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Abstract

Latent tree (LT) models are tree-structured Bayesian networks where leaf nodes are ob-
served while internal nodes are hidden. We are interested in learning LT models through
systematic search. A key problem here is how to efficiently evaluate candidate models
during search. The problem is difficult because there is a large number of candidate mod-
els, the candidate models contain latent variables, and some of those latent variables are
foreign to the current model. A variety of ideas for attacking the problem have emerged
from the literature. In this paper we observe that the ideas can be grouped into two dis-
tinct approaches. The first is based on data completion, while the second is based on what
we call maximum restricted likelihood. We investigate and compare the two approaches
in the framework of EAST, a newly developed search procedure for learning LT models.

1 Introduction

Learning Bayesian networks (BNs) from data
has been the focus of much research over the
past two decades. Deep insights have been
gained for the case where all variables are ob-
served (e.g. Chickering 2002). However, rela-
tively little progress has been made for the case
with latent variables. This is not due to the lack
of interest on the problem, but its difficulty.

Imagine a search-based algorithm for learn-
ing BNs with latent variables. At each step,
the algorithm would evaluate a potentially large
number of candidate models. Assume the BIC
score is used for model selection.1 To calcu-
late the BIC score of a candidate model m′,
one needs to compute its maximum loglikeli-
hood maxθ′ log P (D|m′, θ′), where D is the data
set and θ′ is the parameter vector for m′. This
requires the expectation-maximization (EM) al-
gorithm. The difficulty is that running EM on
a large number of candidate models is compu-
tationally prohibitive.

1The BICe score suggested by Geiger et al. (1996) is
currently impractical due to the lack of efficient methods
for computing effective model dimension.

Two methods for overcoming the difficulty
have emerged from the literature. The first
method is based on the idea of data comple-
tion. It first completes the data set D based
on the current model m and uses the completed
data set D̄ to evaluate the candidate models.
When all the variables in a candidate model m′

are observed with respect to D̄, one can evaluate
the model using the maximum expected loglike-
lihood maxθ′ log P (D̄|m′, θ′) (Friedman 1997).
When a candidate model contains variables that
are not observed with respect to D̄, one can eval-
uate the model using heuristics that are com-
puted from D̄ (Zhang and Kočka 2004, Elidan
and Friedman 2005).

The second method is based on what we
call maximum restricted likelihood. A candi-
date model m′ typically shares many parame-
ters with the current model m. Suppose we
have computed the maximum likelihood esti-
mation (MLE) of the parameters of m. Let
θ∗1 be the MLE for the parameters that m has
in common with m′. Let δ2 be the parame-
ters of m′ that are not shared with m. The
method approximates maxθ′ log P (D|m′, θ′) us-
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Figure 1: Rooted and unrooted latent tree models.
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Figure 2: The NI and NR operators.

ing the maximum restricted loglikelihood, i.e.
maxδ2 log P (D|m′, θ∗1, δ2), and uses the latter to
evaluate m′. This method is implicitly used in
(Zhang and Kočka 2004). Similar ideas are used
in, among others, phylogenetic tree reconstruc-
tion (Guindon and Gascuel 2003) and learning
of continuous Bayesian networks (Nachman et
al. 2004).

In this paper we investigate and compare
the two methods in the context of latent tree
models. Called hierarchical latent class mod-
els previously (Zhang 2004), latent tree (LT)
models are tree-structured Bayesian networks
where variables at leaf nodes are observed and
are hence called manifest variables, while vari-
ables at internal nodes are hidden and hence
are called latent variables. All variables are as-
sumed discrete. Figure 1 (a) shows the struc-
ture of an LT model.

