
Towards consistency in general dependency networks

José A. Gámez and Juan L. Mateo and José M. Puerta
Computing Systems Department

Intelligent Systems and Data Mining Group – i3A
University of Castilla-La Mancha

Albacete, 02071, Spain

Abstract

Dependency networks are a probabilistic graphical model that claim several advantages
from other models like Bayesian networks and Markov networks, for instance. One of
these advantages in general dependency networks, which are the object of study in this
work, is the ease of learning from data. Nonetheless this easiness is also the cause of
its main drawback: inconsistency. A dependency network cannot encode the probability
distribution underlay in the data but an approximation. This approximation can be
enough good for some applications but not in other cases. In this work we make a study
of this inconsistency and propose a method to reduce it. From the conclusions we have
taken from this analysis we have developed an algorithm that has to be run after the
standard learning algorithm yields its solution. Our method is an heuristic approach so
we cannot assure that the resulting model is fully consistent, however we have carried
out some experiments which make us to think that it produces high quality models and
therefore is advisable its use.

1 Introduction

Probabilistic graphical models (PGM) (Lau-
ritzen, 1996; Jensen and Nielsen, 2007) have
been deeply under research and have been used
in many applications in the last two decades
because of their capabilities. There are several
kinds of PGMs like decision graphs or Markov
networks (MN), but probably the most famous
and used are Bayesian networks (BN).

Dependency networks (DN) are a probabilis-
tic graphical model proposed by (Heckerman
et al., 2000) as an alternative to BN. The main
difference between them is that the graph in DN
does not have to be acyclic. The parametric
component is the same, i.e. every variable has
a conditional probability distribution given its
parents. Another difference is that in DNs the
parents for each variable is its Markov Blan-
ket (MB) in the Bayesian network encoding the
same domain. This is the reason why the graph
of a dependency network can be cyclic.

In (Heckerman et al., 2000) are presented

some tasks in which DNs can be worthwhile
like probabilistic inference, collaborative filter-
ing and visualization of relationships. Nonethe-
less, from the automatic learning point of view
DNs have a drawback because its not easy to
learn a set of conditional probability distribu-
tions (CPD) consistent with the joint probabil-
ity distribution (JPD). That is the reason the
authors relaxed the definition of DNs and they
defined general dependency networks, however
now we cannot expect that with the set of CPDs
we were able to recover the JPD but an approxi-
mation. Heckerman et al. (2000) argue that this
approximation can be better as the amount of
data used in the learning process increases, how-
ever it still is an approximation.

In this work we want to analyze how this ap-
proximation can deteriorate the performance of
a DN model and we propose a way to improve
the whole model with a minimun computational
cost or even speeding up the learning process.

In Section 2 we present a more formal and
detailed definition of DNs. In Section 3 we

make an analysis of the inconsistencies in gen-
eral DNs. In Section 4 we explain our proposal
to reduce those inconsistencies. In Section 5 we
describe some experiments we have carried out
in order to validate our proposal and show the
results, and in Section 6 we conclude.

2 Dependency Networks

2.1 Consistent Dependency Networks

Given a set of variables X = {X1, . . . ,Xn} with
a positive JPD P (X), a consistent dependency
network for this domain consists of a pair (G,P)
where G is a directed graph (not necessarily
acyclic), in which every node represents a vari-
able, and P is a set of CPDs. In G the set of
parents for each variable Xi, denoted by Pai, is
formed by all those variables such that verify

P (Xi|Pai) = P (Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn). (1)

So if P (X) is faithful to a graph, what is a
common assumption in machine learning algo-
rithms, then the parents for a given variable in
a DN are its MB. Other way to say so is that a
DN has the same adjacencies than a MN.

