
Proceedings of the
4th European Workshop on Probabilistic Graphical Models





Proceedings of the

4th European Workshop on
Probabilistic Graphical Models

Hirtshals, Denmark, September 17-19, 2008

Manfred Jaeger, Thomas D. Nielsen, Editors

Sponsored by



c©2008 The authors

Cover design by M. Jaeger and T. D. Nielsen.

Electronic version of ’Dania Regnum’ map created by the UCLA

library and used with permission.



Conference Organization

Organizing Committee

Finn V. Jensen
Uffe Kjærulff

Program Chairs

Manfred Jaeger
Thomas D. Nielsen

Program Committee

Concha Bielza
Adnan Darwiche
Luis M. de Campos
Francisco J. D́ıez
Marek J. Druzdzel
Ad Feelders
Julia Flores
José A. Gámez
Christophe Gonzales
Rolf Haenni
Juan F. Huete
David Rios Insua
Radim Jiroušek
Kristian Kersting
Tomáš Kočka
Helge Langseth
Pedro Larrañaga
Peter Lucas
Fero Matúš
Seraf́ın Moral

Jens D. Nielsen
Kristian G. Olesen
José M. Peña
José M. Puerta
Silja Renooij
Teemu Roos
Antonio Salmerón
Prakash P. Shenoy
James Q. Smith
Harald Steck
Milan Studený
Marco Valtorta
Linda van der Gaag
Jirka Vomlel
Marta Vomlelová
Jon Williamson
Pierre-Henri Wuillemin
Yang Xiang
Marco Zaffalon
Nevin Zhang

Additional reviewers

Mark Chavira
Tao Chen
Arthur Choi
Juan L. Mateo
James Park
Jingsong Wang





Preface

The European Workshop on Probabilistic Graphical Models (PGM) is a biennial workshop, which
was first held in Cuenca, Spain, in 2002. The two following workshops took place in Leiden, the
Netherlands (2004) and in Prague, the Czech Republic (2006). This year’s workshop will take place
in Hirtshals, Denmark, from September 17th to September 19th, 2008. Hirtshals is located on the
north-western coast of Denmark, approximately 70 kilometers from Aalborg.

The aim of the workshop is to bring together people interested in probabilistic graphical models
and provide a forum for discussion of the latest research developments in this field. The workshop
is organized so as to facilitate discussions and collaboration among the participants also outside
the workshop sessions.

This year there were 47 papers submitted to the workshop. The papers went though a rigorous
reviewing process, where the majority of the papers were reviewed by three program committee
members. Of the 47 submitted papers, 20 papers were accepted for plenary presentation and 19
papers were accepted for poster presentation.

The reviewing process took place in the period from May 9th to June 10th. There were 40
members in the program committee, and each committee member received approximately 3.525
papers for review. In addition to the program committee members, there were also six additional
reviewers to help with the reviewing process.

We would like to thank the program committee members and the reviewers for all the work they
have done in order to make PGM’08 a success. The reviews that we received were of general high
quality and included constructive comments to help the authors improve upon their papers.

Finally, we would like to thank Helene Blaschke, Lene Winter Even, and Ulla Øland for their
help organizing the conference.

September 2008 Manfred Jaeger and Thomas D. Nielsen





Table of Contents

Query-Based Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
John M. Agosta, Thomas R. Gardos and Marek J. Druzdzel

High-Dimensional Probability Density Estimation with Randomized Ensembles of
Tree Structured Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Sourour Ammar, Philippe Leray, Boris Defourny and Louis Wehenkel

Generalized Loopy 2U: A New Algorithm for Approximate Inference in Credal Networks . . . . . 17
Alessandro Antonucci, Marco Zaffalon, Yi Sun and Cassio P. de Campos

Carmen: An Open Source Project for Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . 25
Manuel Arias and Francisco J. Dı́ez

Bayesian Networks: the Parental Synergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Janneke H. Bolt

A Score Based Ranking of the Edges for the PC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A. Cano, M. Gómez-Olmedo and S. Moral

A Bayesian Approach to Estimate Probabilities in Classification Trees . . . . . . . . . . . . . . . . . . . . . . . 49
Andrés Cano, Andrés Masegosa and Seraf́ın Moral

Efficient Model Evaluation in the Search-Based Approach to Latent Structure Discovery . . . . . 57
Tao Chen, Nevin L. Zhang and Yi Wang

Measuring Efficiency in Influence Diagram Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Barry R. Cobb

Attribute Clustering Based on Heuristic Tree Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Jorge Cordero H. and Yifeng Zeng

A Novel Scalable and Correct Markov Boundary Learning Algorithm Under Faithfulness
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Sergio Rodrigues de Morais and Alex Aussem

Marginals of DAG-Isomorphic Independence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Peter R. de Waal

Policy Explanation in Factored Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Francisco Elizalde, L. Enrique Sucar, Manuel Luque, Francisco Javier Dı́ez and Alberto Reyes

Learning Naive Bayes Regression Models from Missing Data Using Mixtures of
Truncated Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Antonio Fernández, Jens D. Nielsen and Antonio Salmerón

The Probabilistic Interpretation of Model-Based Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Ildikó Flesch and Peter J. F. Lucas

Efficient Bayesian Network Learning Using EM or Pairwise Deletion . . . . . . . . . . . . . . . . . . . . . . . . 121
Olivier C. H. François

Robust Classification Using Mixtures of Dependency Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
José A. Gámez, Juan L. Mateo, Thomas D. Nielsen and José M. Puerta

Towards Consistency in General Dependency Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
José A. Gámez, Juan L. Mateo and José M. Puerta

Sensitivity of Gaussian Bayesian Networks to Inaccuracies in Their Parameters . . . . . . . . . . . . . 145
Miguel A. Gómez-Villegas, Paloma Main and Rosario Susi



Approximate Representation of Optimal Strategies from Influence Diagrams . . . . . . . . . . . . . . . . 153
Finn Verner Jensen

Complexity Results for Enumerating MPE and Partial MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
Johan Kwisthout

Parameter Estimation in Mixtures of Truncated Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Helge Langseth, Thomas D. Nielsen, Rafael Rumı́ and Antonio Salmerón

An Anytime Algorithm for Evaluating Unconstrained Influence Diagrams . . . . . . . . . . . . . . . . . . . 177
Manuel Luque, Thomas D. Nielsen and Finn V. Jensen

An Independence of Causal Interactions Model for Opposing Influences . . . . . . . . . . . . . . . . . . . . . 185
Paul P. Maaskant and Marek J. Druzdzel

New Methods for Marginalization in Lazy Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Anders L. Madsen

Solving CLQG Influence Diagrams Using Arc-Reversal Operations in a Strong
Junction Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Anders L. Madsen

Computing the Multinomial Stochastic Complexity in Sub-Linear Time . . . . . . . . . . . . . . . . . . . . . 209
Tommi Mononen and Petri Myllymäki

Structural-EM for Learning PDG Models from Incomplete Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Jens D. Nielsen, Rafael Rumı́ and Antonio Salmerón

Logical Properties of Stable Conditional Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Mathias Niepert and Dirk Van Gucht

A* Wars: The Fight for Improving A* Search for Troubleshooting with Dependent Actions . 233
Thorsten J. Ottosen and Finn V. Jensen

Discrimination and its Sensitivity in Probabilistic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Silja Renooij and Linda C. van der Gaag

An Empirical Analysis of Loopy Belief Propagation in Three Topologies: Grids,
Small-World Networks and Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
R. Santana, A. Mendiburu and J. A. Lozano

Factorized Normalized Maximum Likelihood Criterion for Learning Bayesian
Network Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Tomi Silander, Teemu Roos, Petri Kontkanen and Petri Myllymäki

Large Incomplete Sample Robustness in Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Jim Q. Smith and Alireza Daneshkhah

Eliciting Expert Beliefs on the Structure of a Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
Federico M. Stefanini

A Geometric Approach to Learning BN Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281
M. Studený and J. Vomlel

