
An Influence Diagram framework for acting under influence by
agents with unknown goals

Nicolaj Søndberg-Jeppesen and Finn Verner Jensen
Department of Computer Science

Aalborg University
9220 Aalborg, Denmark

Abstract

We consider the situation where two agents try to solve each their own task in a common
environment. We present a general framework for representing that kind of scenario
based on Influence Diagrams (IDs). The framework is used to model the analysis depth
and time horizon of the opponent agent and to determine an optimal policy under various
assumptions on analysis depth of the opponent. Not surprisingly, the framework turns
out to have severe complexity problems even in simple scenarios due to the size of the
relevant past. We propose an algorithm based on Limited Memory Influence Diagrams
(LIMIDs) in which we convert the ID into a Bayesian network and perform single policy
update. Empirical results are presented using a simple board game.

1 Introduction

It is a central problem in Multi-agent research
to model the reasoning necessary when multiple
agents, each with individual objectives, inter-
act in the same environment. While each agent
may change the state of the environment to-
wards a more favorable state for itself, other
agent’s actions may change the state to a less
favorable state. When planning under such con-
ditions it is beneficial to take into account the
other agent’s reasoning. The Recursive Mod-
eling Method (RMM) which was proposed by
Gmytrasiewicz et al. (1991) does that. They
propose to equip each intelligent agent with a
model in which each agent is equipped with a
model which models the other agents. These
nested models may again have models of all
the rest of the agents in the environment which
again contain nested models. The nesting of
models continues until a predefined nesting level
is met. At the deepest level the nesting is ended
by a simpler kind of model which equip each
agent in the environment with a “flat” model,
without models of other agents.

We shall use RMM together with Influence
Diagrams (IDs) for modeling a game scenario.

In this scenario each agent intends to solve a
number of tasks or assignments. The charac-
teristics of the scenario is, that since the agents
co-exist in the same environment, the actions
performed by one agent affects the state of the
scenario for all agents. The scenario may be a
competition between the agents, they may co-
operate in solving the same task or they may
be working on solving each their task without
caring about the other agent’s performance. No
matter what, the success for each agent is highly
dependent on its ability to model the other
agents in the scenario.

Many of the RMM based approaches turn out
to be PSPACE-hard (Gmytrasiewicz and Doshi,
2005). IDs are also facing notorious complex-
ity problems due to the no-forgetting assump-
tion (the assumption that everything that was
known at a previous decision is also known at
the current decision). Eventually the decision
maker will have way too much information all
of which being relevant for the current decision.
Lauritzen and Nilsson (2001) propose Limited
Memory Influence Diagrams (LIMIDs) in which
the decision maker is assumed to have only a
certain amount of memory. They propose an al-

gorithm called single policy update, which finds
an approximation to the optimal policy. In this
paper we shall propose an algorithm which is
able to solve RMM based LIMIDs in multiagent
scenarios.

2 Background

The kind of scenarios we are interested in con-
sist of a finite set of world states W with
states w1, w2, . . . , wm, and 2 agents P 1 and
P 2. We assume P 1 to be female and P 2

to be male. The agents have finite sets
of actions, say Actions

P
1 and Actions

P
2

with members action1
P 1, action2

P 1 , . . . , actionk
P 1

and action1
P 2, action2

P 2 , . . . , actionk
P 2 respec-

tively. The transition between world states at
time t to time t + 1 is determined by a proba-
bilistic function τ , where τ : W ×Actions

P
1 ×

Actions
P

2 × W → [0; 1].
Furthermore, each agent has an assignment
which reflects how much the agent prefers each
world state by assigning a value to each state.
Thus, agent P 1 and P 2, have a finite set
of possible assignments aP 1

1

, aP 1

2

, . . . , aP 1

l

and
aP 2

1

, aP 2

2

, . . . , aP 2
m

respectively. We will consider
only scenarios where the world state is always
known by all agents but the actual assignments
of the other agents remain hidden. A proba-
bility distribution of the opponent’s assignment
can however, be obtained by observing his/her
actions.
You may consider the scenario as a board game,
where each player wishes to obtain certain pat-
tern on the board. The players receive their
pattern assignments by drawing cards from a
deck. The payoff function, which assigns payoffs
to each player at each time step, is a function
of the current world state and the assignment
of the two agents. We shall refer to the scenario
as covert interference(CIF).