LT models are interesting for three reasons.
First, they relax the local independence as-
sumption of latent class (LC) models (Lazars-
feld and Henry 1968) and hence offer a more
general framework for cluster analysis of cate-
gorical data (Zhang 2004). Second, LT anal-
ysis can reveal latent structures behind data.
In this sense LT analysis is a generalization
of phylogenetic tree reconstruction (Durbin et
al. 1998). Using LT models, researchers have
found interesting latent structures from stocks
data (Elidan and Friedman 2005), marketing
data (Zhang 2007) and medical data (Zhang
et al. 2008). Third, LT models are computa-
tionally simple to handle and at the same time
can model complex interactions among mani-
fest variables (Pearl 1988). Those two proper-
ties make LT models a good tool for density
estimation for discrete variables.

2 Search for Optimal Model

Suppose there is a data set D on a set of man-
ifest variables. To learn an LT model from D
means to find a model m that maximizes the
BIC score:

BIC(m|D) = max
θ

log P (D|m, θ)−
d(m)

2
log N,

where θ denotes the set of model parameters,
d(m) the number of independent parameters,
and N the sample size. It has been shown that
edge orientations cannot be determined from
data (Zhang 2004). So we can learn only un-
rooted latent tree models, which are latent tree
models with all directions on the edges dropped.
An example is given in Figure 1 (b). From now
on when we speak of latent tree models we al-
ways mean unrooted latent tree models unless
it is explicitly stated otherwise.

In this section we present a search proce-
dure for learning LT models. Called EAST,
the procedure uses five search operators, namely
state introduction (SI), node introduction (NI),
node relocation (NR), state deletion (SD), and
node deletion (ND). They are borrowed from
(Zhang and Kočka 2004) with minor modifica-
tions. Given an LT model and a latent vari-
able in the model, the SI operator creates a new
model by adding a new state to the domain of
the variable. The SD operator does the oppo-
site. The NI operator involves one latent node
Y and two of its neighbors. It creates a new
model by introducing a new latent node Y ′ to
mediate the latent variable and the two neigh-
bors. The cardinality of Y ′ is set to be that of
Y . In m1 of Figure 2, introducing a new node
Y3 to mediate Y1 and its neighbors X1 and X2

results in m2. For the sake of computational ef-
ficiency, we do not consider introducing a new
node to mediate Y and more than two of its



neighbors. The ND operator is the opposite of
NI. The NR operator involves two latent nodes
Y1 and Y2 and a neighbor Z of Y1. It creates a
new model by relocating Z to Y2, i.e. removing
the link between Z and Y1 and adding a link be-
tween Z and Y2. In m2 of Figure 2, relocating
X3 from Y1 to Y3 results in m3.

The search operators can be divide into three
groups. NI and SI make the current model more
complex and hence are expansion operators. ND
and SD make the current model simpler and
hence are simplification operators. NR rear-
ranges connections between the variables and
hence is an adjustment operator.

The BIC score consists of two terms. The
first term measures model fit while the second
term penalizes model complexity. Our objective
is to optimize the BIC score. Suppose we start
with a model that does not fit the data at all.
Then improving model fit is the first priority at
the initial stage of search. So we first improve
model fit by searching with the expansion op-
erators. When the BIC ceases to increase, we
switch to the simplification operators in order to
minimize the penalty term. The process repeats
itself until model score ceases to increase. This
is similar to the idea behind the greedy equiva-
lence search (GES) algorithm (Chickering 2002)
for learning Bayesian networks.

In the following, we introduce several modifi-
cations to the above simple scheme and eventu-
ally obtain the EAST procedure given in Figure
3. To understand the first modification, con-
sider the three models in Figure 2. Due to the
constraint imposed on NI, it is impossible to
reach m3 directly from m1. A natural remedy
is to consider node relocations after each appli-
cation of NI. Suppose we have just applied NI
to m1 and have obtained m2. What we do next
is to consider repeatedly relocating the other
neighbors of Y1 in m1, i.e. X3, X4, X5 and
Y2, to the new latent variable Y3. This is the
localAdjust(m2,m1,D) subroutine.

The second modification is about choosing
between candidate models generated by NI and
SI. Let m be the current model and m′ be a
candidate model. Define the improvement ratio
of m′ over m to be

IR(m′,m|D) =
BIC(m′|D) − BIC(m|D)

d(m′) − d(m)
.

