
New Methods for Marginalization in Lazy Propagation

Anders L Madsen
HUGIN EXPERT A/S, Gasværksvej 5, DK-9000 Aalborg, Denmark

Anders.L.Madsen@hugin.com

Abstract

Even though existing algorithms for belief update in Bayesian networks (BNs) have ex-
ponential time and space complexity, belief update in many real-world BNs is feasible.
However, in some cases the efficiency of belief update may be insufficient. In such cases
minor improvements in efficiency may be important or even necessary to make a task
tractable. This paper introduces two improvements to the message computation in Lazy
Propagation (LP). We introduce one-step lookahead methods for sorting the operations
involved in a variable elimination using Arc-Reversal (AR) and extend LP with the any-
space property. The performance impacts of the methods are assessed empirically.

1 INTRODUCTION

There are two main reasons for the popularity
of BNs (Pearl, 1988), (Cowell et al., 1999), and
(Kjærulff and Madsen, 2008) as a formalism for
modeling and reasoning with uncertainty: 1) a
BN is an efficient and intuitive graphical repre-
sentation of a joint probability distribution and
2) there exists tools implementing efficient algo-
rithms for belief update.

As both exact and approximate belief update
in general are NP-hard (Cooper, 1990b; Dagum
and Luby, 1993), the use of exponential com-
plexity algorithms is justified (unless P=NP).
Even though existing algorithms for belief up-
date have exponential time and space complex-
ity, belief update on a large number of real-
world BNs is feasible. However, in some cases
the efficiency of belief update may be insuffi-
cient, but close to sufficient. In such cases mi-
nor improvements in efficiency may be impor-
tant or even necessary to make a task tractable.
Examples of such cases include analysis at the
portfolio level in financial institutions where a
belief update is performed for each customer. If
the portfolio consists of 100000s of customers,
then the time cost of belief update becomes an
important issue and even a minor improvement
in efficiency can have a large impact on the per-
formance of the portfolio level analysis. In ad-

dition, the importance of belief update perfor-
mance increases as the complexity of real-world
BNs increases.

Most algorithms for exact belief update be-
longs to either the class of query-based or the
class of all-marginals algorithms. The first
class contains, for instance, Belief Propaga-
tion (Pearl, 1988), Arc-Reversal (AR) (Olm-
sted, 1983; Shachter, 1986), Symbolic Prob-
abilistic Inference (SPI) (Shachter et al.,
1990), Recursive Decomposition (RD) (Cooper,
1990a), Variable Elimination (VE) (Cannings
et al., 1978; Zhang and Poole, 1996), Bucket
Elimination (Dechter, 1996a), the Fusion op-
erator (Shenoy, 1997), Query DAGs (Dar-
wiche and Provan, 1997), Recursive Con-
ditioning (RC) (Darwiche, 2000) and Value
Elimination (VU) (Bacchus et al., 2003)
while the latter class contains, for instance,
Lauritzen-Spiegelhalter (Lauritzen and Spiegel-
halter, 1988), HUGIN (Jensen et al., 1990), and
Shenoy-Shafer (Shafer and Shenoy, 1990).

LP (Madsen and Jensen, 1999) combines
query-based and all-marginals algorithms. Mes-
sage passing is performed in a junction tree
where clique and separator potentials are de-
composed into sets of factors and messages are
computed using a (revised) query-based algo-
rithm in an attempt to exploit independence
relations induced by evidence and barren vari-

ables. Recently, Madsen (2006) introduced LP
algorithms where either AR, VE or SPI is used
for message and marginal computation in a vari-
able elimination based approach.

This paper introduces two improvements to
message and marginal computation in LP: one-
step look-ahead methods for sorting the AR op-
erations involved in a variable elimination and a
method to extend LP with the any-space prop-
erty. We also report on the results of an empir-
ical performance analysis.

2 PRELIMINARIES

A BN N = (X,G,P) over variables X consists
of an acyclic, directed graph (DAG) G = (X, E)

and a set of conditional probability distributions
(CPDs) P. It induces a joint probability distri-
bution over X s.t. P(X) =

∏
X∈XP(X |pa(X)).