2.1 Influence Diagrams

We shall use the classical paradigms from Prob-
abilistic Graphical Models (PGMs). A graphi-
cal model is a directed acyclic graph with three
types of nodes, chance nodes (circular nodes),
decision nodes (rectangular nodes), and util-
ity nodes (diamond shaped nodes). A directed

link into chance node reflects (causal) impact,
which may be of non-deterministic character, a
link into a decision node represents information.
That is, if C is a parent of the decision node D
then the state of C is known by the decision
maker when D is to be decided.

The quantitative part of a PGM consists of
utility functions and conditional probabilities.
For a utility node U with parents pa(U) we
specify the utility as a function of pa(U). For
a chance node C with parents pa(C) we spec-
ify P (C|pa(C)), the conditional probability of
C given pa(C).

A solution to an ID is an optimal strategy. A
strategy consists of set of policies, one for each
decision node. A policy for a decision node is a
function, which given the known past provides
a decision. A strategy is optimal if it maximizes
the decision maker’s expected utility.

There are standard algorithms for solving
IDs, and systems for specifying and solving
IDs are commercially available (Shachter, 1986;
Shenoy, 1992; Jensen et al., 1994; Hugin Expert
A/S, 2007). We shall in this paper take these
algorithms for granted.

The framework of IDs has been extended in
various ways. In particular, Koller and Milch
(2003) introduced Multi-Agent Influence Dia-
grams (MAIDs). The various acting agents are
given decision and utility nodes of particular
colors (or shadings).

2.2 Graphical representation of CIF

We adapt the framework of MAIDs to CIF. This
is illustrated in Figure 1. In Figure 1 player
P 1’s nodes are lightly shaded, and P 2’s nodes
are darkly shaded.

The nodes W0,W1, . . . represent the world
states at t = 0, t = 1, . . . the chance nodes
A1 and A2 represent the players’ assignments,
the nodes with P 1-labels represent the moves by
player P 1. The diamond shaped nodes, which
are half lightly shaded and half darkly shaded
represent the payoff matrixes, which assign a
utility to both players in each game step. The
links from a W -node and the A-nodes to a U -
node indicate that the utility is a function of
the world state and the assignments. The links

Constraint

W0 W1 W2 W3 W4

P 1
1

P 2
1

P 1
2

P 2
2

P 1
3

P 2
3

P 1
4

P 2
4

U1 U2 U3

A1 A2

. . .

. . .

. . .

Figure 1: A MAID representation of CIF.

from the A1-node to decision nodes represent
that player P 1 knows her assignment. The links
from W -nodes to decision nodes represent that
the state of the world is always known. The dots
at the right of the graph indicate that there is
no time limit specified.
There might be constraints on which assign-
ments the players can have simultaneously e.g.
they might not be able to have the same assign-
ment. Therefore, A1 and A2 are connected to a
constraint node which is instantiated.

At t = 0 the game starts in W0, where P 1 and
P 2 each decide their actions concurrently, know-
ing only their own assignment and the initial
world state. P 1’s and P 2’s joint moves lead to
a new state W1, where player P 1 and P 2 again
decide each their actions knowing only W1 and
each their own assignments. When both players
have decided their actions the game continues
with time t = 1. At t = 1 P 1 still knows only
her own assignment but if she knows P 2’s policy
she can estimate P 2’s assignment in A2.

Even if there is a pre-specified time hori-
zon, the standard methods for solving IDs
((Shachter, 1986; Shenoy, 1992; Jensen et al.,
1994)) cannot be used. Consider the last time
step. Both players have to come up with an
optimal decision given the past. Part of the
considerations for player P 1 will be an estimate
of player P 2’s move. However, P 2’s move is de-
pendent on an estimate of P 1’s move. You end
up with an infinite regression, which in game
theory is solved by determining Nash equilibria

(Nash, 1950).