It is the increase in model score per unit increase
in model complexity. The cost-effectiveness
principle (Zhang and Kočka 2004) states that,
among all candidate models generated by SI and
NI, choose the one that has the highest improve-
ment ratio.

We have now completed explaining the
expand subroutine in Figure 3. The other sub-
routines are more or less straightforward. The
simplify subroutine first repeatedly applies SD
to the current model until the BIC score ceases
to increase and then it does the same with
ND. The adjust subroutine repeatedly applies
the NR operator to the current model until
it is no longer beneficial to do so. Unlike in
localAdjust, there is no restriction on the NR
operator here. One can relocate a node to any-
where in the current model. This is an effective
mechanism to avoid local maxima.

Located at the top of Figure 3 is the EAST
procedure itself. The name EAST is a short-
hand for Expansion, Adjustment, Simplification
until Termination. The procedure takes a data
set and an initial model as inputs. It first
runs the expand subroutine on the initial model.
Then it adjusts connections between nodes.
Thereafter, it passes the resultant model to the
simplify subroutine. If model score is im-
proved in any of the three steps, the entire pro-
cess repeats itself with the best model obtained
as the initial model.

EAST is similar to the search procedure de-
scribed in (Zhang and Kočka 2004). There are
two main differences. The latter groups NR
with NI and SI and hence does not have a sep-
arate model adjustment phase. It also restricts
how far one can relocate a node.

3 Model Evaluation based on Restricted

Likelihood

Each of the arg max operators in EAST eval-
uates a potentially large number of candidate
models. In this section we describe the re-
stricted likelihood method for doing this effi-
ciently.



EAST(m,D)
Repeat until termination:

m1 ← expand(m,D).
m2 ← adjust(m1,D).
m3 ← simplify(m2,D).
If BIC(m3|D) ≤ BIC(m|D), return m;
Else m← m3.

expand(m,D)
Repeat until termination:

m1 ← arg maxm′∈NI(m)∪SI(m) IR(m′, m|D).
If BIC(m1|D) ≤ BIC(m|D), return m.
If m1 ∈ SI(m), m← m1;
Else m← localAdjust(m1, m,D)

adjust(m,D)
Repeat until termination:

m1 ← arg maxm′∈NR(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), return m;
Else m← m1.

simplify(m,D)
Repeat until termination:

m1 ← arg maxm′∈SD(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), break;
Else m← m1.

Repeat until termination:
m1 ← arg maxm′∈ND(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), return m;
Else m← m1.

Figure 3: The EAST search procedure.

Conceptually EAST works with unrooted LT
models. In implementation, however, we repre-
sent unrooted models as rooted models. Rooted
LT models are BNs and their parameters are
clearly defined. This makes it easy to see how
the parameter composition of a candidate model
m′ is related to that of the current model m.
Consider the models m and m′ in Figure 1 (a)
and (c). m′ is obtained from m by introducing
a new latent variable Y4 to mediate Y3 and two
of its neighbors X6 and X7. The two models
share the parameters for describing the distri-
butions P (Y1), P (Y2|Y1), P (X1|Y2), P (X2|Y2),
P (X3|Y2), P (X4|Y1), P (Y3|Y1) and P (X5|Y3).
On the other hand, the parameters for describ-
ing P (Y4|Y3), P (X6|Y4) and P (X7|Y4) are pecu-
liar to m′ while those for describing P (X6|Y3)
and P (X7|Y3) are peculiar to m.

We write the parameters of a candidate model
m′ as a pair (δ1, δ2), where δ1 is the collection
of parameters that m′ shares with m. Similarly,
we write the parameters of the current model m
as a pair (θ1, θ2), where θ1 is the collection of
parameters that m shares with m′. Suppose we

have computed MLE (θ∗1, θ
∗
2) of the parameters

of m. For a given value of δ2, (m′, θ∗1, δ2) is a
fully specified BN. In this BN, we can compute

P (D|m′, θ∗1, δ2) =
∏

d∈D

P (d|m′, θ∗1, δ2).