We consider belief update as the task of chang-
ing beliefs due to changes in the world mani-
fested through observations. It is the task of
computing the posterior marginal P(X | ǫ) for
each X ∈ X. Evidence ǫ = {ǫ1, . . . , ǫn} consists
of a set of variable instantiations. We let ǫX

denote the instantiation of X, i.e., ǫX = {X = x}

and ǫX ∈ ǫ, and let Xǫ denote the set of vari-
ables instantiated by evidence ǫ.

Definition 2.1 [Barren Variable]
A variable X is a barren w.r.t. a set T ⊆ X,
evidence ǫ, and DAG G, if X 6∈ T , X 6∈ Xǫ and X

only has barren descendants in G (if any).

A probability potential (Shafer and Shenoy,
1990) is a non-negative and not-all-zero func-
tion over a set of variables while a probability
distribution is a potential that sums to one. For
probability potential φ with domain dom(φ) =

{X1, . . . , Xn}, we let H(φ) denote the head (i.e.,
the conditioned variables) and T(φ) denote the
tail (i.e., the conditioning variables) of φ.

The domain graph G(Φ) = (X, E) of a set of
probability potentials Φ over variables X is the
graph spanned by X where for each φ an undi-
rected edge is added between each pair of vari-
ables X, Y ∈ H(φ) and a directed edge is added
from each X ∈ T(φ) to each Y ∈ H(φ). We
let dom(Φ) denote the set of domain variables of
potentials in Φ. The notion of barren variables

can be extended to graphs with both directed
and undirected edges (Madsen, 2006).
Definition 2.2 [Query]
A query on a set of probability potentials Φ is
a triple Q = (T,Φ, ǫ) where T ⊆ X is the target.

The set E = dom(Φ) \ T is referred to as the
elimination set. The set of potentials Φ∗ ob-
tained by eliminating dom(Φ) \ T from Φ s.t.∏

φ∈Φ∗ φ = P(T, ǫ1 |ǫ2) where ǫ = ǫ1 ∪ ǫ2 is a
solution to query Q. Notice that a query may
have multiple solutions as a solution is a decom-
position of the joint potential over target T . We
define ΦX ⊆ Φ as ΦX = {φ ∈ Φ : X ∈ dom(φ)}.

2.1 SOLVING QUERIES

Query-based belief update algorithms solve a
single query Q = (T,Φ, ǫ). In the following we
assume that Y is to be eliminated in the pro-
cess of solving Q. AR performs a sequence ρ of
arc-reversal operations to make Y barren prior
to removing its potential from Φ. Let X be a
variable with parent set pa(X) = {Y,X1, . . . , Xn}

and let pa(Y) = {X1, . . . , Xn}. An AR operation
on arc (Y,X) is performed as follows:

P(X |X1, . . . , Xn)

=
∑

Y

P(X |Y,X1, . . . , Xn)P(Y |X1, . . . , Xn), (1)

P(Y |X,X1, . . . , Xn)

=
P(X |Y,X1, . . . , Xn)P(Y |X1, . . . , Xn)

P(X |X1, . . . , Xn)
. (2)

The AR-operation corresponds to arc-reversal
in G(Φ). It is necessary to avoid making cycles
in the process of reversing arcs to eliminate Y.
If pa(X)\{Y} 6= pa(Y), then we perform straight-
forward domain extensions.

Using VE Y is eliminated from Φ by marginal-
ization of Y over the combination of poten-
tials of ΦY and setting Φ∗ = Φ \ ΦY ∪ {φY}

where φY =
∑

Y

∏
φ∈ΦY

φ.
There is a rich literature on any-space algo-

rithms, e.g., (Dechter, 1996b; Darwiche, 2000;
Bacchus et al., 2003). We consider VU and RC.
RC is an any-space algorithm for exact query-
based belief update based on recursive condi-
tioning (Darwiche, 2000). RC is an instanti-
ation of the family of algorithms referred to

as VU (Bacchus et al., 2003). A main dif-
ference is that VU supports a dynamic condi-
tioning order whereas the order is fixed in RC.
RD (Cooper, 1990a), on the other hand, is a
divide-and-conquer method that recursively de-
composes the network and maps the resulting
decomposition into a corresponding equation.