An Influence Diagram Framework for Acting Under Influence by Agents with
Unknown Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Nicolaj Søndberg-Jeppesen and Finn Verner Jensen

Arithmetic Circuits of the Noisy-Or Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297
Jiř́ı Vomlel and Petr Savicky

Tightly and Loosely Coupled Decision Paradigms in Multiagent Expedition . . . . . . . . . . . . . . . . . 305
Yang Xiang and Franklin Hanshar







Query-based Diagnostics

John M. Agosta and Thomas R. Gardos
Intel Corporation

2200 Mission College Boulevard
Santa Clara, CA 95054, USA

Marek J. Druzdzel
Faculty of Computer Science, Bia lystok Technical
University, Wiejska 45A, 15-351 Bia lystok, Poland

and Decision Systems Laboratory
School of Information Sciences

and Intelligent Systems Program
University of Pittsburgh

Pittsburgh, PA 15260, USA

Abstract

We describe an approach to modeling diagnostic problems that is based on a passive obser-
vation of a diagnostician’s work-flow and recording their findings and final diagnosis, from
which the model can be modified directly, or improved by learning from cases so acquired.
While the probabilistic model of a system under diagnosis is necessarily simplified, based
on three-layer Bayesian networks with canonical interactions among the network variables,
we are able to reduce greatly the most important bottleneck—the knowledge engineering
effort that goes into model building. Our initial experience with an implementation of
this idea suggests that the sacrifices in diagnostic quality are not large, while gains are
tremendous.

1 Introduction

It is common knowledge that in today’s stage of
development of normative methods, i.e., meth-
ods based on probability theory and decision
theory, it is not the speed of the algorithms that
is a bottleneck. Even though probabilistic infer-
ence has been shown to be NP-hard (Cooper,
1990) and there exist models that will be too
challenging even for a supercomputer, practical
systems are capable of solving models consist-
ing of hundreds or even thousands of variables
within seconds. The true bottleneck in this ap-
proach is the knowledge engineering effort that
goes into constructing models. It is our expe-
rience, in the domain of machine diagnosis at
Intel and elsewhere, that diagnosing a complex
manufacturing device requires an initial invest-

ment of possibly person-years of knowledge en-
gineering effort. Given that building probabilis-
tic models is a task that requires considerable
knowledge and experience, the initial costs are
too prohibitive in most practical environments.
In order to disseminate the otherwise attractive
probabilistic approach, one needs to find ways
of overcoming the knowledge engineering bot-
tleneck.

The conventional procedure for implement-
ing knowledge-based systems separates model-
building from model usage. Different actors per-
form tasks of building and running the model
at different times (Schreiber et al., 2000). Con-
ventionally a diagnostic session consists of a se-
ries of observations, each, in turn, generating
a query to a previously formulated model that
returns recommendations on the next step in
the diagnosis. (For ease of exposition, we will



abbreviate the phase “during the steps in a di-
agnostic session” as simply “during diagnosis.”)
As the diagnosis progresses, possible causes that
initiated the session are clarified, ending in a
recommendation of a repair or, in clinical cases,
of a treatment and prognosis.

In this paper, we consider an approach that
relaxes this constraint by interleaving model
building and refinement, and execution. A sim-
ilar situation occurs with models derived from
data: Learning a model has been traditionally
a separate activity, often quite computation-
ally intensive, that precedes use of a model for
inference. However, recent interest in online-
learning augments this approach, so that learn-
ing and inference are inter-twined (Blum, 1998).
Query-based diagnosis is analogous in that the
model may change during use. However our ap-
proach is quite different, and we do not draw
upon techniques developed for on-line learning.
We explore here two approaches to mingling
model refinement with the diagnostic session,
one derived from study of work-flow, the other
of learning from cases.

By query-based diagnosis we mean that the
diagnostic model is created and modified in the
course of the diagnosis. Is is fluid and not en-
tirely determined before the diagnosis begins.
The model applied during the diagnostic session
is conditioned on the initial query (sometimes
called the primary-complaint) and the queries
made during the session. It is the structure of
the model that changes, not only the state of
information consisting of the observations used
for inference. The implication of the term is also
that the case data on which the model is based
may be retrieved after the session begins, and
learning from the case data may take place si-
multaneously with the diagnosis. This is made
possible, in part, by the computational power
of the current hardware.

In this paper, which is the first time this idea
has been applied to simplify and improve elici-
tation, we first review a few pre-cursors in the
literature, explain the foundations of our ap-
proach, discuss the system’s architecture as it
evolved from study of work-flow, give some ini-
tial insights on how the computational problems

can be addressed, and finally present the first
prototype, which can be accessed by the reader
on-line.

2 Background

The possibility of learning a model for in-
ference, conditional on specific circumstances
arose as advances in algorithms and hardware
(e.g. “Moore’s law”) made real-time learning
practical. (Wellman et al., 1992) was an early
proponent of building a query-specific proba-
bilistic decision model from a knowledge base.
This line of research has matured and prolifer-
ated numerous automated Bayes network con-
struction methods, for instance, MEBN that
constructs networks from “fragments” based on
attributes of the problem. These methods are
insightful on translating a database represen-
tation into a Bayes network, but do not ad-
dress the question of elicitation during diagno-
sis, but raise a different set of elicitation ques-
tions.(Laskey, 2008)

An example of a full-fledged system that
demonstrates query-driven model-building is
the Priorities system, and the Coordinate

system that grew out of it. They implement
inference models to predict time intervals of in-
dividual’s activities by retrieving relevant cases
from a database of activities. As the authors
describe it:

Rather than attempting to build a
massive static predictive model for all
possible queries, we instead focus the
analysis by constructing a set of cases
from the event database that is consis-
tent with the query at hand.(Horvitz
et al., 2002)

Conceivably the range of models that the
system is capable of generating makes pre-
constructing the models practically impossible.

Similarly, Visweswaran and Cooper have pro-
posed supervised classifier learning, under the
term “instance-based” classifiers, that general-
izes “lazy” learning of classifiers. (Visweswaran
and Cooper, 2004) Their approach averages
over related instance models to avoid pitfalls of
relying on too restrictive a query.



All these approaches condition the model on
the query addressed to it; in contrast, we at-
tempt in addition to learn from user’s actions
while the user is applying the model.

3 Origin of our Approach

As knowledge-engineering practitioners are well
aware, elicitation of causal relationships and
model structure places large cognitive demands
on domain experts. Part of the challenge is the
accessibility of knowledge; during an elicitation
session, the domain expert is faced with a set of
hypothetical circumstances, that often consist
of questions about rare occurrences (since de-
scriptions of common occurrences can often be
derived from data). One would like to elicit this
knowledge when it is current with the activities
of the expert. Why not gather this knowledge at
the time it is used? During diagnosis the expert
is immersed in the problem and the causal rela-
tionships have a cognitive immediacy not avail-
able generally. Incidentally this may be true
at other times, like at the time that the target
system is designed and validated.

In our experience, we find that combining
model building with receiving recommendations
from the model is natural for our users. This
became apparent during an application project-
review with our client, who had designed an al-
ternate approach for supporting diagnosis. Our
application, in conventional fashion, ran infer-
ence cycles, based on the user’s current observa-
tions, to compute posterior probabilities of the
faults present in the model. Our client’s appli-
cation closely followed the steps outlined in the
work flow for the task. It had options for users
to create new observations and to suggest pos-
sible causes relevant to the problem during the
diagnostic session. It lacked any capability for
inference, however, and merely collected cases
that could be reviewed in subsequent situations.
The challenge was put to us to combine infer-
ence with the ability to modify the diagnostic
model as evinced by the user’s suggestions of un-
modeled causal relationships. The manufactur-
ing equipment domain to which this is applied
is dynamic with method and process modifica-

tions occurring monthly, and without software
support that can keep pace with the changes.
And it is fair to say that our client has a sophis-
ticated user in mind, whose understanding of
the diagnostic problem at hand is on a par with
the model they are running. We embraced their
approach as one solution to the well-recognized
“knowledge elicitation bottleneck.”