A DN is consistent in the sense that all the
CPDs in P can be obtained from the JPD P (x),
i.e. we can obtain P (X) from P in a similar way
than in an BN or MN by the product of local
probability distributions:

P (X) =

n∏

i=1

P (Xi|Pai)

In (Heckerman et al., 2000) is shown the equiv-
alence between DNs and MNs. The only differ-
ence is that in MNs the quantitative component
is provided by potential functions whereas in
DNs is provided by CPDs. Given this equiv-
alence one approach to learn DNs from data
can be to learn a MN in order to obtain the
structure and then compute the set of CPDs
from the MN via probabilistic inference. Other
possibility suggested also in that paper is to
learn another probabilistic model (a BN for in-
stance) and translate it into a DN. Nonetheless
the problem with these approaches is that the
conversion can be computational expensive and
inefficient in many cases. That is the reason
why the authors presented another definition

for DNs more relaxed in order to ease the auto-
matic learning from data. This new definition
is covered in next section.

2.2 General Dependency Networks

A consistent DN is not attractive from an ma-
chine learning point of view because of the diffi-
culties related with obtaining the set of CPDs,
specially with the restriction that this set has to
be consistent with the JPD for the variables in
the domain. So general DNs, also described in
(Heckerman et al., 2000), are based on the idea
of removing those restriction about consistency.
Thus every single CPD P (Xi|Pai) can be es-
timated independently from the others by any
probabilistic classification method, as a prob-
abilistic decision tree (PDT) (Buntine, 1991).
Once we have all the CPDs we can build the
structure of the dependency network from the
(in)dependencies that are appeared during the
learning process.

This way of learning a DN can be more effi-
cient than learning from a MN in many cases,
and other advantage is that its parallelization is
straightforward, what can report a great bene-
fit if we are dealing with a domain with a large
number of variables. Nonetheless this heuris-
tic approach has a disadvantage, due mainly to
the independent search over the variables and
poor estimations in small datasets, the learned
CPDs may not be consistent with the JPD, this
can be called parametrical inconsistency. But
also structural inconsistencies can appear be-
cause after learning the CPD we can see that,
for instance, Xi can be parent of Xj but not
the opposite, i.e. the CPD for Xi would not
contain Xj but the CPD for Xj would contain
Xi. In (Heckerman et al., 2000), authors argue
that this inconsistencies can be reduced as the
amount of data used for leaning increases.

A formal definition for this new model is
as follows. Given a set of variables X =
{X1, . . . ,Xn}, consider the set of CPDs P =

{P1(X1|X\X1), P2(X2|X\X2), . . . , Pn(Xn|X\Xn))}. It
is not required that these distributions are con-
sistent with P (X), i.e. it is not required that
this set can be obtained via inference from the
JPD. Under these conditions a dependency net-

work for X and P is the pair (G,P ′), where G
is a directed graph usually cyclic and P ′ is a set
of CPDs such that

Pi(Xi|Pai) = Pi(Xi|X\Xi) (2)

for every Pi ∈ P.

2.3 Inference

In any case, with a consistent or general de-
pendency network, given the likely existence of
cycles in the graph we cannot use exact infer-
ence algorithms used in BNs and some of the
approximate. In the case of consistent DNs
it can be converted to a MN and use stan-
dard techniques for probabilistic inference over
MNs. Nonetheless a more general option is sug-
gested in (Heckerman et al., 2000) for both mod-
els, Gibbs sampling (Geman and Geman, 1984).
Basically this method works by repeatedly cy-
cling through each variable in a fixed order dur-
ing all the process, and sampling each Xi ac-
cording to P (Xi|Pai). This procedure is called
ordered Gibbs sampler but in the case of a gen-
eral DN, given that the CPDs may not be con-
sistent with the JPD, is called ordered pseudo-
Gibbs sampler. Besides in (Heckerman et al.,
2000) it is developed a more efficient method
which can avoid some sampling and it is called
modified ordered (pseudo-)Gibbs sampler. This
method, in order to get P (Y|Z) and the value
of Z is z for a DN in a domain with a set of
variables X, is shown in Figure 1.

