
Approximate representation of optimal strategies from influence
diagrams

Finn Verner Jensen
Department of Computer Science

Aalborg University
9220 Aalborg, Denmark

fvj@cs.aau.dk

Abstract

There are three phases in the life of a decision problem, specification, solution, and rep-
resentation of solution. The specification and solution phases are off-line, while the rep-
resention of solution often shall serve an on-line situation with rather tough constraints
on time and space. One of the advantages of influence diagrams (IDs) is that for small
decision problems, the distinction between phases does not confront the decision maker
with a problem; when the problem has been properly specified, the solution algorithms are
so efficient that the ID can also be used as an on-line representation of the solution. If the
solution algorithm cannot meet the on-line requirements, you will construct an alternative
structure for representing the optimal strategy, for example a look-up table or a strategy
tree. We report on ongoing work with situations where the solution algorithm is too space
and time consuming, and where the policy functions for the decisions have so large do-
mains that they cannot be represented directly in a strategy tree. The approach is to have
separate ID representations for each decision variable. In each representation the actual
information is fully exploited, however the representation of policies for future decisions
are approximations. We call the approximation information abstraction. It consists in
introducing a dummy structure connecting the past with the decision. We study how to
specify, implement and learn information abstraction.

1 Introduction

There are several algorithms for solving IDs
(Shachter, 1986),(Shenoy, 1992), (Jensen et al.,
1994), but the principle behind them all is dy-
namic programming starting with the last deci-
sion. That is, first an optimal policy for the last
decision is determined. Next, this policy is rep-
resented somehow, and the optimal policy for
the second last decision is determined by using
the policy for the last decision for forecasting the
future. To illustrate this process, consider the
ID in Figure 1. We can represent the optimal
policy for the last decision as a conditional prob-
ability table (CPT), and the ID from Figure 1
is transformed to the one in Figure 2.

When the solution process is over, you may
represent the optimal strategy as a set of CPTs

representing the policies, and you will have the
Bayesian network in Figure 3.

This process is off-line, and it may require
very much space and time. However, as long
as the task is tractable the solution phase is not
really a problem.

Note that if the ID contains only one decision,
then the information variables are instantiated
when a decision is to be taken, and the task is
reduced to propagation in a Bayesian network.
That is, you need not specify the parents of the
decision variable, and you have a very compact
and efficient representation of the optimal pol-
icy.

D1

B D2

C D3

E U

X1

Y1

Z1

A

X2

Y2

Z2
X3

Y3

Z3

Figure 1: We shall refer to this ID throughout as an illustrating example.

D1

D3B

D2

C

U

X1

E

Y1

Z1

A

X2

Y2

Z2

X3

Y3

Z3

Figure 2: The node for the last decision is substituted with a chance node representation of a policy.

X1

D1
D3

D2

B
E

Y1

C

Z1

A

X2

Y2

Z2

X3

Y3

Z3

Figure 3: A representation of a strategy. Actually, if we are not interested in the expected utilities,
we only need the conditional probabilities for the D-nodes

2 On-line use of a solved influence

diagram

We look at situations where the influence dia-
gram is too complex for on-line use. In particu-
lar, we consider the situation where the domains
for the policies are too large. We shall assume
that this is the case for the ID in Figure 1.

Now, consider the last decision, D3. When
you decide on D3, you know the states
of X1, Y 1, Z1,D1,X2, Y 2, Z2,D2,X3, Y 3, and
Z3. Then the model in Figure 4 can be used.
The information is entered as evidence, and the
expected utilities for D3 are easily calculated.

D3

E UA

X1

Y1

Z1

B

X2

Y2

Z2

C

D1

D2

X3

Y3

Z3

Figure 4: An ID for on-line representation of the
last decision.

On the other hand, when deciding D2, you
need to calculate the expected utility of each
option, and in order to do that you need to
know the policy δD3 for the future decision.
Representing δD3 as in Figure 2 is intractable.
You need an alternative representation, and you
have to settle with an approximate prepresenta-
tion. What is crucial for an approximate repre-
sentation is that it for each configuration over
past(D2) reflects the order of expected utili-
ties for D2. (If X is a decision variable, then
past(X) denotes the set of variables known at
the time of deciding on X).

3 Information abstraction

An approximation approach is information ab-

straction: introduce extra structure connect-
ing the information with the decision. There
are several schemes for information abstraction.

For example, past(D2) way be represented by a
history variable. An immediate representation
would be a chance node H with past(D2) as
parents, but if you were faced with intractably
learge policy domains, then the CPT for H will
also be intractable. Another representation can
be a history belt (see Figure 5).

Domain knowledge can help to determine a
good way of introducing history variables. We
shall later discuss ways of learning history vari-
ables from the initial ID specification.