4 Diagnostic Work-flow

Diagnostic work-flow is the choice of steps avail-
able to the user to pursue the diagnosis. The
software design codifies the process both to
guide the user, and to capture cases for solv-
ing similar problems should they arise again.
In addition to the existing work-flow we add a
mechanism for elicitation of causes in the midst
of the problem-solving work-flow that they are
familiar with.

The process consists of an interaction that
forms a dialog where at each step the applica-
tion suggests the next actions by ranking possi-
ble causes by their posteriors and tests by their
diagnostic value, based on observations already
entered into the model. This fault set is dis-
played as a ranked list of possible diagnoses
along with an indication of the posterior proba-
bilities of the faults, as computed by the under-
lying model. In addition a list of suggested ob-
servations is displayed from those observations
that reside in the model. In suggesting observa-
tions, the Bayesian network engine ranks them
by expected gain in entropy among the faults.

The user has four choices at each step:

1. Select an existing observation variable to
instantiate;

2. Create new test observation;

3. Create a new hypothesized fault; or

4. End the diagnostic cycle by selecting a
cause and making the associated repair.

Creating new observations or faults modify
the causal structure of the model, requiring the
user to indicate what observations a fault man-
ifests, and correspondingly, what faults an ob-
servation implies. Causal relationships are the



primary semantics of the model and the user
deserves some guidance on when they are nec-
essary. For this we bring up a “pop-up” editor,
asking the user to associate a new fault with ob-
servations and vice versa. A screen shot of this
editor is shown in Figure 1.

A primary intent of building the application
around work-flow is to hide the Bayes network
from the user. In doing so we make several sim-
plifying assumptions on model structure: The
model is a bi-partite graph with occasional con-
text nodes to condition faults; all nodes have bi-
nary state spaces; all observation nodes assume
Independence of Causal Influences (ICI); and all
nodes when initially created are assigned default
probabilities so that the user does not need to
enter numeric values. These assumptions may
appear restrictive, however they should be con-
sidered in the context of the feeble guidance that
current support tools offer.

By assuming Independence of Causal Influ-
ences for all observation nodes, the addition
or removal of a cause translates directly into
the addition or removal of one arc and modu-
lar change in the CPT of the child node. This
is critically necessary for modification of the
model to incorporate causal knowledge elicited
during diagnosis, and makes model modification
straightforward. The notion of Independence
of Causal Influences (ICI) has been described
many times in the literature, usually under a
somewhat confusing term causal independence.
Please see (Dı́ez and Druzdzel, 2008) for a re-
view of canonical models, including ICI models.

4.1 Causal Work-flow Example

Aside from the modeling and computational
challenges to updating the model within a di-
agnostic session, the work-flow of such a session
presents no surprises to the user. Consider this
“use-case” example of diagnostic support for a
simplified automobile diagnosis.

The user begins the session by entering the
primary complaint, of smoke visible in the ex-
haust. The application responds by referring to
the appropriate, if incomplete, model, and sug-
gests a list of possible causes, such as worn pis-
ton rings, etc. To isolate the likely cause, the

user proposes to do a compression test, a test
that is not in the existing model. When the user
enters the description of the test, she also des-
ignates other possible causes which are relevant
to it, both from a list of those already in the
model, and those she might create, in addition
to worn piston rings, such as an exhaust valve
leak. More significant is that she is steered to
not designating causes to which the test is not
relevant, making the test a good differentiator
among them. Similarly the user could add a
new possible cause of the primary complaint.
She would then be prompted at that step in the
session to designate the relevant observations.
The session continues through diagnostic cycles
by the user taking one of the four actions listed
above.

The result of this interaction style is a model
that makes tradeoffs that lean toward a more
dynamic, up-to-date model at the cost of cur-
rent model accuracy and completeness. The ap-
propriate degree to which to shift the interac-
tion style toward dynamicism depends strongly
on the domain.

5 A Working Prototype

We have implemented the ideas presented
in this paper in a prototype diagnostic sys-
tem, called Marilyn, available to inter-
ested readers at the Decision Systems Lab-
oratory’s web site at the following location:
http://barcelona.exp.sis.pitt.edu/. A
sister implementation to Marilyn is in prepa-
ration at Intel, to be evaluated on machinery
maintenance tasks. We will describe the aca-
demic prototype below, understanding that the
two implementations share many features.

From the point of view of user work-flow,
Marilyn appears as a smart data-entry module
that collects observables, such as symptoms and
test results, context information, such as the age
of a device, prior problems with it, etc., and fi-
nally, the final diagnosis. Marilyn involves its
user in a dialog that focuses on entering a di-
agnostic case and does not reveal the underly-
ing probabilistic model. The target users are
diagnosticians, possibly working in a machine



Figure 1: When the user enters a variable name that is not already in the current model, they are presented with
a pop-up editor (here shown in yellow and largely hidden from view), for entering causal information. We see here a
screen shot of the GeNIe editor that shows the model fragments generated by previous diagnoses super-imposed over
the panes of the web application. The model network fragments are not shown to the user in the application.

repair shop. Marilyn takes a very gentle at-
titude towards the user—it merely suggests a
set of possible diagnoses from among those di-
agnoses that have been entered in the past that
are contained in the current model and implied
by the observations entered.

5.1 The System Architecture

The intent of making Marilyn a web-based
program is to make the system accessible from
any computer through the Internet. Marilyn

prototype consists of three elements: (1) user
interface running on the client, (2) database of
cases, and (3) a Bayesian reasoning engine based
on SMILE, both running at the server. Infor-
mation that is entered by the user is stored in a
database (Figure 2 shows the database schema,
which illustrates the components of the infor-
mation collected from the user during a diagnos-
tic session). The database is used by the user
interface module in its auto-complete function.
The database is also accessed directly by the

Figure 2: Entity-relationship diagram for the database
storing diagnostic information in Marilyn



Bayesian reasoning engine, which constructs on
the fly a three-layer Bayesian network that is
used in deriving suggested diagnoses and sug-
gested observations. As revealed in Figure 1, it
is possible to export the underlying network to
GeNIe for the purpose of the examination by a
knowledge engineer.

5.2 The Quality of the System’s Advice

In our experience, the quality of Marilyn’s
initial advice (during the first 10-20 diagnos-
tic cases) is low, as the system is not aware
of most of the possible diagnoses. As time
progresses and the number of cases entered in-
creases, the quality of the model increases and
so does the quality of the system’s advice. It
is our expectation that in such environments as
help desks, where tens of hundreds of cases are
entered daily, Marilyn’s approach will outper-
form novice diagnosticians fairly quickly.

5.3 Managing Variables

A downside of the system’s flexibility toward the
users being able to enter any text as the name
of variable is the possible proliferation of similar
variable names. While its user is typing a name,
Marilyn offers suggestions from the database,
based on simple techniques for string matching
(along the lines of the “auto-complete” function
of web browsers). We believe that for a system
like Marilyn to truly scale, this flexibility is
necessary; however this invites confusion due to
model variables that are named slightly differ-
ently but stand for the same concept.

In the future we hope to augment the string
matching auto-complete feature of Marilyn’s
user interface with more sophisticated statis-
tical language processing techniques. The in-
tent would be to accommodate common typo-
graphic errors using string edit distance mea-
sures as well as more challenging synonymous
labels through semantic similarity techniques.
The ultimate goal is to make this system scale
to large models with as little expert user inter-
vention as possible.

Also to support scaling, we believe that it is
necessary to equip the system with what we call
expert mode in which an expert knowledge en-

gineer downloads the underlying Bayesian net-
work, analyzes it, corrects it as necessary, and
uploads it back to the system. The frequency of
this knowledge base maintenance task depends
on the speed of growth of the model. Similarly,
the expert might review cases generated by di-
agnostic sessions that will be used in learning
to refine the model. Over time the frequency of
reviewing the expert model should converge to
a low level.