The key point is in line 6, since if the values
for all the parents for a given variable are known
we can avoid the sampling for that variable and
just take its value from its CPD. This algorithm
is justified by Equations (1) and (2).

However, given the modified ordered Gibbs
sampler, there are some situations in which we
can avoid completely the sampling. For instance
if we use a DN as a classifier and we assume
that we always know the values for all predictive
variables (Gámez et al., 2006). Other case is
when is needed to obtain the probability for a
full configuration in a DN, i.e. P (X) when we
have fixed the value for every single variable.
We can see this computation in other way

P (X) =

n∏

i=1

P (Xi|X\Xi).

1 U = Y (∗ the unprocessed v a r i a b l e s ∗)
2 P = Z (∗ the proce s sed and cond i t i on in g

v a r i a b l e s ∗)
3 p = z (∗ the va lue s o f P ∗)
4 While U 6= ∅
5 Pick Xi ∈ U s . t . Xi has no more

parents in U than any va r i ab l e
in U

6 I f a l l parents o f Xi are in P

7 P (Xi|p) = p(Xi|Pai)
8 Else
9 Use modi f ied ordered Gibbs

sampling to get P (Xi|p)
10 U = U − Xi

11 P = P + Xi

12 p = p + xi

13 Return the product o f the c ond i t i o n a l s
P (Xi|p)

Figure 1: Modified ordered Gibbs sampler

If we take the right part of the equation and
use the modified ordered Gibbs sampler we have
that Y = {Xi} and Z = {X\Xi}, in line 5 we
have only one choice and in line 6 the condition
is true so the sampling is avoided. Therefore we
can compute statistics such as the likelyhood
of a DN for a dataset, and we assume that the
dataset does not contain missing data, without
any sampling.

3 Analysis of Parametrical

Inconsistency

In this section we want to analyze some issues
regarding with inconsistency in DNs. From now
on we consider only general DNs.

Example 1. Consider the case in which we
have two variables, X and Y , and they are de-
pendent, then the DN for this domain, DN ,
should have a graph with two links X → Y and
X ← Y .

Hence P ′ = {P (X|Y), P (Y |X)} for DN .
However is clear that P (X,Y) 6= P (X|Y) ·
P (Y |X). In fact

P̂ (X, Y) =
P (X, Y) · P (X,Y)

P (X) · P (Y)
= f(X, Y)·P (X, Y) (3)

where
f(X, Y) =

P (X,Y)

P (X) · P (Y)

Therefore, even in a situation so simple like this
one, we cannot expect to have a DN without

inconsistencies, when it is learned from data of
course. Moreover, looking at Equation (3) we
can say that the inconsistency is smaller as the
dependency between X and Y is weaker and
f(X,Y) tends to 1.

In (Heckerman et al., 2000) they propose
learn DNs by means of probabilistic decision
trees. This model are very good to encode con-
textual dependencies. Encoding the CPDs by
probabilistic decision trees can help to reduce
the inconsistencies because a decision tree tries
to represent a more general probability distribu-
tion by pruning some branches which are simi-
lar. Then the dependence between the variables
can be smoothed and thus f(X,Y) is closer to
1. However if this happens we have a poorer
estimation for the JPD even though is less in-
consistent.

In order to illustrate that we can consider
both variables in Example 1 are discrete with
three states and their JPD is defined by this
table:

Y=0 Y=1 Y=2
X=0 0.12 0.04 0.04
X=1 0.06 0.18 0.06
X=2 0.10 0.10 0.30

When we compute P (X|Y) and P (Y |X) from
P (X,Y) in the way of a probability table or a
full expanded probabilistic decision trees (see
Figure 2 (a) and (b)) we obtain an estimation
P̂1(X,Y) which is shown in Figure 2(c):

Y

0.43;0.21;0.38
0.13;0.56;0.31

0.10;0.15;0.75

=0
=1

=2

(a)

X

0.60;0.20;0.20
0.20;0.60;0.20

0.20;0.20;0.60

=0
=1

=2

(b)

Y=0 Y=1 Y=2
X=0 0.257 0.025 0.020
X=1 0.043 0.338 0.030
X=2 0.075 0.063 0.450

(c)

Figure 2: Joint probability distribution
P̂1(X,Y) (c) obtained using full decision trees
for CPDs P (X|Y) (a) and P (Y |X) (b).