2.2 ALL-MARGINALS

All-marginals-based belief update algorithms
solve a single query Q = ({X},Φ, ǫ) for each X ∈
X. The all-marginals problem is usually solved
by local procedures operating on a secondary
computational structure known as the junction

tree (also known as a join tree and a Markov
tree) representation of the BN (Jensen and
Jensen, 1994). Let T denote a junction tree with
cliques C and separators S. The cliques C are
the nodes of T whereas the separators S anno-
tate the links of T. Each clique C ∈ C represents
a maximal complete subgraph in an undirected
graph1 GT. The link between two neighboring
cliques A and B is annotated with the intersec-
tion S = A ∩ B, where S ∈ S.

Once T is constructed the CPD of each X ∈ X

is associated with a clique C s.t. fa(X) ⊆ C

where fa(X) = {X}∪pa(X). We let ΦC denote the
set of CPDs associated with C ∈ C. Belief up-
date proceeds as a two phase process where in-
formation is passed as messages between cliques
over separators in two steps. Two messages are
passed over each S ∈ S; one message in each di-
rection. Once the message passing process has
completed, the marginal of each X ∈ X is com-
puted from any node in T including X.

Algorithms such as HUGIN, Shenoy-Shafer,
Lauritzen-Spiegelhalter, and LP differ w.r.t. the
representation of clique and separator potentials
and the computation of messages.

3 LAZY PROPAGATION

Message passing proceeds according to the
Shenoy-Shafer scheme: A clique A sends a mes-
sage ΦA→B to its neighbor B when it has re-

1GT is constructed from the moral graph Gm of G by
adding undirected edges until the graph is triangulated.
A graph is triangulated if every cycle of length greater
than three has a chord.

ceived messages from all neighbors (denoted
ne(A)) except B, see Figure 1. A message ΦA→B

is the solution to a query Q = (B,ΦA ∪
⋃

C∈ne(A)\BΦC→A, ǫ) and it is computed as:

ΦA→B =
(

ΦA ∪
⋃

C∈ne(A)\{B}

ΦC→A

)M↓B
,

where M is the marginalization algorithm,
i.e., either AR, VE or SPI. Prior to apply-
ing M to solve Q, potentials for which all head
variables are barren and potentials over vari-
ables which are all separated from B given ǫ

in G(ΦA∪
⋃

C∈ne(A)\BΦC→A) are removed. No-
tice that ΦA→B and ΦC are sets of potentials.
The content of ΦA→B depends on M.

R · · · B S A ...

ΦA→B

Figure 1: ΦA→B is passed from A to B.

The decomposition of potentials and the lazy
elimination of variables enable an efficient ex-
ploitation of independence relations and bar-
ren variables during belief update. LP uses
the structure of T to define a partial order on
the elimination of variables in the computation
of P(X | ǫ) for each X ∈ X. While the do-
main of ΦA→B is defined by the elimination
set E = A\B, the computation of ΦA→B can be
performed using a variety of algorithms, as de-
scribed by Madsen (2006). Evidence is entered
in T by instantiating Xǫ according to ǫ.

4 IMPROVING BELIEF UPDATE

4.1 ARC-REVERSAL SORT

Using AR a variable Y is eliminated by
a sequence ρ of arc-reversal operations fol-
lowed by a barren variable elimination. If
| ch(Y)| > 1, then an arc-reversal order ρ =

((Y,X1), . . . , (Y,X|ch(Y)|)) has to be determined.
Consider the query Q = (T =

{X1, X3, X4, X5},Φ, ∅) where Φ = {P(X1), (P(X2 |

X1), P(X3 | X2, X5), P(X4 | X2), P(X5)}. Elim-
inating X2 using AR involves reversing
arcs (X2, X3) and (X2, X4). Figures 2 and 3
show the calculations for the two possi-
ble orders ρmin = ((X2, X4), (X2, X5)) and

ρmax = ((X2, X5), (X2, X4)), respectively. The
inner circles represent the first arc-reversal
operation while the outer circles represent the
second arc-reversal operation. Even though the
structures of the two graphs are identical, the
solutions are different.

P(X2 |X1) P(X3 |X2, X5)

P(X4 |X2)

∗

∑
X2

/

∗

∑
X2

/

P(X3 |X1, X5)

P(X4 |X1, X3, X5)

Figure 2: maximum fill-in-weight.

The solution illustrated in Figure 2 is
ΦARmax↓T = {P(X1), P(X3 | X1, X5), P(X4 |

X1, X3, X5), P(X5)} while the solution illustrated
in Figure 3 is ΦAR min↓T = {P(X1), P(X3 |

X1, X4, X5), P(X4 | X1), P(X5)}. Notice that the
(unique) solution to Q obtained using VE and
the algorithm of Section IV in (Madsen, 2006)
is ΦVE↓T = {P(X1), P(X3, X4 |X1, X5), P(X5)}.