We consider the situation, where we wish to
construct a computer program to play against
human players. As we cannot expect human
players to play Nash equilibria, the computer
shall exploit that, and therefore it usually shall
not play Nash-equilibria either.

2.3 The game seen in the eyes of P 1

In real world situations, players do not per-
form an infinite regression and determine Nash
equilibria. The players will analyse the situ-
ation to a certain depth and with a certain
lookahead of moves, and in the depth analy-
sis they will make some assumptions about the
other players’ analysis depth and look-ahead.
This is called the recursive modeling method
(RMM) (Gmytrasiewicz et al., 1991), and we
will incorporate RMM into the models by let-
ting P 1 bound the recursive modeling to a cer-
tain level. More specifically, P 1 has a model in-
corporating the moves of player P 2, where she
makes some assumptions on how many moves
ahead he analyzes the situation, and in turn,
how deep P 2 is assuming P 1’s model to be.
In other words, if P 1 makes these assumptions
about the policies of P 2, the model in Figure 1
can be transformed to an ID, where P 2’s deci-
sion nodes are replaced with chance nodes, and
P (P 2

i+1|A
2,W0, . . . ,Wi, P

2
0 , . . . , P 2

i) is the pol-
icy (see Figure 2). Note that the node A2 re-
flects that P 2’s assignment is unknown to P 1.
The model shall include prior probabilities for
A2.

In the simplest case P 1 assumes that P 2 just
picks a move randomly. We will say that this
player has a level 0 model since she in this case
uses the least effort to model P 2. In case P 1

assumes that P 2 has a level 0 model, we say
that P 1 has a level 1 model. In general, when
P 1 has a level i model, she assumes that P 2

has a level i − 1 model. As we let P 1 be the
computer and P 2 the human, we assume P 1 to
have a larger analysis depth than P 2.

At each level, P 1 may take different numbers
of future time steps into account. If P 1 is only
taking one future time step into account she
will greedily pick a move that maximizes her

expected utility in the next time step. If P 1 is
taking 2 future time steps into account she will
maximize the sum of her expected utility in the
next and the following time step. In general, if
P 1 is taking h future time steps into account
she will maximize her expected sum of utility in
the next h time steps. We shall call the number
of future time steps P 1 takes into account P 1’s
time horizon. Consequently P 1 also must have
an assumption about P 2’s time horizon and she
must also have an assumption about which time
horizon P 2 assumes that P 1 has etc.

In order to capture P 1’s modeling level and
time horizon together with her assumptions
about P 2’s nesting depth and P 2’s assumptions
about P 1’s nesting depth we give the following
definition.

Definition 1. A player P is a pair defined as
follows:

1. P = (h,NIL) is a player with time horizon
h and modeling level 0.

2. Given a player O, with modeling level i−1,
P = (h,O) is a player with time horizon h
and modeling level i.

Thus, the simplest model, which is a level 0
model with time horizon 1 is denoted (1, NIL);
a (2, (1, NIL)) model is a level 1 model in
which P 1 has time horizon 2 assuming that
P 2 is a level 0 model with time horizon 1; a
(3, (2, (1, NIL))) model is a level 2 model in
which P 1 has time horizon 3 assuming that P 2

is a level 1 model with time horizon 2 assum-
ing that P 1 is a level 0 model with time hori-
zon 1. Note that, it is possible to define mod-
els in which P 1 assumes that P 2 has a longer
time horizon than herself. Scenarios where play-
ers want to maximize a short time gain play-
ing against players with a long time horizon are
common at, for example, stock exchanges.