We can see large differences between the true
figures and the estimation. Besides we can
check that P̂1(X,Y) is not a probability distri-
bution because

∑
x,y P̂1(x, y) = 1.301 6= 1. If,

for instance, the learning procedure decides to
change the representation of P (X|Y) for a prob-
abilistic decision tree in which branches for val-
ues 0 and 1 are merged (Figure 3(a)), because
they are the most similar, then we obtain a new
estimation P̂2(X,Y) which is shown in Figure
3(b). P̂2(X,Y) still differs from P (X,Y) but is
closer to it than P̂1(X,Y) in average, and also
is closer to be a probability distribution because∑

x,y P̂2(x, y) = 1.170.

Y

0.28;0.39;0.34 0.10;0.15;0.75

6= 2 =2

(a)
Y=0 Y=1 Y=2

X=0 0.166 0.055 0.020
X=1 0.078 0.233 0.030
X=2 0.069 0.069 0.450

(b)

Figure 3: Joint probability distribution
P̂2(X,Y) (b) obtained using a simpler decision
tree for P (X|Y) (a).

Therefore in spite of the use of probabilistic
decision trees we still have an approximation
which could not be good enough for some ap-
plications. In next section we present a simple
heuristic method that can reduce inconsisten-
cies in DNs improving its accuracy.

4 How to Improve Consistency

As it has been seen in the previous Section
even in a simple case like Example 1 we can-
not expect to get a consistent DN if the CPDs
are learned independently. If two variables are
dependent this equation P (X,Y) = P (X|Y) ·
P (Y |X) will never be true, nonetheless this ex-
pression P (X,Y) = P (X) ·P (Y |X) = P (X|Y) ·
P (Y) is always true and does not matter if both
variable are dependent or not. Bearing this in
mind, in Example 1 we can ensure consistency if
at the end of the learning process we realize that
X is a predictive variable for Y and vice versa
and then instead of maintaining both CPDs we
replace P (X|Y) by P (X) or P (Y |X) by P (Y).
This is the basic idea of our proposal, but there
is not so easy when there are more variables in-

volved. In that case we do not expect to obtain
the best set of probabilities whose composition
yield the right JPD, but a good approximation
and, more important, more consistent.

More precisely the proposal consists in esti-
mating a set of CPDs of a BN that encode the
same (in)dependencies that the learned DN. We
have to point out that our proposal only changes
the set of probability distributions but not the
graph, so the model learned still has the same
advantages about visualization. However, given
that the relationships represented in a DN can
be encoded by several BNs with different fac-
torizations of the JPD, and that the conversion
from DN to BN can not be attractive from the
computational point of view, this proposal is
based on a heuristic approach whose complex-
ity order is linear in the number of dependencies
found. The method proposed is shown in Figure
4.

1 For each va r i ab l e Xi

2 For each Yj parent o f Xi

3 I f Xi i s a l s o a parent o f Yj

4 I f the cond i t i on in g s e t o f Xi i s
g r a t e r that Yj ’ s

5 Yj i s removed as parent o f Xi

6 Else
7 Xi i s removed as parent o f Yj

Figure 4: Proposed method to obtain a more
consistent set of CPDs.

We can call this new step in the learning pro-
cess as parametric reduction. An important
point in this procedure is in line 4. With this
condition we want avoid large conditioning sets,
what can reduce overfitting in the parameters
estimation. The order in which the links can be
traversed can be any although not all of then
will yield the same solution. The reason for that
is the heuristic nature of this algorithm and that
a more sophisticated search would not be inter-
esting for practical reasons. One of the benefits
of DNs is ease of learning so we do not want to
change that by introducing a complicated post-
learning algorithm.