An issue related to the expert mode and to
the initial weak performance of the system is
the possibility jump-starting the initial domain
model.1 The quality of this initial model is not
critical and the expert can spend just a little
bit of time entering the most important domain
variables. We expect that the quality of this ini-
tial model will be improved fairly quickly as the
system is fielded and diagnostic cases entered.

5.4 Managing Model Growth

One technical challenge that we are facing with
a system of this type is a possible uncontrolled
growth of the underlying model. Model size is
normally not a problem, as a reasoning engine
such as SMILE is able to handle huge networks
and propagate evidence in them within a frac-
tion of a second. What is more troublesome
are certain undesirable trends in the network
topology. If the number of parents of a single
node, for example, grows above 15, this node
may pose a considerable challenge to the algo-
rithms. Even though Marilyn represents all
conditional probability distributions as DeMor-
gan gates, a variety of ICI model (a detailed
exposition of the DeMorgan gate, a natural and
intuitive combination of Noisy-OR and Noisy-
AND gates can be found as a separate paper in
this volume (Maaskant and Druzdzel, 2008)),
the size of the conditional probability table is a
challenge for the algorithms. Our initial way of
dealing with this problem is imposing a maxi-
mum on the number of parents of every single
node. We control this by means of removing

1Such model can be created manually, or by convert-
ing an existing Bayesian network to a bipartite graph.
GeNIe in fact contains a function to this effect (see the
Diagnosis menu).



weaker connections in the model. In the next
section we speculate about more rigorous meth-
ods for modifying models once fielded.

6 Learning from just a Few Cases

It is natural to consider how automated learn-
ing can be applied in query-based diagnosis by
using a selection of cases to modify an existing
model. In this section we state this problem,
and make a few observations about how one
might go about it; the solution to it is outside
the scope of this paper. The logging function of
the system will generate supervised cases of ses-
sion outcomes that can be used to improve the
accuracy of the model. Much like a case-based
reasoning system, the process envisioned con-
sists of retrieving cases from a database when
a new diagnosis starts. The process resembles
conventional case-based reasoning, but enforces
the strong consistency conditions of a Bayes net-
work model.

Learning from cases is an additional way to
exploit user work-flow, however unlike modifica-
tions made from elicitation of causal links, there
is no direct way to modify the network by in-
spection of a set of cases. The problem is to
determine if the set is consistent, and if so, to
learn a model consistent with the set. To do
this we offer a precise definition of probabilistic
cases and case consistency:

Consider a database of cases indexed by j,
corresponding to a selected set of diagnostic ses-
sions that have been resolved. A case is the rel-
evant part of the diagnostic state at the end of
a diagnosis that has been validated, perhaps by
replace-and-test, or by an expert’s opinion. An
individual case contains both evidence consist-
ing of the complete set of observations from the
session and the posterior of the top (or top few)
faults.

Definition 1. Case. Given evidence for
case j, e(j) = {e(j)}i=1...Ij

and the poste-

rior of faults f (1) . . . f (k) obtained by inference
from the current model Mj , a case j is list
of ordered fault marginals for that evidence:

P

(

f (1) | e(j), Mj

)

≥ . . . ≥ P

(

f (k) | e(j), Mj

)

.

Definition 2. Case Consistency. A model M∗

is consistent with a case j, to level k, if the list of
ordered fault marginals given the evidence e(j)

agrees with the case: P

(

f (1) | e(j), M∗

)

≥ . . . ≥

P

(

f (k) | e(j), M∗

)

.

Clearly a case j is consistent with the model
Mj that generated it.

6.1 Stochastic versus Epistemic

Uncertainty

Given a large number of such cases, one may
be tempted to apply conventional supervised
learning techniques to refine the existing model.
Putting aside the problem of a limited number
of cases, and that the case consists most likely
almost entirely of missing values, we argue that
this is inappropriate from the user’s point of
view. The user considers a case as specifying
the exact effect that they expect to see when
the case is run on the correct model. The prob-
abilities in the case are not variations due to a
random sample, rather they indicate epistemic
uncertainty—the knowledge, or lack of it in the
diagnostic outcome given the observation set.

When a database of observations contains
stochastic uncertainty, a statistical learning ap-
proach is appropriate, since, roughly, the true
model is an average of many imprecise in-
stances. In contrast, a case containing epistemic
uncertainty is better considered as a fragment
of the correct network model. The case is “su-
pervised” in the sense of revealing a part of the
joint distribution of the overall network.

The learning problem can now be stated as
one of modifying an existing model to meet the
set of constraints expressed by cases selected as
relevant to the current diagnosis. We call this
learning problem case consistency. Methods to
solve this have been studied as applications of
Jeffreys’ Rule for belief revision (Chan and Dar-
wiche, 2005). Such belief revision changes the
joint distribution of the model. Jeffrey’s rule is
often presented as an alternate means of apply-
ing evidence, by comparison with applying like-
lihoods as evidence (sometimes called “virtual”
or “soft” evidence, but the usage in the liter-
ature isn’t consistent.) In contrast it appears
preferable to distinguish the application of ev-



idence from case consistency, if only to make
a clear semantic distinction between inference
conditioned on observations, and an operation
more like “splicing” a fragment of new knowl-
edge into the existing model.

7 Conclusions

We described an approach to solving diagnos-
tic problems that is based on the concept of
query-based diagnostics and amounts to recover-
ing a normative system based on Bayesian net-
works from a conventional diagnostic work-flow.
Without forcing the user to use a limited vo-
cabulary and variables, and by capturing the
user’s causal understanding, the system allows
for continuous refinement of the model, while
offering suggestions to avoid possible repetition
of terms. While this carries with it a danger
of uncontrolled model growth, we believe that
with incorporation of workflow-generated cases
for belief revision, and possibly off-line interven-
tion of a knowledge engineer, the accuracy of
the system can be maintained. Despite that the
probabilistic model of a system under diagno-
sis is necessarily simplified, based on three-layer
Bayesian networks with canonical interactions
among the network variables, we are still able to
reduce greatly the most important bottleneck—
the knowledge engineering effort that goes into
model building. We have two implementations
of this idea underway, with preliminary results
that are promising.

A system based on the principles outlined in
this paper has to be thoroughly evaluated in a
practical setting. One of our next steps is to em-
ploy our prototype in a diagnostic setting and
carefully monitoring its use, including user ex-
periences, model creation and growth, and the
development of the system’s diagnostic accu-
racy.

Acknowledgments

This work has been supported by Intel Re-
search. Implementation of Marilyn is based on
SMILE, a Bayesian inference engine developed
at the Decision Systems Laboratory and avail-
able at http://genie.sis.pitt.edu/. We
would like to thank Erik Pols for a considerable

effort that went into developing initial ideas into
a working Marilyn prototype and Parot Rat-
napinda and his classmates at the University of
Pittsburgh for refining Erik’s initial implemen-
tation. We thank Cort Keller, Christine Mat-
lock, Daniel Peters and Bryan Pollard for their
work on design and implementation of Intel’s
application.

References

Avrim Blum. 1998. On-line algorithms in machine
learning. In Online Algorithms, pages 306–325.
Springer.

Hei Chan and Adnan Darwiche. 2005. On the re-
vision of probabilistic beliefs using uncertain evi-
dence. Artif. Intell., 163(1):67–90.

Gregory F. Cooper. 1990. The computational com-
plexity of probabilistic inference using bayesian
belief networks. Artif. Intell., 42(2-3):393–405.

F. Javier Dı́ez and Marek J. Druzdzel. 2008.
Canonical probabilistic models for knowledge en-
gineering. Unpublished manuscript, available at
http://www.ia.uned.es/∼fjdiez/papers/canonical.html.

Eric Horvitz, Paul Koch, Carl M. Kadie, and Andy
Jacobs. 2002. Coordinate probabilistic forecast-
ing of presence and availability. In 18th Con-
ference on Uncertainty in Artificial Intelligence,
pages 224–233. Morgan Kaufmann Publishers,
July.