P(X2 |X1)

P(X3 |X2, X5)

P(X4 |X2)

∗

∑
X2

/

∗

∑
X2

/

P(X4 |X1)

P(X3 |X1, X4, X5)

Figure 3: minimum fill-in-weight.

The elimination of Y by a sequence of AR
operations ρ = ((Y,X1), . . . , (Y,X|ch(Y)|)) will in-
duce a set of new edges. The cost2 of an AR

2Alternative scores may be considered. In this work,

sequence ρ is defined as the sum of the weights
of the new edges induced by ρ.

The objective of considering different AR se-
quences is to minimize the total cost of new
edges introduced by eliminating Y. It is infeasi-
ble to consider all possible sequences as the up-
per limit on the number of possible sequences
is n! where n = | ch(Y)|. Some of the sequences
may be illegal due to the graph acyclicity con-
straint though. The large number of possible
sequences implies that the use of heuristics for
determining the sequence to use is justified. We
define the cost of reversing edge (Y,X) as:

s(Y,X) =
∑

ZX∈pa(X),ZX 6∈pa(Y),ZX 6=Y

‖ZX‖ · ‖Y‖

+
∑

ZY∈pa(Y),ZY 6∈pa(X)

‖ZY‖ · ‖X‖.

The cost is equal to the sum of the weights of
the edges induced by new parents of X and Y.

We introduce two heuristic rules based on the
score s(Y,X): a minimum fill-in-weight rule for
selecting the next edge to reverse when elimi-
nating Y. We refer to AR in combination with
minimum fill-in-weight as ARmin. The rule
where s(Y,X) is maximized is referred to as max-

imum fill-in-weight and ARmax denotes AR in
combination with this rule.

Both maximum fill-in-weight and minimum

fill-in-weight use a one step look-ahead. This
implies that they do not always find the optimal
order (according to the cost function). Finding
an optimal order is similar to finding an opti-
mal triangulation. It is well-known that this
problem is NP-complete, see e.g. (Yannakakis,
1981) or (Arnborg et al., 1987).

4.2 ANY-SPACE

Inspired by the work on RD and RC we extend
LP with the any-space property. The basic idea
is to avoid computing a representation over all
values of φ, if ||dom(φ)|| > δ where δ is a thresh-
old value on the size of potentials. Instead of

we use a score similar to the fill-in-weight score often
used for identifying triangulations using one-step looka-
head node elimination, as this rule has shown a high per-
formance when applied to triangulation, see (Kjærulff,
1993) for more details.

P(x4 |x31) P(x31 |x11)

P(x11 |x2)

P(x4 |x2)

∗

+
x31 x3n

∗

+
x11 x1n

· · ·

· · ·

Figure 4: VE calculation of P(X4 |X2).

maintaining a large (table) representation of φ,
values are recomputed as needed in subsequent
operations. During belief update potential sizes
may increase due to multiplications and de-
crease due to marginalizations. Let φ1 and φ2

be two potentials. If dom(φ1) \ dom(φ2) 6= ∅
or dom(φ2) \ dom(φ1) 6= ∅, then ||dom(φ1 ·
φ2)|| > ||dom(φi)|| for i = 1, 2. This simple
insight drives the proposed scheme. The calcu-
lation of a product

∏
φ or a marginal φ↓T is

delayed if ||dom(
∏

φ)|| > δ or ||dom(φ↓T)|| > δ,
respectively. Only marginalization can enforce
the construction of a potential whereas both a
marginalization and a product may involve de-
layed potentials producing a recursive scheme.
Figure 4 illustrates the approach on:

P(X4 |X2) = ΦVE↓{X2,X4}

=
∑

X1

P(X1 |X2)
∑

X3

P(X3 |X1)P(X4 |X3),

where Φ = {P(X1 | X2), P(X3 | X1), P(X4 | X3)}.
Each entry of P(X4 |X2) is computed by access-
ing and combining the values of its source po-
tentials Φ recursively. The equation becomes a
formula for accessing the values of P(X4 |X2) by
recursive computation. Each time an entry is
accessed, it is computed. No entries are com-
puted when the formula is constructed. This
implies that the calculation of an entry is de-
layed until the entry is accessed as part of the
calculation of another potential.