As a function of δ2, this will be referred to as the
restricted likelihood function of δ2. The maxi-
mum restricted loglikelihood, or simply the max-
imum RL, of the candidate model m′ is defined
to be

max
δ2

log P (D|m′, θ∗1, δ2).

The restricted likelihood (RL) method for model
evaluation replaces the likelihood term in the
BIC score of m′ with its maximum RL and uses
the resulting approximate score to evaluate m′.

Local EM is a procedure for computing the
maximum RL of a candidate model m′. It works
in the same way as EM except with the value of
δ1 fixed at θ∗

1. It starts with an initial value δ
(0)
2

for δ2 and iterates. After t − 1 iterations, it ob-
tains δ

(t−1)
2 . At iteration t, it completes the data

D using the BN (m′, θ∗
1 , δ

(t−1)
2 ), calculates some

sufficient statistics, and therefrom obtains δ
(t)
2 .

Suppose the parameters δ2 of m′ describe distri-
butions P (Zj |Wj) (j = 1, . . . , ρ). The distributions
P (Zj |Wj , δ

(t)
2 ) that make up δ

(t)
2 can be obtained

in two steps:

• E-Step: For each data case d ∈ D, make in-
ference in the BN (m′, θ∗

1 , δ
(t−1)
2 ) to compute

P (Zj , Wj |d, m′, θ∗
1 , δ

(t−1)
2 ).

• M-Step: Obtain
P (Zj |Wj , δ

(t)
2 ) = f(Zj , Wj)/

∑
Zj

f(Zj , Wj),
where the sufficient statistic
f(Zj , Wj) =

∑
d∈D

P (Zj , Wj |d, m′, θ∗
1 , δ

(t−1)
2 ).

Local EM converges. The series of loglike-
lihood log P (D|m′, θ∗

1 , δ
(t)
2 ) increase monotonically

with t. This fact can be seen if one examines
the proof for the same result about EM. Like
EM, local EM might converge to local maxima.

When implemented properly, local EM is
much more efficient than EM. There are two
reasons. First, fewer sufficient statistics are
computed in local EM than in EM. EM re-
quires sufficient statistics for each pair of neigh-
boring variables, while local EM needs the
sufficient statistics only for those pairs that
are affected by the search operation. Second,



there are abundant opportunities for computa-
tion sharing. Consider calculating the poste-
rior P (Zj , Wj |d, m′, θ∗

1 , δ
(t−1)
2 ) in a candidate model

(m′, θ∗
1 , δ

(t−1)
2 ). The candidate model is the same

as the current model (m, θ∗
1 , θ∗

2) except for the
part affected by the search operation. Conse-
quently, some of the computational steps can
be pre-computed in the current model, and they
can be shared at all iterations and among dif-
ferent candidate models.

Local maxima is an issue in local EM as well
as in EM. To avoid local maxima, we adopt
the pyramid scheme proposed by Chickering and
Heckerman (1997). The idea is to randomly
generate µ initial values for the new parame-
ters δ2, resulting in µ initial models. One local
EM iteration is run on all the models and af-
terwards the bottom µ/2 models are discarded.
Then two local EM iterations are run on the re-
maining models and afterwards the bottom µ/4
models were discarded. Then four local EM it-
erations are run on the remaining models and
so on. The process continues until there is only
one model. After that some more local EM it-
erations are run on the only remaining model to
refine the parameters until the total number of
iterations reaches a predetermined number ν.

We have described the RL method for im-
plementing the arg max operators in EAST. It
takes a list of candidate models as input and
outputs a single model. Full EM is run on the
output model to optimize its parameters before
the search moves on to the next step.

4 Model Evaluation based on Data

Completion

We now turn to the data completion (DC)
method for efficient model evaluation. The
method first completes the data set D using the
current model (m, θ∗), where θ∗ is the MLE of
the parameters of m. It then uses the completed
data set D̄ to evaluate candidate models. The
completed data set is used in different ways in
different subroutines of EAST.

