be blocked by ∅, which im-
plies that s has a converging node.

Lemma 4. Assume that I∗, as defined in Def-
inition 13, is a DAG-isomorph marginal, G is
a latent P-map of I∗, s a path in G from C to
E that is neither blocked by B nor by D, and
let F be a converging node on s, then D ∈ σ(F )
and B ∈ σ(F ). Moreover every descending path
from F to D is blocked by B.



Proof. If there exists a converging node F on
s for which B 6∈ σ(F ) or D 6∈ σ(F ), then the
path s would be blocked by B or D , which is
in contradiction with the definition of s.

Let F be a converging node on s. Since D ∈
σ(F ), there exists a descending path s1 from F
to D. We now construct a new path s2 from C
to D by concatenating the subpath of s between
C and F with s1. Due to I∗(C,D|B) this path
must be blocked by B. It cannot be blocked
by B on the segment between C and F , since
then also the original path s would be blocked
by B. Therefore s2 must be blocked by B on
the subpath s1. Since s1 is descending, it is
unidirectional. Therefore B must lie on s1 and
s1 is blocked by B.

Lemma 5. Assume that I∗, as defined in Def-
inition 13, is a DAG-isomorph marginal, G is
a latent P-map of I∗, s is a path in G from C
to E that is neither blocked by B nor by D. For
any converging node F on s there is also a sec-
ond converging node on the subpath of s between
F and E.

Proof. Let F be a converging node on s, which
exists due to Lemma 3. From Lemma 4 we have
that any descending path from F to D has B
on it. At least one such path, say s1, must ex-
ist, since B 6= D, so D cannot be equal to the
converging node F . We now construct a path
s3 from B to E by concatenating the reverse of
the part of subpath s1 between B and F with
the subpath of s between F and E (see also
Figure 4).

Now s3 is a path from B to E via F . Due
to I∗(B,E|CD), this path s3 must be blocked
by CD. Since s1 is descending and thus unidi-
rectional, the first part of s3 between B and F
is unidirectional. D is not on this subpath, so
it cannot be blocked by D. The second part of
s3 between F and E cannot be blocked by D,
since it is part of the original path s and s is not
blocked by D. In path s3 the node F , where the
two subpaths join, is not a converging node, so
we conclude that s3 cannot be blocked by D.
This implies that s3 must be blocked by C.

There are two possibilities for C to block s3.
The first possibility is that C blocks s3 by pres-

C

B

D

EF

s

s
1

s
3

s
2

Figure 4: The paths used in the proofs of Lem-
mas 4 and 5

ence on the (unidirectional) subpath s1 between
B and F . If this is the case, then we can con-
struct a new path s4 from C to E, by dropping
from s3 the first part between B and C. This
new path s4 consists of a unidirectional path
between C and F , that has neither B nor D on
it. The second part of the path, between F and
E, is the segment of the original path s. Since
F is not a converging node on s4 and s is not
blocked by B nor D, we conclude that s4 is also
not blocked by B nor by D. From Lemma 3 we
conclude that s4 must have a converging node,
which can lie only between F and E. There-
fore this converging node must also lie on the
original path s.

The second possibility for C to block s3 is
through absence, if there is a converging node
on s3 that does not have C as a descendant.
Since the first part of s3 between B and F is
unidirectional, and F is not a converging node
on s3, this converging node must lie on the seg-
ment of s3 strictly between F and E and there-
fore also on s.

Proof of Theorem 1. Let I∗ be as defined in
Definition 13. Due to Lemma 2 we know that
there is at least one path s between C and E
that is not blocked by B nor by D. According to
Lemma 3 this path s must have at least one con-
verging node (Lemma 3) and due to Lemma 5
we can conclude that s must have an infinite
number of converging nodes. Therefore V can-
not be finite, and I∗ is not a DAG-isomorph
marginal.



The next theorem shows that there is also
a probabilistic independence model without a
latent perfect map.

Theorem 2. There exists a set of variables V
and a probability distribution on V that is not a
P-DAG-isomorph marginal.

Proof. Consider the set of binary variables V =
{B,C,D,E}. Define the probability measure
P ∗ on V as follows:

B C D E P ∗(B,C,D,E)
0 0 0 0 48/1357
0 0 0 1 48/1357
0 0 1 0 144/1357
0 0 1 1 48/1357
0 1 0 0 48/1357
0 1 0 1 96/1357
0 1 1 0 240/1357
0 1 1 1 48/1357
1 0 0 0 96/1357
1 0 0 1 96/1357
1 0 1 0 192/1357
1 0 1 1 64/1357
1 1 0 0 27/1357
1 1 0 1 54/1357
1 1 1 0 90/1357
1 1 1 1 18/1357

It can be verified that the probabilistic indepen-
dence model IP ∗ of P ∗ has exactly the same in-
dependence statements as I∗ as defined in Def-
inition 13.

5 Conclusions

In this paper we have introduced the concept of
the marginal of an formal independence model.
We have shown that some independence mod-
els are in fact the marginals of models that
are DAG-isomorphs, while the marginals them-
selves are not DAG-isomorphs. We have also
proved that there exists some independence
models for which we need to introduce an in-
finite number of auxiliary variables to obtain a
latent perfect map. In examples for both cases
the marginal independence models satisfy the
sufficient conditions of Pearl (1988) for DAG-
isomorphism. It is an interesting topic for future
research to investigate if necessary and sufficient

conditions can be established to guarantee the
existence of a latent perfect map.
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