Figure 2 shows how a (2, (2, (1, NIL))) model
for P 1 is represented as an ID. The leftmost
ID represents the world as seen by P 1. In this
ID, the nested model, namely (2, (1, NIL)) is
used to fill in the conditional probability dis-
tributions in the nodes P 2

1 and P 2
2 representing

P 2’s decisions. The ID in the center represents

this model, which represents the strategy as-
sumed to be played by P 2. In this model the
conditional probability distributions P 1

1 and P 1
2

are found by analyzing the rightmost ID, which
represents the deepest model (1, NIL). In the
(1, NIL) model the chance node P 2

1 represents
the completely random strategy which P 2 is as-
sumed to play on level 0. Note that the leftmost
ID in Figure 2, contains extra arcs, namely the
arc connecting the nodes P 2

1 and P 2
2 and the

arc connecting W0 and P 2
2 . These arcs repre-

sent that P 2 in time step 1 when P 2 is taking
decision P 2

2 will remember W0 and P 2
1 due to the

no-forgetting-assumption (the assumption that
whatever was known when taking a decision at
time i < t is also known at time t).

The not-forgotten information can be used to
learn the opponent’s assignment. Look at the
ID in the center in Figure 2. At t=1 P 2 can
use his model of P 1 to learn P 1’s assignment in
A1. P 2 will calculate, P (A1|W0,W1, P

2
1) which

can be found using the the ID. Thus, the no
forgetting assumption has an impact as P 2 can
be assumed to have learned something about
the state of A1.

The modeling of the learning opponent causes
the dimensionality of the conditional probabil-
ity table representing P 2

i to grow heavily with
the number of future world states to take into
account. In this work we are addressing this
problem by reducing the complexity introduced
by the no-forgetting assumption in IDs.

3 Agents with limited memory

The no-forgetting assumption results in notori-
ous complexity problems for IDs. In the study
reported in (Søndberg–Jeppesen and Jensen,
2008) we used IDs directly in situations like the
model in Figure 2 and we ran into serious com-
plexity problems. In our framework we have
seen that not only does it impact the decision
maker when solving the ID, it also causes the
chance nodes representing the opponent’s deci-
sions to have intractably large domains.
To address this problem we apply LIMIDs which
provide a way to address the complexity prob-
lems in IDs by assuming that the decision maker

W0 W1 W2

P 1
1

P 2
1

P 1
2

P 2
2

U1 U2

A1 A2

W0 W1 W2

P 1
1

P 2
1

P 1
2

P 2
2

U1 U2

A1 A2

W0 W1

P 1
1

P 2
1

U1

A1

Figure 2: An ID representing the (2, (2, (1, NIL))) model.

has limited memory (Lauritzen and Nilsson,
2000). Syntactically, LIMIDs are like IDs with
the only difference that the only things known
at a decision node D are nodes with arcs go-
ing into D, (pa(D)). This means that all the
information that the decision maker is assumed
to remember when making the decision must be
expressed explicitly by information arcs. In our
framework we introduce a LIMID player as a
player with a certain memory. Like a regular
player from Definition 1 a LIMID Player has
a time horizon and a model of the opponent,
however the LIMID Player also has a certain
memory. If P 1 is a LIMID player with memory
m, she will at decision P 1

i remember her pre-
vious m decisions P 1

i−m . . . P 1
i−1, together with

the previous m world states Wi−m . . . Wi−1.

Definition 2. A LIMID player L is a triple de-
fined as follows:

1. L = (h,m,NIL) is a LIMID player with
time horizon h, memory m and modeling
level 0.

2. Given a player or a LIMID player O, with
modeling level i − 1, L = (h,m,O) is a
LIMID player with time horizon h, memory
m, and modeling level i.

The second entry allows LIMID players to as-
sume that their opponents are ordinary players.

Single policy updating is an iterative algo-
rithm which is guaranteed to converge towards
a local maximum policy (Lauritzen and Nilsson,
2000).

Before we describe how the single policy up-
dating algorithm works, we will describe how

a policy can be found at each decision by first
converting an ID into a Bayesian network.

3.1 Finding optimal policies

We convert an ID into a Bayesian network by
converting the utility nodes and the decision
nodes into chance nodes. This method was first
proposed by (Cooper, 1988).