Even though ||dom(φ)|| > ||dom(φ↓T)||, it
may be that ||dom(φ↓T)|| > δ. In this
case, the marginalization is postponed. No-
tice that a marginalization is always performed

over a combination of at least two potentials.
If ||dom(φ↓T)|| ≤ δ, then φ↓T is computed.

The results of experiments suggest that VE
is the most suited marginalization operation to
apply in the any-space scheme. Notice that nei-
ther RC nor VU is directly applicable as the
marginalization operation in LP.

5 PERFORMANCE EVALUATION

This section presents the results of a prelim-
inary performance evaluation3. The evalua-
tion is performed using a set of real-world
and randomly generated BNs. The set of
real-world networks considered includes Bar-

ley and ship-ship while networks with ||X|| =

100, 125, 150, 200 were generated randomly (ten
networks of each size). For each network
ten different Xǫ were generated randomly for
each ||Xǫ|| = 0, . . . , ||X||. Table 1 (where s(C) =

Table 1: Statistics on test networks.

Network |V | |C| maxC∈C s(C) s(C)

ship-ship 50 35 4, 032, 000 24, 258, 572
Barley 48 36 7, 257, 600 17, 140, 796

net 100 5 100 85 98, 304 311, 593
net 200 5 200 178 15, 925, 248 70, 302, 065

∏
X∈C ||X|| and s(C) =

∑
C∈C s(C)) contains

statistics on some test networks (in the name
net x y x = ||X|| and y is an identifier). The
junction trees have been generated using opti-

mal triangulation (total weight being the opti-
mality criterion) (Jensen, 2007).

This section also presents the results of
an evaluation of the cost of the last and
most expensive division operation involved
in the elimination of a variable by AR.
Ndilikilikesha (1994) introduces operations on
the DAG structure where the need for division
is eliminated. This is achieved by associating a
potential instead of a CPD with each variable.
This implies that barren variable elimination re-
quires marginalization operations and it there-
fore becomes a potentially expensive operation.

3Due to space restrictions, a limited number of graphs
are included for each experiment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 20 40 60 80 100

T
im

e
in

 s
ec

o
n

d
s

Number of instantiations (net_100_5)

AR max
AR min

Figure 5: Time cost of LARP with sorting.

5.1 ARC-REVERSAL SORT

To assess the performance impact of ρ, we com-
pare the costs of belief update using ARmin
and ARmax. The minimum fill-in-weight rule
selects as the next arc to reverse an arc with low-
est cost while the maximum fill-in-weight rule
selects an arc with highest cost. A performance
comparison between ARmin and ARmax will
give insights into the importance of selecting a
good arc-reversal order.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 20 40 60 80 100

L
ar

g
es

t
p

o
te

n
ti

al
 s

iz
e

in
 n

u
m

b
er

s

Number of instantiations (net_100_5)

AR max
AR min

Figure 6: Space cost of LARP with sorting.

Figures 5 and 6 show the cost of belief update
in net 100 5. The time cost of ARmin is sig-
nificantly lower than the time cost of ARmax
whereas the reduction in potential size is less
significant and it is most significant for small
subsets of evidence. Only in a few cases there
is a reduction in the largest potential size when
using ARmin compared to using ARmax.

The time cost improvement is not only pro-
duced by a reduction in the largest potential

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 20 40 60 80 100

 M
u

lt
ip

li
ca

ti
o

n
s

(a
n

d
 d

iv
is

io
n

s)

Number of instantiations (net_100_5)

AR max
AR min

Figure 7: Multiplications & divisions, sorting.

size, but also by a reduction in the number
of arithmetic operations performed. Figure 7
shows the cost of belief update in net 100 5

in terms of the number of multiplications and
divisions performed. There is a reduction in
time cost and number of operations even though
there is no reduction in the (average) size of the
largest potential.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200

T
im

e
in

 s
ec

o
n

d
s

Number of instantiations (net_200_5)

AR max
AR min

Figure 8: Time cost of LARP with sorting.

Figure 8 shows an example where the use of
minimum fill-in-weight not only gives a signifi-
cant reduction in time cost over the use of maxi-

mum fill-in-weight, but the variation of the cost
is also significantly reduced.