After performing this step is needed to re-
compute every probability distribution which
has been modified. In the case that these prob-

ability distributions are in form of probability
trees, if the removed variables are in the leaves
the only thing to do is to aggregate its values
to the up node in the tree, otherwise the entire
tree should be re-built. However, if in the lear-
ing process we have cached the statistics the
new tree can be built without computational
cost. In the case of probability tables we can
postpone leaning these tables after that step.

5 Experimental Results

This section is devoted to evaluate our proposal
with some experiments. Our testing framework
is base on the one used in (Heckerman et al.,
2000) for testing probabilistic inference with
real data. We use the same score function for a
test dataset with N instances {d1, . . . , dN} and
n variables:

score(d1, . . . , dN |model) = −

∑N

i=1
ln P (di|model)

nN
.

(4)

However, instead of using real dataset we pre-
fer using data sampled from known BNs. The
reason is that we want focus only in parametri-
cal learning and inference so if the real depen-
dencies are known we can give this information
to the different algorithms in order to avoid that
the results were affected by the structural learn-
ing. Next we present a detailed description of
our experimentation.

5.1 Description of the Experiments

We have selected seven BNs from different
sources: alarm (Beinlich et al., 1989), asia (Lau-
ritzen and Spiegelhalter, 1988), car-starts and
headache (Elvira Consortium, 2002), insurance

(Binder et al., 1992), credit (DSL) and water

(Jensen et al., 1989), which is a dynamic net-
work and we have use only the two first slices.
Some details of these networks can be seen in
Table 1. From each of these networks we have
sampled two datasets with 5000 instances each
one, one for training and one for testing.

We have defined eight models to make a com-
parison between them. First one is the reference
model and is a BN in which the structure is fixed

Table 1: Set of Bayesian networks used in our
experiments.

Num. States Aver. MB Aver.
network vars range states range MB

alarm 37 2-4 2.84 1-12 3.89

asia 8 2-2 2.00 1-5 2.50

car-starts 18 2-3 2.06 1-9 3.44

credit 12 2-4 2.83 2-6 3.67

headache 12 1-4 2.92 1-4 2.67

insurance 27 2-5 3.30 1-16 6.22

water 16 3-4 3.63 1-12 6.00

with the real links (BN-f). Second model is an
empty network (Empty). Next we have three
dependency networks models, one with proba-
bility tables in which links have been fixed from
the real MB for each variable in the network
(PT-f), other with probabilistic decision trees
learned from data (PDT), and other with prob-
abilistic decision trees but in which the search
space for each PDT have been restricted to the
real MB (PDT-f). In both cases we use the sug-
gested value for κ = 0.1. For any of these three
models we have another version in which we
have used our method for reducing the CPDs.
These new models are labeled with an asterisk
(PT-f*, PDT* and PDT-f*). In all cases pa-
rameters are learned from data by using Laplace
smoothing.

Every model has been learned with each
training dataset. For all of them it has been
computed their score (Equation (4)) with the
test dataset. As the model BN-f is the refer-
ence one we have also obtained the absolute dif-
ference of score between each model and BN-f.
This value is more informative because we are
looking for models closer to the true probability
distribution what is represented by BN-f. Be-
sides, we have computed also the summation of
all possible configurations, i.e. total joint prob-
ability, which should be equal to 1, but only for
those models with a tractable number of config-
urations (asia, car-starts, credit, headache).

5.2 Results

In Table 2 we report the score value for every
model and dataset. At the botton line we show
the average value for each model. Lower val-

ues should indicate a better model, so all pure
DN models should be taken as the best ones.
However that does not make sense because they
are even better than our reference model (BN-
f) which represents the true JPD. The reason is
that, as we have seen in Section 3, inconsistent
DNs tend to have greater probability values in
average so their score is lower. That is the rea-
son why we prefer paying more attention to the
difference with respect to the reference model.