First replace each decision node P 1
i with a

chance node with the parents pa(P 1
i), the rel-

evant information nodes for the decision. The
possible outcome of this new node is the pos-
sible decisions in the decision node. Eventu-
ally, this node shall receive a probability distri-
bution representing an optimal policy at this
node. Initially the node has uniform priors
P (P 1

i = d|pa(P 1
i)) = 1/Ni for all decisions d

in P 1
i where Ni is the number of possible deci-

sions.

Next, each Utility node Ui is replaced by a
two-state chance node NUi with the same set
of parents but with possible outcomes y and
n. For convenience we will write nui instead
of NUi = y and nui instead of NUi = n
throughout the rest of the paper. We need to
scale the utility values from Ui into the interval
[0; 1]. Let Xpa(NUi) denote the possible configu-
rations of the variables in the set pa(NUi), with
xpa(NUi) ∈ Xpa(NUi). Now nui receives its prob-
ability distribution according to the function:

P (nui|xpa(NUi)) =
Ui(xpa(NUi)) − umin

umax − umin

, (1)

where Ui(x) is the utility value for a configu-
ration x according to Ui, while umax and umin

are the maximum and minimum values of Ui.
Since we have assumed that the utility function
is the same for all Ui the sum of normalized util-
ities and the sum of utilities are maximal for the
same decision.

We shall show how this Bayesian network can
serve to find an optimal policy.

Theorem 1. Given a player with time hori-
zon h and ID I which has been converted to a
Bayesian network B, and let e = pa(P 1

i). The
optimal policy δP 1

i

(pa(P 1
i)), can be determined

in the following way,

• If P 1
i is the last decision (i.e. i = h)

δP 1

i

(e) = argmax
d

P (d, |nui,e). (2)

• If P 1
i is not the last decision (i.e. i < h)

but the CPTs in P 1
i+1, . . . , P

1
h have been

replaced with their optimal policies, then
δP 1

i

(pa(P 1
i)) is:

δP 1

i

(e) = argmax
d

(

h
∑

j=i

P (d,e|nuj)P (nuj|e)
)

.

(3)

The proof for Theorem 1 is a trivial rewrite
of the original in (Cooper, 1988) and has been
omitted in this paper.

After junction tree propagation with evi-
dence nui, the clique containing P 1

i will hold
P (P 1

i ,e, nui). Hence,

δP 1

i

(e) = argmax
P 1

i

P (P 1
i ,e, nui)

P (e, nui)
.

When you have an ID with only one decision,
then Theorem 1 can be used for an efficient cal-
culation of an optimal policy. We will exploit
this in the next section.

3.2 A LIMID framework

Single policy updating for LIMIDs consists in a
series of policy estimates for IDs with one de-
cision. The decision nodes are represented as
chance nodes with the information parents as
parents. You start off with some policy for all

decisions, and then you systematically update
the policies for each decision. In each itera-
tion, each local policy δ̂di

(pa(di)) is calculated
according to the above trick with the last deci-
sions first. The algorithm iterates until conver-
gence (i.e. no policies change in two consecutive
iterations) or for a predefined number of itera-
tions.

• Given a LIMID Player with horizon h,
memory m and ID I.

• Convert I into a Bayesian network B.

• for each decision node P 1
i in B,

– add P 1
i−2, P

1
i−3, . . . , P

1
i−m as parents to

P 1
i , and

– add Wi−2,Wi−3, . . . ,Wi−m as parents
to P 1

i .

• Repeat until convergence:

– For each decision P 1
i , for i = h, h −

1, . . . , 0:

– update δ̂P 1

i

according to Theorem 1.