A candidate model m′ in the adjust sub-
routine shares the same variables as m. All
the variables are observed with respect to D̄.
Hence it is easy to compute the maximum ex-

pected loglikelihood maxθ′ log P (D̄|m′, θ′). The
DC method replaces the first term of the BIC
score by the maximum expected loglikelihood
and uses the resulting function to evaluate m′.
This idea is due to Friedman (1997) and it is
also used in the localAdjust subroutine.

Next consider a candidate model m′ in the
second loop in the simplify subroutine. Sup-
pose it is obtained from m by deleting a latent
node Z. Let D̄Z be the data set obtained from
D̄ by removing the values for Z. Then all the
variables in m′ are observed with respect to D̄Z .
The DC method replaces the first term of the
BIC score by maxθ′ log P (D̄Z |m

′, θ′) and uses
the resulting function to evaluate m′. This idea
is from Zhang and Kočka (2004).

The SD operator deletes a state from the do-
main of a latent variable. A related operator is
state merging. It merges two states of a latent
variable. Suppose a candidate model m′ is ob-
tained from m by merging two states, i and j, of
a latent variable Z. Use îj to denote the merged
state. Let D̄îj be the data set obtained from D̄

by replacing both i and j with îj. Then all the
variables in m′ are observed with respect to D̄îj .
One can replace the first term of the BIC score
by maxθ′ log P (D̄îj |m

′, θ′) and use the resulting

function to evaluate m′. This idea is borrowed
from Elidan and Friedman (2005).

Now suppose m′ is a candidate model in the
first loop in the simplify subroutine, obtained
from m by reducing the cardinality of a latent
variable Z by 1. The DC method considers
all possible ways to achieve the cardinality re-
duction through state merging, obtains a model
score for each way using the above method, and
uses the maximum of the scores to evaluate m′.

The candidate models in the expand subrou-
tine are generated by two different operators.
The DC method first separately evaluates can-
didate models generated by different operators,
picks one model for each operator, runs full EM
on the two resultant models and selects between
them using improvement ratios.

Let m′ be a candidate model obtained from
the current model m by introducing a latent
node Z to mediate a latent node Y and two



of its neighbors Z1 and Z2. Intuitively the new
node would be necessary if, in the current model
m, Z1 and Z2 are not conditionally independent
given Y . This condition can be tested based on
D̄ because all the three variables are observed in
D̄. So the DC method evaluates m′ using the G-
squared statistic, computed from D̄ for testing
the hypothesis that Z1 and Z2 are conditionally
independent given Y . The larger the statistic,
the further away Z1 and Z2 are from being inde-
pendent given Y , and hence the more necessary
it is to introduce the new node Z. This idea is
due to Zhang and Kočka (2004).

Finally consider a candidate model m′ ob-
tained from the current model m by adding a
new state to the domain of a latent variable Y .
Let Z1, Z2, . . . , Zk be the neighbors of Y in
m. Intuitively the new state would be neces-
sary if the interactions among Z1, Z2, . . . , Zk

are not properly modeled by Y . Let P̂ be the
empirical joint distribution computed from D̄
and Pm be the joint distribution given by the
model m. For any two neighbors Zi and Zj of
Y , the KL distance KL(P̂ (Zi, Zj)‖Pm(Zi, Zj))
is a measure of how well the interactions be-
tween them are modeled. The larger the KL
distance, the poorer the interactions are mod-
eled, and hence the more necessary it is to add
a new state to Y . The DC method evaluates m′

using the KL distance averaged over all pairs of
neighbors of Y . This idea is due to Zhang and
Kočka (2004).

Note that although the DC method concep-
tually starts with data completion, it does not
compute an explicit representation of D̄. All the
heuristic model scores can be computed from
the current model (m, θ∗) and the original data
set D and the computations all boil down to cal-
culating sufficient statistics on some variables.
Full EM is run on the model picked by any
arg max operator to optimize its parameters be-
fore the search moves on to the next step.