Thus, these new results are shown in Table
3. There we can see that always the model
closer to BN-f is the one in which we have ap-
plied our proposal. Specially the model based
on probability tables is always the best one but
in two datasets. Also is important to notice that
our proposal improves the original model in ev-
ery dataset for PT-f model. However, in PDT
model our proposal deteriorates the accuracy in
alarm and headache dataset, although in average
its application improves the global accuracy.

Another interesting point is that PDT models
without our proposal are much better than PT-
f. That corroborate the idea that for DNs the
use of more general encoding for the CPDs is
advisable despite that this encoding is also an
approximation in many cases.

Previous results give us an idea about the
quality of those model. We can suppose that the
increment in accuracy must be related with the
reduction in the inconsistency. Additionally we
have checked if the models encode a real prob-
ability distribution, i.e. whether the total joint
probability for a given model is equal to one.
This computation has been only done for the
models learned with the smaller networks be-
cause this computation is computationally un-
feasible for the others. The result is shown in
Table 4. According to the table is clear that the
pure DN models are quite far form being a prob-
ability distribution, but our proposal achieve
that condition for all of them.

5.2.1 Time

Given that our proposal is a post-process to
any learning algorithm, it seems that we will
need more running time. In our experiments in-
volving PDT we see that running time increases

Table 2: Score for each model and dataset.
BN-f Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*

alarm 0.282 0.397 0.173 0.298 0.253 0.342 0.242 0.338
asia 0.287 0.342 0.224 0.289 0.225 0.287 0.225 0.289
car-starts 0.127 0.175 0.070 0.127 0.070 0.136 0.070 0.127
credit 0.879 0.959 0.765 0.886 0.807 0.888 0.807 0.900
headache 0.435 0.609 0.214 0.435 0.419 0.585 0.419 0.593
insurance 0.490 0.651 0.399 0.519 0.420 0.556 0.420 0.550
water 0.401 0.410 0.417 0.410 0.388 0.409 0.388 0.408

0.414 0.506 0.323 0.423 0.369 0.458 0.367 0.458

Table 3: Absolute score difference between BN-f and the other models.
Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*

alarm 0.115 0.110 0.015 0.029 0.060 0.040 0.056
asia 0.055 0.062 0.002 0.062 0.000 0.062 0.002
car-starts 0.048 0.057 0.000 0.057 0.009 0.057 0.000

credit 0.080 0.114 0.007 0.071 0.009 0.071 0.021
headache 0.174 0.222 0.000 0.017 0.150 0.017 0.158
insurance 0.161 0.092 0.029 0.070 0.066 0.071 0.059
water 0.009 0.016 0.010 0.013 0.008 0.013 0.007

0.092 0.096 0.009 0.046 0.043 0.047 0.043

Table 4: Total joint probability for tested models.

BN-f Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*
asia 1.00 1.00 3.60 1.00 3.42 1.00 3.42 1.00
car-starts 1.00 1.00 20.04 1.08 11.40 1.00 11.40 1.00
credit 1.00 1.00 6.41 1.00 4.26 1.00 4.26 1.00
headache 1.00 1.00 29.68 1.00 5.70 1.00 5.70 1.00

1% in average, but also we have to take into ac-
count that we do not include the improvements
explained at the end of Section 4. However
with PT, if we assume that structural learning
will be the same in both cases and compare our
post-process and parameter learning we can see
in Table 5 that we always obtain a faster al-
gorithm. The reason is that our post-process
makes the probability tables to estimate are
much smaller and so that parametrical learn-
ing will be much faster because the complexity
order is O(M × S) where M is the number of
instances in the dataset and S is the size of each
table.