We propose another scheme for information
abstraction, conditional decomposition of do-

mains. Let δD be a policy for a decision variable
D. A way of decomposing the domain of δD

would be to assume that the policy has the form:

if f(X) then g(Y) else h(Z),

where X,Y,Z are subsets of the domain, and
f is a Boolean valued function. The function f

may be an alert function. For example, an un-
manned vehicle will focus on fullfilling its mis-
sion unless an alert tells it to return for more
fuel. In a game scenario, you may try to meet
your own goals. However, if your opponent is
close to achieving hers, you must focus on block-
ing her way.

If you from domain knowledge know how δD

can be decomposed, you can exploite it in the
solution phase, and you may not need an ap-
proximate representation after all. Using the
language sequential influence diagrams (SIDs)
(Jensen et al, 2006), a specification would look
like the one in Figure 6, where X = {E,F}, Y =
{C,E}, Z = {F,G}.

D1

B

D2

U
A

C

E

F

G

f

1

0

Figure 6: An SID representing a decision with a
policy of the form if f(E,F) then g(C,E) else

h(E,G).

D2

H7

C

U

X1

H1

H2

Y1

Z1 H3

H4

D1

B

H5

A

X2

Y2

Z2

H6

D3

E

X3

Y3

Z3

Figure 5: An ID for representing δD2. δD3 is approximated through a belt of history variables
ending with H7, wich is assumed to be observed.

The specification in Figure 6 can be translated
to two IDs; one for determining δD1(C,E) with
f = 1 inserted as evidence, and one for δD2 with
f = 0 inserted.

In an ID with several decisions, the decom-
posed policy from Figure 6 can be represented
as in Figure 7.

A

C

E

F

G

D1

D Bf

D2

Figure 7: A BN representation of the decom-
posed policy from Figure 6. The nodes D1 and
D2 have an extra state "no decision".

As indicated above, conditional decomposi-
tion may come up naturally from the domain.
We will later discuss how artificial decomposi-
tions may be learned from the ID specification.

3.1 Overestimation of information

The abstractions presented above underestimate
the information available when the decision ac-
tually is taken. The information is used to esti-
mate the distribution of the parents of the rel-
evant utility functions, and with abstraction of

information, this estimate will be less precise.

You may also overestimate the information.
For example, consider the ID in Figure 8.

D1

B

E

D2 C U

A

T1

T2

T3

T4

T5

T6

T7

Figure 8: An ID with seven different tests for
the same variable.

When deciding D1, it may be reasonable to
say that when you in the future decide D2 you
will know the state of B, and a good approxi-
mating ID for calcultating the policy for D1 will
be the one in Figure 9.

We shall not pursue overestimation of infor-
mation further in this paper.

D1

B

E

D2

C U

A

Figure 9: An ID for calculating a policy for D1
in Figure 8.

4 Space issues

Just to get an impression of the space issues,
consider the example ID in Figure 1. Let the
decision nodes and the observed nodes have 5
states, and let the background nodes A,B,C

and E have 25 states. Then the maximal clique
in a minimal clique junction tree is of size
6, 3 · 109. The maximal clique size in a junc-
tion tree for the representation in Figure 3 is
2, 5 · 108.

If we in the representation with history vari-
ables (Figure 1) let H1 have ten states and in-
crease the number of states by two up to H7
with 22 states, then a junction tree for the model
in Figure 1 has size 3, 5 · 106, and the maximal
clique has size 1, 5 · 106. If we instead start with
six states for H1, increase by one up to H7 with
12 states then the junction tree size is 430,000
and the maximal clique has size 187,000.

If we approximate δD3 with the policy
"if f(Z1, Z2, Z3) then g(X1,X2,X3,D1,D2)
else h(Y 1, Y 2, Y 3,D1,D2)", then the junction
tree has maximal clique size of 3, 9 · 106 and if
we use "if f(Z1, Z2, Z3) then g(X1,X2,X3)
else h(Y 1, Y 2, Y 3)", then the maximal clique
size is 165,000.

5 Learning information abstraction

Consider Figure 4, and assume that we wish to
learn a representation of δD3 as used in Fig-
ure 5. In order to do so you can establish a
sample by exploiting a representation proposed
by (Cooper, 1988). The decision node is sub-
stituted by a chance node with even priors, and
the utility node is substituded by a chance node
with two states (1 and 0). The conditional prob-
ability table P (U = 1|pa(U)) represents normal-
ized utilities. For the resulting network it holds

that P (D|U = 1, e) is proportional to the ex-
pected ulitities for D given the evidence e. Now,
sample from the network with U = 1 inserted.
By removing the unobserved variables (and U)
from the table, you have a sample representing
P (D|pa(D)), which is proportional to the ex-
pected utilities of D given pa(D).

5.1 An example

Take the simple example in Figure 10. The
parameters in the model are so that the policy
for D is characterized by the three functions
(f(Z), g(X), h(Y)) in the following way:

if Z = y then

(if X = y then D = a1 else D = a2)

else (if Y = y then D = a3 else D = a4).

Past of D

D

B U

X

Y

Z

A

Figure 10: A simple ID to illustrate learning of
information abstraction.