5 Empirical Results

Coupling the EAST search procedure with ei-
ther the RL method or the DC method for
model evaluation, one obtains two different al-
gorithms for learning LT models, which we de-

note by EAST-RL and EAST-DC respectively.
The main purpose of our empirical studies is to
compare the two algorithms.

We also attempt to answer two other ques-
tions. First, EAST-RL has two parameters µ
and ν. How do they influence the performance
of the algorithm? Second, the cost-effectiveness
principle mentioned in section 2 was introduced
to deal with the problem of operation granular-
ity, i.e. some operations might increase model
complexity much more than others. Is the prin-
ciple necessary given that model complexity is
considered already in the BIC score?

The Data: The synthetic data used in our ex-
periments were generated using three manually
constructed LT models that contain 7, 12 and 18
manifest variables respectively. Three data sets
of sizes 1k, 5k and 10k were sampled from the
18 variable model. We denote them by D18(1k),
D18(5k) and D18(10k). One data set was sam-
pled from each of the other two models. They
consists of 5k and 10k samples and hence are de-
noted by D7(5k) and D12(10k). The data sets
were analyzed by various algorithms and their
variants. The quality of a learned model is mea-
sured by the empirical KL distance of the model
to the corresponding generative model, an ap-
proximation to the true KL distance that was
computed based on 5k testing data. The results
are shown in Table 1. They are averaged over
10 runs. The standard deviations are given in
the parentheses.

There are three real-world data sets. Their
basic information is given in the table.

# vars # states sample size
per var train test

ICAC 31 3.5 1200 301
KIDNEY 35 4.0 2000 600

COIL 42 2.7 5822 4000

The COIL data set originates from the COIL
Challenge 2000 (van der Putten and van
Someren 2004). It consists of customer records
of a Dutch insurance company. The ICAC
data set is from a telephone survey by Hong
Kong’s anti-corruption agency on public per-
ception about various issues related to corrup-
tion. KIDNEY is a medical data set studied
by Zhang et al. (2008). Each of the data sets
was split into two subsets, one for training and



Table 1: Empirical results on synthetic data (the top two) and on real-world data (the bottom).

D7(5k) D12(10k)
emp-KL time(mins) emp-KL time(hrs)

EAST-RL(µ,ν) (1,20) 0.0117(2.1e-3) 3.8(2.2) 0.0062(4.2e-3) 1.8(0.3)
(8,20) 0.0105(1.3e-3) 5.9(1.6) 0.0049(3.8e-3) 2.2(0.3)
(8,40) 0.0101(4.5e-5) 7.1(0.1) 0.0032(2.4e-4) 2.6(0.2)

EAST-DC 0.0101(5.7e-5) 5.8(0.1) 0.0051(5.0e-3) 1.4(0.1)

EAST-RL0(µ, ν) (8,40) 0.0101(4.8e-05) 6.3(0.1) 0.0079(4.7e-3) 1.5(0.1)

D18(1k) D18(5k) D18(10k)
emp-KL time(hrs) emp-KL time(hrs) emp-KL time(hrs)

EAST-RL(µ,ν) (1,20) 0.1865(1.5e-5) 0.5(0.03) 0.0245(9.1e-3) 4.3(0.7) 0.0097(4.0e-3) 9.4(1.1)
(8,20) 0.1865(2.3e-5) 0.6(0.05) 0.0175(5.3e-3) 5.7(0.9) 0.0067(2.5e-3) 13.8(1.6)
(8,40) 0.1865(7.5e-6) 0.7(0.02) 0.0148(4.5e-3) 6.0(0.6) 0.0047(7.0e-4) 18.4(3.9)

EAST-DC 0.2171(3.3e-2) 0.6(0.04) 0.0371(3.5e-3) 3.9(0.4) 0.0113(3.0e-3) 8.2(1.5)