Kathryn B. Laskey. 2008. Mebn: A language for
first-order bayesian knowledge bases. Artif. In-
tell., 172(2-3):140–178.

Paul P. Maaskant and Marek J. Druzdzel. 2008. An
Independence of Causal Interactions model for op-
posing influences. In Proceedings of the Fourth
European Workshop on Probabilistic Graphical
Models (PGM–08), Hirtshals, Denmark.

Guus Schreiber, Hans Schreiber, Anjo Akkermans,
Robert de Anjewierden, Nigel Shadbolt Hoog,
Walter Van de Velde, and Bob Wielinga. 2000.
Knowledge Engineering and Management: The
CommonKADS Methodology. MIT Press.

S. Visweswaran and G.F. Cooper. 2004. Instance-
specific bayesian model averaging for classifica-
tion. In Proceedings of the Neural Information
Processing Systems Conference (NIPS-2004).

M. Wellman, J. Breese, and R. Goldman. 1992.
From knowledge bases to decision models. Knowl-
edge Engineering Review, 7(1):35–53.



High-dimensional probability density estimation with randomized
ensembles of tree structured Bayesian networks

Sourour Ammar and Philippe Leray
Knowledge and Decision Team

Laboratoire d’Informatique de Nantes Atlantique (LINA) UMR 6241
Ecole Polytechnique de l’Université de Nantes, France

sourour.ammar@etu.univ-nantes.fr, philippe.leray@univ-nantes.fr

Boris Defourny and Louis Wehenkel
Department of Electrical Engineering and Computer Science & GIGA-Research,

University of Liège, Belgium
boris.defourny@ulg.ac.be, L.Wehenkel@ulg.ac.be

Abstract

In this work we explore the Perturb and Combine idea, celebrated in supervised learning,
in the context of probability density estimation in high-dimensional spaces with graphical
probabilistic models. We propose a new family of unsupervised learning methods of mix-
tures of large ensembles of randomly generated tree or poly-tree structures. The specific
feature of these methods is their scalability to very large numbers of variables and training
instances. We explore various simple variants of these methods empirically on a set of
discrete test problems of growing complexity.

1 Introduction

Learning of Bayesian networks aims at model-
ing the joint density of a set of random variables
from a random sample of joint observations of
these variables (Cowell et al., 1999). Such a
graphical model may be used for elucidating the
conditional independences holding in the data-
generating distribution, for automatic reasoning
under uncertainties, and for Monte-Carlo simu-
lations. Unfortunately, currently available algo-
rithms for Bayesian network structure learning
are either restrictive in the kind of distributions
they search for, or of too high computational
complexity to be applicable in very high dimen-
sional spaces (Auvray and Wehenkel, 2008).

In the context of supervised learning, a
generic framework which has led to many fruit-
ful innovations is called “Perturb and Com-
bine”. Its main idea is to on the one hand
perturb in different ways the optimization algo-
rithm used to derive a predictor from a data-set
and on the other hand to combine in some ap-
propriate fashion a set of predictors obtained by

multiple iterations of the perturbed algorithm
over the data-set. In this framework, ensembles
of weakly fitted randomized models have been
studied intensively and used successfully during
the last two decades. Among the advantages
of these methods, let us quote the improved
scalability of their learning algorithms and the
improved predictive accuracy of their models.
For example, ensembles of extremely random-
ized trees have been applied successfully in com-
plex high-dimensional tasks, as image and se-
quence classification (Geurts et al., 2006).

In this work we explore the Perturb and Com-
bine idea for probability density estimation. We
study a family of learning methods to infer mix-
tures of large ensembles of randomly generated
tree structured Bayesian networks. The specific
feature of these methods is their scalability to
very large numbers of variables and training in-
stances. We explore various simple variants of
these methods empirically on a set of discrete
test problems of growing complexity.

The rest of this paper is organized as follows.



Section 2 discusses the classical Bayesian frame-
work for learning mixtures of models. Section 3
describes the proposed approach and algorithms
presented in this paper and Section 4 reports
simulation results on a class of simple discrete
test problems. Section 5 discusses our work in
relation with the literature and Section 6 briefly
concludes and highlights some directions for fur-
ther research.

2 Bayesian modeling framework

Let X = {X1, . . . ,Xn} be a finite set of dis-
crete random variables, and D = (x1, · · · , xd)
be a data-set (sample) of joint observations
xi = (xi

1, · · · , xi
n) independently drawn from

some data-generating density PG(X).
In the full Bayesian approach, one assumes

that PG(X) belongs to some space of densi-
ties D described by a model-structure M ∈ M
and model-parameters θM ∈ ΘM , and one infers
from the data-set a mixture of models described
by the following equation:

PD(X|D) =
∑

M∈M

P(M |D) P(X|M,D), (1)

where P(M |D) is the posterior probability over
the model-space M conditionally on the data
D, and where P(X|M,D) is the integral:

∫

ΘM

P(X|θM ,M) dP(θM |M,D). (2)

So PD(X|D) is computed by:

∑

M∈M

P(M |D)

∫

ΘM

P(X|θM ,M) dP(θM |M,D),

(3)
where dP(θM |M,D) is the posterior density of
the model-parameter and P(X|θM ,M) is the
likelihood of observation X for the structure M
with parameter θM .

When the space of model-structures M is the
space of Bayesian networks over X, approxima-
tions have to be done in order to make tractable
the computation of Equation (3). (Chicker-
ing and Heckerman, 1997) show that Equa-
tion (2) can be simplified by the likelihood esti-
mated with the parameters of maximum poste-
rior probability θ̃M = arg maxθM

P(θM |M,D),

under the assumption of a Dirichlet distribu-
tion (parametrized by its coefficients αi) for the
prior distribution of the parameters P(θM).

Another approximation to consider is sim-
plifying the summation over all the possible
model-structures M . As the size of the set of
possible Bayesian network structures is super-
exponential in the number of variables (Robin-
son, 1977), the summation of Equation (1) must
be performed over a strongly constrained sub-
space M̂ obtained for instance by sampling
methods (Madigan and Raftery, 1994; Madigan
and York, 1995; Friedman and Koller, 2000),
yielding the approximation

P
M̂

(X|D) =
∑

M∈M̂

P(M |D)P(X|θ̃M ,M). (4)

Let us note here that this equation is sim-
plified once more when using classical structure
learning methods, by keeping only the model
M = M̃ maximising P(M |D) over M:

PM̃ (X|D) = P(X|θ̃M̃ , M̃). (5)

Let us emphasize that this further simplication
has also the advantage of producing a single

graphical model from which one can read of in-
dependencies directly. This may however be at
the price of a possibly significant reduction of
accuracy of the density estimation.

3 Randomized poly-tree mixtures

In this work, we propose to choose as set M̂
in Equation (4) a randomly generated subset of
pre-specified cardinality of poly-tree models.

3.1 Poly-tree models

A poly-tree model for the density over X is
defined by a directed acyclic graph structure
P whose skeleton is acyclic and connected,
and whose set of vertices is in bijection with
X, together with a set of conditional densities
PP (Xi|paP (Xi)), where paP (Xi) denotes the set
of variables in bijection with the parents of Xi

in P . The structure P represents graphically
the density factorization

PP (X1, . . . ,Xn) =

n
∏

i=1

PP (Xi|paP (Xi)). (6)



The model parameters are thus here specified
by the set of distributions:

θP = (PP (Xi|paP (Xi)))
n
i=1

. (7)

The structure P can be exploited for prob-
abilistic inference over PP (X1, . . . ,Xn) with a
computational complexity linear in the number
of variables n (Pearl, 1986).

One can define nested subclasses Pp of poly-
tree structures by imposing constraints on the
maximum number p of parents of any node. In
these subclasses, not only inference but also pa-
rameter learning is of linear complexity in the
number of variables. The smallest such subclass
is called the tree subspace, in which nodes have
exactly one parent (p = 1).