6 Conclusions

In this paper we have presented a method which
aims to improve DNs. The main advantage of
(general) DNs is that they can be learned from
data easily, easier than BNs because of the lack

Table 5: Percentage of run time our proposal
can reduce the original algorithm.

dataset % reduction
alarm 43
asia 13
car-starts 23
credit 18
headache 11
insurance 95
water 98

of restrictions about cyclicity and easier than
MNs because CPDs can be learn independently.
Nonetheless this is also the main problem, the
independent learning can lead to inconsisten-
cies. They can be both structural and para-
metrical, however the later are more important.
Whereas structural inconsistencies can be inter-
esting for a better interpretation of the model
(strong and weak dependencies), parametrical

ones deteriorate model performance.

Thus our proposal is based on improving DNs
accuracy by reducing CPDs, because, as it has
been seen in Section 3, the use of full distri-
butions is the cause of that inconsistencies. Is
worthy to point out that our proposal does not
change the qualitative component of a model,
i.e. its links. This new method, that can be
seen as a post-learning stage, works by trying
to recover a set of CPDs similar to a BN which
represents the same relationships between vari-
ables. In order not to lose the computational
advantage of the DNs learning we have chosen a
heuristic approach which has a linear complex-
ity order in the number of links. Its heuristic
nature can be object of complaint, nonetheless
in our experimentation we have made clear its
benefit.

We plan to extend this work in two lines as fu-
ture work. First we plan to make a deeper anal-
ysis of our proposal checking the performance
with different sample sizes and different order-
ing in the reduction step and see whether it af-
fects the results. Besides we want to test proba-
bilistic queries for different set of variables with
evidence in which we have to use Gibbs sam-
pling. The second line of work is applying this
method to scenarios where DNs have been use
in order to improve their results, such as classi-
fiers or Estimation of Distribution Algorithms.

Acknowledgments

This work has been partially supported by
Spanish Ministerio de Educación y Cien-
cia (TIN2007-67418-C03-01); Junta de Comu-
nidades de Castilla-La Mancha (PBI-08-048)
and FEDER funds.

References

I.A. Beinlich, H.J. Suermondt, R.M. Chavez,
and G.F. Cooper. The ALARM monitoring
system: A case study with two probabilistic
inference techniques for belief networks. In
2nd European Conf. on Artificial Intelligence
in Medicine, pages 247–256, 1989.

J. Binder, D. Koller, S. Russell, and
K. Kanazawa. Adaptive probabilistic net-

works with hidden variables. Machine Learn-
ing, 29(2):213–244, 1992.

W. Buntine. Theory refinement on bayesian
networks. In Uncertainty in Artificial Intelli-
gence, pages 52–60, 1991.

Decision Systems Laboratory DSL. Genie.
http://genie.sis.pitt.edu/.

Elvira Consortium. Elvira: An Environment
for Creating and Using Probabilistic Graph-
ical Models. In 1st European Workshop on
Probabilistic Graphical Models, pages 222–
230, 2002. http://leo.ugr.es/elvira.

J. A. Gámez, J. L. Mateo, and J. M. Puerta. De-
pendency networks based classifiers: learning
models by using independence test. In 3rd
European Workshop on Probabilistic Graphi-
cal Models, pages 115–122, 2006.

S. Geman and D. Geman. Stochastic relax-
ation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 6:
147–156, 1984.

D. Heckerman, D. M. Chickering, and C. Meek.
Dependency networks for inference, collabo-
rative filtering and data visualization. Ma-
chine Learning Research, 1:49–75, 2000.

F. V. Jensen and T. D. Nielsen. Bayesian net-
works and decision graphs. Springer, 2007.

F. V. Jensen, U. Kjærulff, K. G. Olesen, and
J. Pedersen. Et forprojekt til et ekspert-
system for drift af spildevandsrensning (an
expert system for control of waste water
treatment — a pilot project). Technical
report, Judex Datasystemer A/S, Aalborg,
Denmark, 1989.

S. L. Lauritzen. Graphical Models. Oxford Uni-
vesity Press, 1996.

S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their application to expert sys-
tems. Royal Statistics Society, Series B, 50:
157–194, 1988.