The model is transformed to the Bayesian net-
work in Figure 11, where P (D|X,Y,Z,U = 1)
is proportional to EU(D|X,Y,D), and therefore
δD(X,Y,Z) = argmaxDP (D|X,Y,Z,U = 1).

A

X

Y

Z B

D

U

Figure 11: The Bayesian network for sampling.
U = 1 is inserted before sampling

We sampled 10.000 cases from the model in
Figure 11 with U = 1 inserted, and we used
the EM algorithm (Lauritzen, 1995) to learn the
unknown parameters P (f |Z), P (DX|f,X), and
P (DY |f, Y) in Figure 12.

A

X

Y

Z

DX

D

DY

f

Figure 12: A decomposition model. The CPTs
for f,DX, and DY are unknown

The CPT for D reflects that if f = 1 then
D = DX, and if f = 0 then D = DY . The
learning resulted in CPTs for (f,DX, and DY)
which are very close to the functions (f, g, h).
Finally, we modify the CPTs to give probability
1 to the state of maximal probability, and we
ended up with the correct policy.

If you do not know the form of the decom-
position, then you have to experiment with dif-
ferent structures. For this example, we tried to
learn a policy characterized by the three func-
tions (f(X), g(Z), h(Y)). The resulting struc-
ture had 5 out of 8 decisions correct.

In the model in Figure 13 we have introduced
the history variables H1 with three states, and
H2 with four states. The learning procedure re-
sulted in parameters such that the correct deci-
sion in all eight cases have maximal probability.
To modify the tables to give probability 1 to the
decision with maximal probability, you can use
various tuning methods (see for example (Jensen
and Nielsen, 2006)).

A

X

Y

Z

H1

H2 D

Figure 13: A model with history variables. The
CPTs for H1,H2, and D are unknown.

6 Discussion and future work

The size of domains of decision policies is a ma-
jor obstacle in practical use of decision theory
for decision problems involving a sequence of
decisions. We have in this paper analysed the
problem and we have proposed some schemes

for addressing the problem. First of all we
need a larger set of schemes for information
abstraction, and we need experience with un-
derestimation as well as overestimation of in-
formation. Issues to study will be complex-
ity as well as precision. We have in this pa-
per presented a method for learning parameters
when the structure for information abstraction
is given. Learning structure is more intricate.
As neither the number of latent variables nor
the number of states of the variables are known,
the only method known to us is trial and error.
We need a systematic way of passing through
possible structures.

An alternative method for addressing in-
tractably large decision domains is LIMIDs
(Nilsson and Lauritzen, 2001). The approach is
to remove some variables from the domains. For
the ID in Figure 1, a LIMID structure could be
that the decision maker only knows the current
information and the previous decision. This is
illustrated in Figure 14, where the policies are
represented as CPTs for D1,D2 and D3.

Nilsson and Lauritzen propose an iterative
procedure for determining approximate optimal
policies: start with an arbitrary set of policies
and solve the three single decision IDs; use the
calculated policies as CPTs and solve the new
single decision ID. Continue so untill no policy
is changed.

Following the approach presented in this pa-
per, we would solve the last decision through
sampling and use of the EM algorithm to de-
termine a policy for D3; then use this policy to
determine a policy for D2 through sampling and
EM, and eventually solve the ID for D1. It is an
interesting issue for further research to compare
these two approaches.

References

Gregory F. Cooper (1988). A method for using belief
networks as influence diagrams. Fourth Workshop
on Uncertainty in Artificial Intelligence: 55–63.

Finn V. Jensen, Thomas D. Nielsen and Prakash P
Shenoy (2006). Sequential influence diagrams:
A unified asymmetry framework. International
Journal of Approximate Reasoning, 42(1–2): 101-
118.

X1

D1

B D2

Y1

Z1

A

X2

Y2

Z2

C
D3

E

X3

Y3

Z3

Figure 14: A LIMID structure representing decisions where only the current information and the
previous decision are included in the decision domain

Finn V. Jensen, Thomas D. Nielsen (2007). Bayesian
Networks and Decision Graphs. Springer, New
York.

Frank Jensen, Finn V. Jensen and Søren L. Dittmer
(1994). From Influence Diagrams to Junction
trees. Tenth Conference on Uncertainty in Arti-
ficial Intelligence, Morgan Kaufmann: 367–374.

Steffen L. Lauritzen (1995). The EM algorithm for
graphical association models with missing data.
Computational Statistics and Data Analysis, 19:
191–201.

Dennis Nilsson and Steffen L. Lauritzen (2001). Rep-
resenting and solving decision problems with lim-
ited information. Management Science, 47: 1235-
1251.

Ross Shachter (1986). Evaluating influence dia-
grams. Operations Research, 34(6): 871–882.

Prakash P. Shenoy (1992). Valuation Based Systems
for Bayesian Decision Analysis. Operations Re-
search, 40(3): 463–484.