When necessary, we will denote by P∗ (re-
spectively P1) the space of all possible poly-tree
(respectively tree) structures defined over X.

3.2 Mixtures of poly-trees

A mixture distribution P
P̂
(X1, . . . ,Xn) over a

set P̂ = {P1, . . . , Pm} of m poly-trees is defined
as a convex combination of elementary poly-tree
densities, i.e.

P
P̂
(X1, . . . ,Xn) =

m
∑

i=1

µiPPi
(X1, . . . ,Xn), (8)

where µi ∈ [0, 1] and
∑m

i=1
µi = 1, and where

we leave for the sake of simplicity implicit the
values of the parameter sets θ̃i of the individual
poly-tree densities.

While single poly-tree models impose strong
restrictions on the kind of densities they can
represent, mixtures of poly-trees are universal
approximators, as well as mixtures of trees or
chains, or even mixtures of empty graphs (i.e.
Naive Bayes with hidden class), as shown in
(Meila-Predoviciu, 1999) section 3.1.

3.3 Random poly-tree mixture learning

Our generic procedure for learning a random
poly-tree mixture distribution from a data-set
D is described by Algorithm 1; it receives
as inputs X, D, m, and three procedures
DrawPolytree, LearnPars, CompWeights.

Algorithm 1 (Learning a poly-tree mixture)

1. Repeat for i = 1, · · · ,m:

(a) Pi = DrawPolytree,

(b) For j = 1, · · · , n:
θ̃Pi

= LearnPars(Pi,D)

2. (µ)mi=1
= CompWeights((Pi, θ̃Pi

)mi=1
,D)

3. Return
(

µi, Pi, θ̃Pi

)m

i=1

.

3.4 Specific variants

In our first investigations reported below, we
have decided to compare various simple versions
of the above generic algorithm.

In particular, we consider both mixtures of
randomly generated subsets of unconstrained
poly-trees (by sampling from a uniform density
over P∗), and mixtures of tree structures (by
sampling from a uniform density over P1). The
random sampling procedures are described in
Section 3.5.

As concerns the mixture coefficients, we will
compare two variants, namely uniform weight-
ing (coefficient µi = 1

m ,∀i = 1, . . . ,m) and
Bayesian averaging (coefficient µi proportional
to the posterior probability of the poly-tree
structure Pi, derived from its BDeu score com-
puted from the data-set (Cowell et al., 1999)).

Notice that with large data-sets, the Bayesian
averaging approach tends to put most of the
weight on the poly-tree which has the largest
score; hence to better appraise the mixture ef-
fect, we will also provide results for the model
which uses only the highest score structure
among the m poly-trees of the ensemble, which
amounts to a kind of random search for the
MAP structure defined in Equation (5).

Finally, concerning parameter estimation, we
use the BDeu score maximization for each poly-
tree structure individually, which is tantamount
to selecting the MAP estimates using Dirich-
let priors. More specifically, in our experi-
ments which are limited to binary random vari-
ables, we used non-informative priors, which
then amounts to using α = 1/2, i.e. p(θ, 1−θ) ∝
θ−1/2(1− θ)−1/2 for the prior density of the pa-
rameters characterizing the conditional densi-
ties attached the poly-tree nodes.



3.5 Random generation of structures

Our mixture of random poly-trees and the ex-
perimental protocol described in Section 4 are
based on random sampling of several classes of
graphical structures (trees, poly-trees, and di-
rected acyclic graphs).

For sampling trees and poly-trees, we chose
to adapt the algorithm proposed by (Quiroz,
1989), which uses Prûfer coding of undirected
tree structures. This algorithm allows to sam-
ple labelled undirected trees uniformly. We have
adapted it in order to sample uniformly from the
space of directed (rooted) trees and poly-trees.
The resulting structure sampling algorithms are
efficient, since their complexity remains linear
in the number of variables. Notice however,
that only in the case of tree structures these
algorithms sample uniformly from the Markov
equivalence classes induced by these structures.
We do not know of any efficient adaptation
of these algorithms to sample uniformly from
structures of poly-trees with bounded number of
in-degrees or to sample uniformly from Markov
equivalence classes of poly-trees.

For sampling of directed acyclic graphs we
used, on the other hand, the procedure given
in (Ide et al., 2004), which allows to gener-
ate random structures which are of bounded
in-degree and which are constrained to be con-
nected. This scheme does neither yield a uni-
form sampling of these structures nor of their
equivalence classes.

4 Preliminary empirical simulations

4.1 Protocol

For a first comparison of the different variants of
our algorithm, we carried out repetitive exper-
iments for different data-generating (or target)
densities. All our experiments were carried out
with models for a set of eight binary random
variables. We chose to start our investigations
in such a simple setting in order to be able to
compute accuracies exactly (see Section 4.1.4),
and so that we can easily analyze the graphi-
cal structures of the target densities and of the
inferred set of poly-trees.

4.1.1 Choice of target density

To choose a target density PG(X), we first
decide whether it will factorize according to a
poly-tree or to a directed acyclic graph struc-
ture. Then we use the appropriate random
structure generation algorithm (see Section 3.5)
to draw a structure and, we choose the param-
eters of the target density by selecting for each
conditional density of the structure (they are all
related to binary variables) two random num-
bers in the interval [0, 1] and by normalizing.

4.1.2 Generation of data-sets

For each target density and data-set size, we
generate 10 different data-sets by sampling val-
ues of the eight random variables using the
Monte-Carlo method with the target structure
and parameter values.

We carry out simulations with data-set sizes
of 250 and 2000 elements respectively. Given
the total number of 256 possible configurations
of our eight random variables, we thus look at
both small and large data-sets.

4.1.3 Learning of mixtures

For a given data-set and for a given variant
of the mixture learning algorithm we generate
ensemble models of growing sizes, respectively
m = 1, m = 10, and then up to m = 1000 by
increments of 10. This allows us to appraise the
effect of the ensemble size on the quality of the
resulting model.

4.1.4 Accuracy evaluation

The quality of any density inferred from a
data-set is evaluated by the symmetric Kulback-
Leibler divergence (Kullback and Leibler, 1951)
between this density and the data-generating
density PG(X) used to generate the data-set.
This is computed by

KLs(PG, PM )=KL(PG||PM )+KL(PM ||PG), (9)

where PM(X) denotes the density that is eval-
uated, and where

KL(P||P′)=
∑

X∈X

P(X) ln

(

P(X)

P′(X)

)

, (10)

and X denotes the set of all possible configura-
tions of the random variables in X.



We use this formula to evaluate our mix-
ture models, and we also provide baseline values
obtained with two different reference models,
namely a baseline approach M0 where a com-
plete directed acyclic model is used with pa-
rameter values inferred by BDeu score maxi-
mization on the data-set, as well as a golden

standard M1 where the parameters of the tar-
get structure used to generate the data-set are
re-estimated by BDeu score maximization from
the data-set.

4.1.5 Software implementation

Our various algorithms of model gen-
eration were implemented in C++
with the Boost library available at
http://www.boost.org/ and various APIs
provided by the ProBT c© platform available at
http://bayesian-programming.org.

4.2 Results

4.2.1 Sample of results

Figure 1 provides a representative set of
learning curves for a target density correspond-
ing to the directed acyclic graph (DAG) rep-
resented on he top of the figure. The middle
and lower parts represent the learning curves
obtained with respectively 250 and 2000 obser-
vations in the data-set. The horizontal axis cor-
responds to the number m of mixture terms,
whereas the vertical axis corresponds to the
KLs measures with respect to the target den-
sity. All the curves represent average results
obtained over ten different data-sets of the spec-
ified size.

The dashed horizontal lines in the lower parts
of these graphics correspond to the golden stan-
dard M1, whereas the plain horizontal line (not
shown on the middle graphic) correspond to the
M0 baseline (its results are very bad on the
small data-set and were therefore not shown).