We expected the implementation overhead in-
troduced by the sorting algorithm to dominate
the time efficiency improvement (e.g., testing
for potential cycles in the graph), but this was
clearly not the case. The arc-reversal order can
have a significant impact on the time cost of be-
lief update. In conclusion, it may be important

to identify an efficient arc-reversal order.

5.2 ANY-SPACE

The any-space property is achieved by not con-
structing any potential φ with ||dom(φ)|| > δ.
To illustrate the any-space property, we per-
formed a sequence of experiments with differ-
ent δ values. Notice that reducing δ from y to
x only has an impact on performance when at
least one potential φ with x < ||dom(φ)|| ≤ y

is created during belief update.
Figure 9 shows the time cost of belief up-

date in Barley for three different δ values
(maxS∈S s(S) = 907, 200) using VE as the
marginalization algorithm. The time cost in-
creases as δ is reduced.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
in

 s
ec

o
n

d
s

Number of instantiations (Barley)

No limit
5000000
1000000

Figure 9: Time cost for different δ values.

The experiments show that the average
largest potential size has a major variation. The
peaks in the graphs are caused by a few difficult

evidence scenarios4. The combined impact of
these scenarios increases as δ decreases.

Table 2 shows the time cost for belief update
using AR min and VE in Barley given two spe-
cific evidence scenarios as a function of δ. The
time cost has a large variation across evidence
scenarios and the time cost increases as δ de-
creases. Notice that the time costs for two dif-
ferent values of δ are (almost) equal. The reason
is that the largest domain size created during
belief update is the same in both cases.

4In this case the most expensive set of evidence to
propagate consists of four instantiations of leaf variables
with multiple parents which are inserted into four dif-
ferent leaf cliques. This evidence introduces additional
dependence relations.

Table 2: Time cost of belief update given two
different sets of evidence of equal size.

106 2.5 ∗ 106 5 ∗ 106 No limit

AR 333.65 41.84 41.50 3.89
VE 18.57 12.35 12.27 2.45

5 ∗ 103 1.5 ∗ 104 3 ∗ 104 No limit

AR 1.82 1.25 1.25 0.53
VE 2.28 0.96 0.92 0.46

The results of the experiments indicate that
the VE algorithm is better suited than AR for
implementing upper-limit constraints. The AR
algorithm performs additional calculations in
order to maintain as many (conditional) inde-
pendence statements as possible. This seems to
penalize the algorithm under upper-limits con-
straints when compared to VE.

The table indexing for potentials with sizes
larger than δ is näıve compared to the table in-
dexing for potentials with sizes below δ. The
former table indexing is expected to add an ad-
ditional overhead to the time costs.

5.3 DIVISION OPERATION

Using AR as the marginalization operation re-
quires one invocation of Equations 1 and 2 for
each arc reversed except for the last arc where
the invocation of Equation 2 can be skipped as
the variable subsequently will be eliminated as
barren (Madsen, 2006).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50

T
im

e
in

 s
ec

o
n

d
s

Number of instantiations (ship-ship)

No division
Division

Figure 10: Time cost w/w.o. last division.

Figure 10 illustrates the cost of the division
operation in the ship-ship network. It is clear
from the figure that the cost of the division op-
eration is most significant for the case of small

sized evidence sets. The impact of the division
operation is reduced as ||Xǫ|| increases.

6 CONCLUSION

This paper introduces LP as a class of algo-
rithms for computing all-marginals. The ele-
ments of the class differ with respect to the al-
gorithm or algorithms used for message compu-
tation. We have proposed two methods for mes-
sage computation in LP and considered the im-
portance of certain properties of the algorithm.
One method is based on sorting arc-reversal op-
erations according to a complexity score while
the second method is a simple scheme for ex-
tending LP with the any-space property. The
paper includes an experimental evaluation of
the proposed extensions.

Future work includes a more in-depth analy-
sis of the any-space potential of LP in message
computation. This includes the option of re-
considering the calculation of a factor at a later
point in time. For instance, before accessing
the elements of a delayed factor φ recursively, it
may be possible to identify a more efficient elim-
ination and combination order from the source
potentials of φ. Future work also includes an
analysis of methods for selecting between dif-
ferent algorithms for solving a query. This
would produce a propagation scheme where dif-
ferent algorithms may be used to solve different
queries during belief update.