EAST-RL0(µ, ν) (8,40) 0.1865(6.3e-06) 0.6(0.01) 0.0326(1.1e-2) 4.4(0.9) 0.0207(1.2e-2) 10.1(1.8)

KIDNEY COIL ICAC
EAST-RL BIC logscore time(days) BIC logscore time(days) BIC logscore time(days)

(µ,ν)=(4,10) -57214(61) -16882(41) 0.4(0.1) -52116(205) -34943(203) 0.9(0.2) -26102(52) -6198(23) 0.10(0.01)
(8,20) -57158(73) -16818(56) 0.6(0.1) -51773(159) -34577(195) 1.1(0.2) -26033(22) -6167(15) 0.16(0.03)

(16,40) -57066(52) -16761(25) 1.0(0.1) -51505(74) -34198(41) 2.3(0.4) -26042(27) -6173(15) 0.22(0.02)

EAST-DC -57699(158) -17236(156) 0.3(0.0) -52560(295) -35103(226) 0.7(0.1) -26156(1) -6213(13) 0.09(0.00)

the other for testing. LT models were obtained
from the training sets. For each learned model,
we computed its BIC score on the training set
and its logarithmic score on testing set. The
logscore measures how well the model predicts
future data. The results are shown in Table 1.
They are averaged over 5 runs.

Impact of µ and ν: The parameter µ controls
the effort that local EM spends on avoiding local
maxima, while ν controls the effort that local
EM spends on refining parameters. In general
we expect EAST-RL to find better models as
they increase. Consider the KL distance from a
learned model to the corresponding generative
model as the parameter setting (µ, ν) changes
from (1, 20) to (8, 20) and then to (8, 40). We
see that the KL distance changes, on average,
from 0.0097 to 0.0067 and then to 0.0047 for
D18(10k); from 0.0245 to 0.0175 and then to
0.0148 for D18(5k); from 0.0062 to 0.0049 and
then to 0.0032 for D12(10k); and from 0.0117 to
0.0105 and then to 0.0101 for D7(5k). It stays
unchanged for D18(1k).

The results on real-world data show similar
trends with one exception. In the case of the
ICAC data, the BIC score and the logscore drop
slightly from (8, 20) to (16, 40), probably due
to randomness.

EAST-RL vs. EAST-DC: The main purpose
of our empirical studies is to compare EAST-RL
and EAST-DC. Consider the experiments with
synthetic data first. We compare the models

found by the two algorithms in terms of the KL
distances from those models to the correspond-
ing generative models. For D18(10k), the aver-
age KL distance of the models found by EAST-
DC is 0.0113, while that of the models found
by EAST-RL is 0.0097 in the lowest parameter
setting and 0.0047 in the highest setting. As a
matter of fact, EAST-RL found better models
for D18(10k) than EAST-DC in all the param-
eter settings considered. The same is true for
D18(5k) and D18(1k). For D12(10k), EAST-RL
found better models than EAST-DC in all the
settings except for (1, 20). For D7(5k), EAST-
RL found models of the same quality as EAST-
DC in the highest setting.

EAST-RL also performed better than EAST-
DC on the real-world data. It found better mod-
els on all the data sets and in all the settings.

Running times are also reported in Tables 1.
They were collected on an Intel(R) Core(TM)2
PC with clock rate of 2.4GHz. EAST-DC is
clearly more efficient than EAST-RL. On the
COIL data, for instance, it was about 4 times
faster than EAST-RL in the setting (16, 40).

Operator Granularity: In Table 1, EAST-
RL0 denotes an implementation of EAST-RL
where operation granularity is not considered
when evaluating candidate models generated
by SI and NI. We see that the models that
EAST-RL0 found for D18(10k), D18(5k) and
D12(10k) are significantly worse than those
found by EAST-RL. They are tied on the other



cases. This suggests that it is necessary to
deal with operation granularity using the cost-
effectiveness principle in the expand subroutine.