4 Experimental results

In order to measure the performance of our
proposed algorithm we present a simple game
which we call Grid. Grid is played by two play-
ers P 1 and P 2 that are moving the same single
piece on an m × m grid. Initially, both players
are randomly given an assignment, which is a re-
ward function for the positions in the grid. The
players may have the same assignment. In each
turn the players observe the position of the piece
(i.e. the state of the game board) and decide to
move it either up, down, right or left, (N , S, E
and W). The actions the players have chosen
are carried out simultaneously and the result-
ing effect on the piece is the combination of the
two players’ moves. If both actions can be car-
ried out (i.e. the resulting position of the piece
is still inside the m × m grid), the piece is first
moved to the neighboring cell in the direction of
P 1’s decision and then to the neighboring cell
in the direction of P 2’s decision. If at least one
of the actions cannot be carried out, the single

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

{N,W} {N,S}

Assignment 1 Assignment 2

8.55 6.82 1.15

-6.82 0.0 4.12

-8.55 -1.15 -4.12

-1.66 0.42 6.84

-0.51 0.0 -0.42

-6.84 0.51 1.66

Figure 3: An example of the game Grid. In
the first move, P 1 chooses to move N while P 2

chooses to move W . In the second turn, P 1 and
P 2 moves N and S respectively, cancelling each
other’s effect.

action which can be carried out (if any) is car-
ried out. When the piece is in its new position,
the players are rewarded according to their as-
signment and the next turn begins. The game
is a competition so P 1 is punished when P 2 is
rewarded and vice versa. This is obtained by
subtracting P 2’s reward from P 1’s reward and
vice versa. The game continues for a predeter-
mined number of turns.

An example of Grid with m = 3 and 2 possi-
ble assignments is shown in Figure 3. Initially,
player P 1 and P 2 are assigned Assignment 1 and
Assignment 2 respectively. In the first move, P 1

decides to move N while P 2 decides to move W .
From the resulting new state, P 1 gets the re-
ward 8.55 while P 2 gets the reward -1.66. Now
the scores are 8.55 − −1.66 = 10.21 to P 1 and
−1.66 − 8.55 = −10.21 to P 2. In the second
move P 1 decides to move N while P 2 decides
to move S in which case the board state is not
changed. The scores are now 20.42 to P 1 and
−20.42 to P 2.

We have implemented Grid together with our
proposed algorithm using (Hugin Expert A/S,
2007). The experiments have been performed
on a 1.6 GHz PC with 1 GB of RAM.

4.1 Comparison of memory limitations

In the first experiments we have investigated
how deep a time horizon players are allowed to

Table 1: The maximal time horizons possi-
ble on our system with different sizes of the
Grid game.
Board ID max h LIMID max h (m = 1)

3 × 3 4 32

5 × 5 3 8

7 × 7 3 8

9 × 9 2 8

Table 2: Average scores and standard devia-
tions (σ) after 100 Grid games between differ-
ent models against (2,(2,(1,NIL))).

Model P 1 σ

1 (2,(2,(2,(1,NIL)))) 5.03 10.1

2 (2,1,(2,(2,(1,NIL)))) -0.248 8.66

3 (3,(2,(2,(1,NIL)))) 7.32 10,7

4 (3,2,(2,(2,(1,NIL)))) 0.252 8,27

get on our system. We start with a 3 × 3 in-
stance of Grid with 5 assignments and create
both a player with a regular ID and a LIMID
player to see which values of h we can use in
the models before our system runs out of mem-
ory. The results are summarized in Table 1. As
expected the LIMID allows significantly larger
values of h than IDs do.

4.2 Performance of LIMID players
compared to regular players

In a second experiment we have measured how
well a LIMID player plays compared a nor-
mal player with the same time horizon. We
performed experiments with a 3 × 3 instance
of Grid with 5 assignments. Each model has
played 100 games of each 10 moves as player P 1

against (2,(2,(1,NIL))) who played as player P 2.
The results are summarized in Table 2. When
P 1 is playing with the ID models she outper-
forms P 2 (rows 1 and 3). This is no surprise
since she uses more advanced models than P 2.
With the LIMID models however (rows 2 and
4) P 1 looses slightly when she plays with looka-
head 2 and memory 1 while she wins slightly
when she plays with lookahead 3 and memory
2. The σ column indicates a huge variation in
the game outcomes.