The dashed, respectively black and red,
curves in the upper part of both diagrams corre-
spond to uniform mixtures of, respectively trees
and poly-trees. We observe that their perfor-
mances are quite disappointing, even though
uniform poly-tree mixtures are slightly better
than uniform tree mixtures.

Uniform mixtures

Weighted mixture of trees

Golden standard (M1)

Highest scoring poly−tree

Weighted mixture of poly−trees

M0 (baseline)

M1

Figure 1: Example results. Top: target den-
sity DAG structure. Middle: learning curves
with data-set size of 250 observation. Bottom:
learning curves with 2000 observation. (see text
for explanation of curves legends).

The two plain curves, respectively black and
red, in the lower parts of the diagrams cor-
respond to mixtures of respectively trees and
poly-trees, when they are weighted proportion-
ally to their posterior probability given the
data-set. They provide much better perfor-
mances, as compared to the baseline M0 and
are competitive with the golden standard M1.
We also observe that for the smaller sample size
the tree mixtures outperform the poly-tree mix-
tures, whereas for the larger sample size they
provide identical performances.

For the sake of comparison, we have also pro-
vided the behaviour of the “trivial mixture” (in
green) which retains only the highest scoring
structure of the generated ensemble. We ob-
serve that in small sample conditions, this lat-
ter model is outperformed by the plain Bayesian
mixtures, while in the case of large sample size
it is largely equivalent.

We complete these results with the two sets



Figure 2: Example results for a target density
with poly-tree structure.

of curves of Figure 2, obtained in similar con-
ditions but when the target density factorizes
according to a poly-tree structure. Overall,
the previous conclusions still hold true. The
main difference that we observe, is that in the
case of the poly-tree target density the KLs

scores seem to converge more rapidly towards
M1 when the mixture size m increases.

4.2.2 Analysis of asymptotic behavior

Since in most trials, our learning curves sta-
bilized around m = 1000, we consider interest-
ing to provide a synthetic picture of the per-
formances of the different methods under these
“asymptotic” conditions. To this end, we show
on Figure 3 overall asymptotic performances in
the form of box plots of the KLs values of the
different methods.

On this figure, each box plot (box-and-
whisker diagram) depicts the density of KLs

values of a particular algorithm variant (from
left to right the golden standard M1, the
weighted poly-tree mixtures and the weighted
tree mixtures), for a fixed sample size, but over
the combination of 5 different target DAG struc-
tures, 3 different target poly-tree structures,
and for each case 10 data-sets. For the sake

M1 P-Tr mix Tr mix

.20

.15

.10

.05

d=250

M1 P-Tr mix Tr mix

1.5

1.0

.5

0

d=2000

Figure 3: Synthesis of asymptotic behavior
(m = 1000, relative KLs wrt baseline M0).

of interpretation, the KLs values are normal-
ized by dividing them by the value obtained in
the same conditions (same target density, and
same data-set) by the M0 baseline method (and
the latter values are not represented on the box-
plots). In the left part we show the results ob-
tained with a sample size of d = 250 and in the
right part with a sample of size d = 2000.

We can synthesize these results as follows.
For both large and small sample sizes the
poly-tree mixtures outperform (but only very
slightly) the tree mixtures; this effect is less
notable in small sample conditions. In large
sample conditions (d = 2000), the poly-tree
mixtures have only a small advantage over the
baseline method M0 (their relative scores be-
ing on the average only slightly smaller than 1).
However, in small sample conditions (d = 250),
both poly-tree and tree mixtures are signifi-
cantly better than the baseline, and, actually
they yield KLs scores which are already quite
close to those of the the golden standard M1.

5 Discussion

Our choice of using random mixtures of poly-
trees was inspired by several considerations.

First of all, choosing the best structure in
the space of poly-trees is not an adequate solu-
tion from an algorithmic point of view. Indeed,
(Dasgupta, 1999) shows that finding the opti-
mal poly-tree model is not tractable for very
high dimensional spaces. On the other hand,
the space of poly-trees is a priori a rather rich



space, and it is characterized by efficient infer-
ence algorithms. Hence, even a very large mix-
ture of poly-tree densities can be queried effi-
ciently for making inferences about the data-
generating density. Furthermore, using mix-
tures of poly-trees allows in principle to repre-
sent any density.

In our experiments on the very simple prob-
lems with 8 binary variables, we observed how-
ever that in most cases using a mixture of poly-
trees was not really better than keeping only
the single best found poly-tree (except in very
small sample size conditions).

Our second reason for looking at poly-tree
mixtures was that we thought that these mod-
els would be more powerful than tree mixtures.
Indeed, (Meila-Predoviciu, 1999) already pro-
posed to use mixtures of tree models and has
designed algorithms to find the optimal com-
bination of tree structures and of the coeffi-
cients of the mixture during the learning phase.
She jointly uses the MWST (Maximum Weight
Spanning Tree) structure learning algorithm
published in the late sixties (Chow and Liu,
1968) and the Expectation-Maximization algo-
rithm for coefficients’ estimation (Dempster et
al., 1977). While this proposal is very elegant,
we believe that it is not scalable to very large
mixtures, both from the point of view of compu-
tational complexity and from the point of view
of risk of over-fitting the data-set.

Our simulation results showed however that
using random mixtures of poly-trees is only very
marginally advantageous with respect to the use
of random mixtures of trees. On the other hand,
in small sample conditions the mixtures of trees
or poly-trees turned out to be quite often of
comparable accuracy than the golden standard
M1, and in general largely superior to the com-
plete structure baseline M0.

Concerning the weighting scheme, our exper-
iments also confirmed that uniform mixtures of
randomized poly-tree or tree structured den-
sities do not work properly in the context of
density estimation. This is quite different from
the observations made in the context of tree-
based supervised learning, where uniform mix-
tures of totally randomized trees often provide

very competitive results (Geurts et al., 2006).
The main difference between these two contexts
is that in supervised learning one can easily gen-
erate a sample of randomized trees which fit well
the data-set, whereas in the context of density
estimation random tree or poly-tree structures
mostly strongly under-fit the data-set.

6 Summary and future works

We have proposed in this paper to transpose
the “Perturb and Combine” idea celebrated in
supervised learning to density estimation. We
have presented a generic framework for doing
this, based on random mixtures of poly-tree or
tree structured Bayesian networks.

The first results obtained in the context of
a simple test protocol are already interesting,
while they also highlight a certain number of
immediate future research directions.

Thus, a first line of research will be to ap-
ply our experimental protocol to a larger set of
problems including high-dimensional ones and
a larger range of sample sizes. We believe also
that a more in depth analysis of the results
with respect to the basic properties of the target
distributions would be of interest. Of course,
these investigations should also aim at sys-
tematically comparing all these algorithm vari-
ants both from a computational complexity and
from an accuracy point of view with other mix-
ture models proposed in the literature (Meila-
Predoviciu, 1999; Lowd and Domingos, 2005),
with state-of-the-art optimal structure learn-
ing algorithms (Auvray and Wehenkel, 2008),
and with other approaches proposed for efficient
learning (Friedman et al., 1999; Brown et al.,
2004) and/or efficient inference (Jaeger, 2004)
in high dimensional spaces.

Nevertheless, from these first results we are
tempted to conclude that, in order to effectively
transpose the Perturb and Combine idea to the
context of density estimation, it will be nec-
essary to design structure sampling algorithms
which are able to efficiently focus on structures
that can be fitted well enough to the available
data-set. In this respect, one straightforward
idea would be to transpose the Bagging idea
of (Breiman, 1996) to the density estimation



context. In particular, we suggest that the use
of bootstrap sampling in combination with the
efficient algorithm of finding the optimal tree
model, i.e. solving Equation (5) in the tree
space P1 using the MWST algorithm, could be
a very promising direction.

Another more generic direction of research,
is to adapt importance sampling approaches
(e.g. the cross-entropy method (Rubinstein and
Kroese, 2004)) in order to generate random-
ized ensembles of simple structures (trees, poly-
trees, etc.) that fit well the given data-set.