6 Discussions and Conclusions

This paper is concerned with the search-based
approach to learning latent tree model. A key
problem in the approach is how to efficiently
evaluate large numbers of candidate models. A
variety of ideas for attacking the problem were
previously proposed by Zhang and Kočka (2004)
and Elidan and Friedman (2005). In this paper
we observe that those ideas can be grouped into
two distinct approaches, namely the restricted
likelihood (RL) approach and the data comple-
tion (DC) approach. We study and compare
the approaches in the framework of EAST, a
newly developed search procedure for learning
latent tree models. This is the first time that
the two approaches to efficient model evaluation
are clearly identified and studied.

The RL method is conceptually simpler than
the DC method. It is based on one principle,
while the DC method is based on several heuris-
tic ideas. The RL method is easier to under-
stand than the DC method.

Ideally one should select the candidate model
with the maximum BIC score. In the RL
method, we replace the likelihood term in the
BIC score with the maximum restricted loglike-
lihood. What it results in is an approximation
that lower bounds the BIC score. So the RL
method selects a model to maximize a lower
bound of the true objective function. This is
common practice in machine learning.

The DC method also selects candidate models
to maximize some objective functions. However
it is less clear how those functions are related
to the BIC score. In the case of the adjust

subroutine, some relationship exists because
maxθ′ log P (D̄|m′, θ′)≥maxθ log P (D̄|m, θ) im-
plies maxθ′ log P (D|m′, θ′)≥maxθ log P (D|m, θ).
The same relationship is not known to be true
for the other cases.

We empirically tested EAST-RL and EAST-
DC on a number of synthetic and real-world
data sets. Several parameter settings were tried
for EAST-RL. At the lowest setting, EAST-RL

found better models than EAST-DC on almost
all the data sets and it took roughly the same
amounts of time on almost all the data sets.
At the highest setting, EAST-RL found better
models than EAST-DC on all the data sets and
much better models on many of the data sets.
However, it was also significantly slower.

Acknowledgements

We thank Kin Man Poon for valuable dis-
cussions. Research on this work was sup-
ported by Hong Kong Grants Council Grants
#622307, and China National Basic Research
Program (aka the 973 Program) under project
No.2003CB517106. The work was completed
when the third author was on leave at the
HKUST Fok Ying Tung Graduate School.

References

D. M. Chickering (2002). Learning Equivalence
Classes of Bayesian-Network Structures. JMLR, 2.

D. M. Chickering and D. Heckerman (1997). Efficient
approximations for the marginal likelihood of Bayesian
networks with hidden variables. Machine Learning, 29.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison
(1998) Biological sequence analysis: probabilistic models
of proteins and nucleic acids. Cambridge Univ. Press.

G. Elidan and N. Friedman (2005). Learning hidden
variable networks: the information bottleneck approach.
Journal of Machine Learning Research, 6:81-127.

N. Friedman (1997). Learning belief networks in the
presence of missing values and hidden variables. ICML.

D. Geiger, D. Heckerman and C. Meek (1996).
Asymptotic Model Selection for Directed Networks with
Hidden Variables. UAI-96, 158-168.

S. Guindon and O. Gascuel (2003). A simple, fast,
and accurate algorithm to estimate large phylogenies by
maximum likelihood. Systematic Biology, 52(5):696-704.

P. F. Lazarsfeld and N. W. Henry (1968). Latent
structure analysis. Houghton Mifflin, Boston.

I. Nachman, G. Elidan and N. Friedman (2004).
“Ideal Parent” Structure Learning for Continuous Vari-
able Networks. UAI-04, 400-409.

J. Pearl (1988). Probabilistic reasoning in intelligence
systems. Morgan Kaufmann, San Mateo.

P. van der Putten and M. van Someren. A bias-
variance analysis of a real world learning problem: The
COIL challenge 2000. Machine Learning, 57:177-195.

N. L. Zhang (2004). Hierarchical latent class models
for cluster analysis. JMLR, 5:697-723.

N. L. Zhang (2007). Discovery of Latent Structures:
Experience with the CoIL Challenge 2000 Data Set.
ICCS-2007, 26-34.
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