Table 3: Average scores and standard devia-
tions (italics) obtained by players with h = 3
on different levels in a 3 × 3 instance of Grid.
Level 0 1 2 3 4

1 2.47 – – – –
5.41 – – – –

2 -1.83 3.24 – – –
6.39 10.76 – – –

3 -3.19 -4.50 9.29 – –
7.64 10.9 10.5 – –

4 0.55 -4.60 -0.73 8.00 –
7.06 10.0 5.82 10.6 –

5 0.572 1.18 -6.21 4.40 5.78
6.36 7.34 10.8 10.0 8.84

4.3 Comparison of players of different
levels

In a third experiment we have investigated what
happens if P 1 has a wrong model of P 2. We do
that by letting P 1 assume that P 2 is more in-
telligent than he really is. Table 3 shows the
average scores of Grid games between players
of different levels all with h = 3 on a 3 × 3
board. Level 0 refers to the (3,NIL) model, level
1 refers to the (3,(3,NIL)) model etc. The num-
bers in the cells refer to the score of the row
player, i.e. in the first row, the (3,(3,NIL)) has
scored on average 2.47 points in games against
(3,NIL) who has scored on average -2.47. Again
the players play 100 games of each 10 moves.
Standard deviations on the game outcomes are
shown in italics. As expected, players win when
they have the correct assumptions about the
opponent, whereas it seems to be less optimal
to assume that the opponent is more intelligent
than he actually is. This is problematic since a
player rarely knows exactly how intelligent the
opponent is before a game begins. Rather it
should be possible to learn the opponent’s level
of intelligence during play. We will address this
problem in future research.

Acknowledgments

We want to thank the staff in the Machine Intel-
ligence Group at the Department of Computer
Science at Aalborg University. In particular, we

are grateful to Zeng Yifeng for help and valuable
comments during this work. We also thank the
anonymous reviewers for their useful feedback
on this work

References

G. F. Cooper. 1988. A method for using belief net-
works as influence diagrams. In Fourth Wrokshop
on Uncertainty in Artificial Intelligence, pages
55–63.

Piotr J. Gmytrasiewicz and Prashant Doshi. 2005.
A framework for sequential planning in multi-
agent settings. Journal of Artificial Intelligence
Research, 24:49–79.

P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe.
1991. A decision theoritic approach to coordinat-
ing multiagent interactions. In Proceedings of the
Twelfth International Joint Conference on Artifi-
cial Intelligence (IJCAI 91), pages 62–68.

Hugin Expert A/S. 2007. Hugin api reference
manual version 6.7. http://download.hugin.com/
documents/manuals6.7/api-manual.pdf.

F. Jensen, F. V. Jensen, and S. L. Dittmer. 1994.
From influence diagrams to junction trees. In R.L.
Mantaras and D. Poole, editors, Proceedings of
the Tenth Conference on Uncertainty in Artificial
Intelligence, pages 367–374. Morgan Kaufmann.

D. Koller and B. Milch. 2003. Multi-agent influ-
ence diagrams for representing and solving games.
Games and Economic Behavior, 45(1):181–221.

S. Lauritzen and D. Nilsson. 2000. Evaluating in-
fluence diagrams using LIMIDs. In Proceedings of
the 16th Conference on Uncertainty in Artificial
Intelligence, pages 436–445.

J. Nash. 1950. Equilibrium points in N-person
games. In Proceedings of the National Academy
of Sciences of the United States of America, vol-
ume 36, pages 48–49.

R. D. Shachter. 1986. Evaluating influence dia-
grams. Operations Research, 34(6):597–609.

P. P. Shenoy. 1992. Valuation-based systems for
Bayesian decision analysis. Operations Research,
40(3):463–484.

N. Søndberg–Jeppesen and F. V. Jensen. 2008. Act-
ing under interference by other agents with un-
known goals. In Proceedings of the 10th Scandina-
vian Conference on Artificial Intelligence (SCAI).