References
S. Arnborg, D. G. Corneil, and A. Proskurowski. 1987. Com-

plexity of finding embeddings in a k-tree. SIAM Journal on
Algebraic and Discrete Methods, 8:277–284.

F. Bacchus, S. Dalmao, and T. Pitassi. 2003. Value Elimination:
Bayesian Inference via Backtracking Search. In Proc. of UAI,
pages 20–28.

C. Cannings, E. A. Thompson, and H. H. Skolnick. 1978. Prob-
ability functions on complex pedigrees. Advances in Applied
Probability, 10:26–61.

G. F. Cooper. 1990a. Bayesian Belief-Network Inference Us-
ing Recursive Decomposition. Technical Report KSL 90-05,
Knowledge Systems Laboratory.

G. F. Cooper. 1990b. The computational complexity of prob-
abilistic inference using Bayesian belief networks. Artificial
Intelligence, 42(2-3):393–405.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegel-
halter. 1999. Probabilistic Networks and Expert Systems.
Springer-Verlag.

P. Dagum and M. Luby. 1993. Approximating probabilistic in-
ference in Bayesian belief netwoks is NP-hard. Artificial In-
telligence, 60:141–153.

A. Darwiche and G. Provan. 1997. Query dags: A pratical
paradigm for implementing belief-network inference. In JAIR,
pages 147–176.

A. Darwiche. 2000. Any-Space Probabilistic Inference. In Proc.
of UAI, pages 133–142.

R. Dechter. 1996a. Bucket elimination: A unifying framework
for probabilistic inference. In Proc. of UAI, pages 211–219.

R. Dechter. 1996b. Topological Parameters for time-space trade-
off. In Proc. of UAI, pages 220–227.

F. V. Jensen and F. Jensen. 1994. Optimal junction Trees. In
Proc. of UAI, pages 360–366.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. 1990. Bayesian
Updating in Causal Probabilistic Networks by Local Compu-
tations. Computational Statistics Quarterly, 4:269–282.

F. Jensen. 2007. HUGIN API Reference Manual. Available
from http://www.hugin.com.

U. B. Kjærulff and A. L. Madsen. 2008. Bayesian Networks and

Influence Diagrams - A Guide to Construction and Analysis.
Springer-Verlag.

U. B. Kjærulff. 1993. Aspects of efficiency improvement in
Bayesian networks. Ph.D. thesis, Department of Computer
Science, Aalborg University, Denmark, April.

S. L. Lauritzen and D. J. Spiegelhalter. 1988. Local computations
with probabilities on graphical structures and their application
to expert systems. Journal of the Royal Statistical Society,
B, 50(2):157–224.

A. L. Madsen and F. V. Jensen. 1999. Lazy propagation: A junc-
tion tree inference algorithm based on lazy evaluation. Arti-
ficial Intelligence, 113(1-2):203–245.

A. L. Madsen. 2006. Variatoins Over the Message Computa-
tion Algorithm of Lazy Propagation. IEEE Transactions on

Systems, Man. and Cybernetics Part B, 36(3):636–648.

P. Ndilikilikesha. 1994. Potential influence diagrams. IJAR,
11(1):251–285.

S. M. Olmsted. 1983. On representing and solving decision
problems. Phd thesis, Department of Engineering-Economic
Systems, Stanford University, Stanford, CA.

J. Pearl. 1988. Probabilistic Reasoning in Intelligence Systems.
Series in Representation and Reasoning. Morgan Kaufmann
Publishers.

R. D. Shachter, B. D’Ambrosio, and B. Del Favero. 1990. Sym-
bolic probabilistic inference in belief networks. In Proc. of 8th
National Conference on AI, pages 126–131.

R. D. Shachter. 1986. Evaluating influence diagrams. Operations
Research, 34(6):871–882.

G. R. Shafer and P. P. Shenoy. 1990. Probability Propagation.
Annals of Mathematics and Artificial Intelligence, 2:327–
351.

P. P. Shenoy. 1997. Binary join trees for computing marginals in
the Shenoy-Shafer architecture. IJAR, 17(2-3):239–263.

M. Yannakakis. 1981. Computing the minimum fill-in is NP-
complete. SIAM Journal on Algebraic and Discrete Methods,
2(1):77–79.

N. L. Zhang and D. Poole. 1996. Exploiting Causal Indepen-
dence in Bayesian Network Inference. Journal of Artificial

Intelligence Research, 5:301–328.