In a later stage, we intend to extend these al-
gorithms to the case of continuous random vari-
ables as well as when there are missing data.

Acknowledgments

This work presents research results of the Belgian
Network BIOMAGNET (Bioinformatics and Modeling:
from Genomes to Networks), funded by the Interuniver-
sity Attraction Poles Programme, initiated by the Bel-
gian State, Science Policy Office.

References

V. Auvray and L. Wehenkel. 2008. Learning inclusion-
optimal chordal graphs. In Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence
(UAI-2008).

L. Breiman. 1996. Bagging predictors. Machine Learn-
ing, 24(2):123–140.

L. E. Brown, I. Tsamardinos, and C. F. Aliferis. 2004.
A novel algorithm for scalable and accurate bayesian
network learning. Medinfo, 11(Pt 1):711–715.

D.M. Chickering and D. Heckerman. 1997. Efficient ap-
proximations for the marginal likelihood of Bayesian
networks with hidden variables. Machine Learning,
29(2-3):181–212.

C.K. Chow and C.N. Liu. 1968. Approximating
discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory,
14(3):462–467.

R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J.
Spiegelhalter. 1999. Probabilistic Networks and Ex-
pert Systems. Springer.

S. Dasgupta. 1999. Learning polytrees. In Proceed-
ings of the 15th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-99), pages 134–14, San
Francisco, CA. Morgan Kaufmann.

A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977.
Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38.

N. Friedman and D. Koller. 2000. Being Bayesian about
network structure. In C, editor, Proceedings of the
16th Conference on Uncertainty in Artificial Intelli-
gence (UAI-00), pages 201–210, SF, CA, June 30–
July 3. Morgan Kaufmann Publishers.

N. Friedman, I. Nachman, and D. Pe’er. 1999. Learn-
ing Bayesian network structure from massive datasets:
The ”sparse candidate” algorithm. In UAI ’99: Pro-
ceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pages 206–215. Morgan Kauf-
mann.

P. Geurts, D. Ernst, and L. Wehenkel. 2006. Extremely
randomized trees. Machine Learning, 63(1):3–42.

J.S. Ide, F.G. Cozman, and F.T. Ramos. 2004. Gener-
ating random bayesian networks with constraints on
induced width. In ECAI, pages 323–327.

M. Jaeger. 2004. Probabilistic decision graphs - combin-
ing verification and AI techniques for probabilistic in-
ference. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 12(Supplement-
1):19–42.

S. Kullback and R. Leibler. 1951. On information
and sufficiency. Annals of Mathematical Statistics,
22(1):79–86.

D. Lowd and P. Domingos. 2005. Naive bayes models for
probability estimation. In Proceedings of the Twenty-
Second International Conference (ICML 2005), pages
529–536. ACM.

D. Madigan and A.E. Raftery. 1994. Model selection and
accounting for model uncertainty in graphical mod-
els using Occam’s window. Journal of The American
Statistical Association, 89:1535–1546.

D. Madigan and J. York. 1995. Bayesian graphical mod-
els for discrete data. International Statistical Review,
63:215–232.

M. Meila-Predoviciu. 1999. Learning with Mixtures of
Trees. Ph.D. thesis, MIT.

J. Pearl. 1986. Fusion, propagation, and structuring in
belief networks. Artificial Intelligence, 29:241–288.

A. Quiroz. 1989. Fast random generation of binary,
t-ary and other types of trees. Journal of Clas-
sification, 6(1):223–231, December. available at
http://ideas.repec.org/a/spr/jclass/v6y1989i1p223-
231.html.

R.W. Robinson. 1977. Counting unlabeled acyclic di-
graphs. In C. H. C. Little, editor, Combinatorial
Mathematics V, volume 622 of Lecture Notes in Math-
ematics, pages 28–43, Berlin. Springer.

R.Y. Rubinstein and D.P. Kroese. 2004. The Cross-
Entropy Method. A Unified Approach to Combinato-
rial Optimization, Monte-Carlo Simulation, and Ma-
chine Learning. Information Science and Statistics.
Springer.



Generalized Loopy 2U: A New Algorithm for Approximate
Inference in Credal Networks

Alessandro Antonucci, Marco Zaffalon, Yi Sun, Cassio P. de Campos
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)

Lugano, Switzerland

Abstract

Credal nets generalize Bayesian nets by relaxing the requirement of precision of proba-
bilities. Credal nets are considerably more expressive than Bayesian nets, but this makes
belief updating NP-hard even on polytrees. We develop a new efficient algorithm for
approximate belief updating in credal nets. The algorithm is based on an important rep-
resentation result we prove for general credal nets: that any credal net can be equivalently
reformulated as a credal net with binary variables; moreover, the transformation, which is
considerably more complex than in the Bayesian case, can be implemented in polynomial
time. The equivalent binary credal net is updated by L2U, a loopy approximate algorithm
for binary credal nets. Thus, we generalize L2U to non-binary credal nets, obtaining an
accurate and scalable algorithm for the general case, which is approximate only because
of its loopy nature. The accuracy of the inferences is evaluated by empirical tests.

1 Introduction

Bayesian nets (Sect. 2.1) are probabilistic
graphical models based on precise assessments
for the conditional probability mass functions
of the net variables given the values of their
parents. As a relaxation of such precise assess-
ments, credal nets (Sect. 2.2) only require the
conditional probability mass functions to belong
to convex sets of mass functions, i.e., credal sets.
Credal nets (CNs) are considerably more ex-
pressive than Bayesian nets,1 and the price is
an increased complexity of inference: belief up-
dating in credal nets is NP-hard even on poly-
trees (de Campos and Cozman, 2005). The only
known exception to this situation is the algo-
rithm 2U (Fagiuoli and Zaffalon, 1998), as it
computes exact posterior beliefs on binary (i.e.,
with binary variables) polytree-shaped CNs in
linear time. A loopy version of 2U (L2U) has

1Greater expressiveness is a consequence of the fact
that Bayesian nets are a subset of credal nets. Expres-
siveness should not be confused with informativeness:
for example, it is thanks to the greater expressiveness
that credal nets can model much less informative states
of knowledge (including lack of knowledge) than those
Bayesian nets can model.

been proposed for multiply connected binary
credal nets by (Ide and Cozman, 2004). In-
ferences based on L2U are approximate, but a
good accuracy is typically observed after few it-
erations (Sect. 2.3).

In this paper we develop an efficient algorithm
for approximate belief updating of general CNs
(any topology, number of states per variable).
The algorithm is based on an important repre-
sentation result that we prove in Appendix A:
that any CN can be equivalently reformulated
as one with binary variables. The correspond-
ing transformation, which is considerably more
complex than in the Bayesian case, is based
on two distinct transformations: a decision-
theoretic specification (Antonucci and Zaffalon,
2008), which augments the CN with control
variables enumerating the multiple mass func-
tions owned by the nodes of the net (Sect. 3.2); a
binarization procedure (Antonucci et al., 2006)
that transforms each variable into a cluster of
binary variables (Sect. 3.1).

We prove that the sequential application of
these two transformations, originally developed
for independent reasons, returns an equiva-



lent binary representation of the original CN
(Sect. 4.1). Such equivalent binary CN can be
finally updated by L2U. Overall, that leads to
a generalized loopy 2U (GL2U) algorithm for
the updating in general CNs, whose only source
of approximation is the loopy part (Sect. 4.2).
The algorithm, which takes polynomial time
(Sect. 4.3), has been implemented in a software.
Experimental tests in Sect. 5 show that its ac-
curacy is comparable to that of state-of-the-art
approximate methods for CNs. This, together
with its scalability, should make of GL2U the
algorithm of choice especially for large nets.

2 Bayesian and Credal Nets

In this section we review the basics of Bayesian
nets (BNs) and their extension to convex sets of
probabilities, i.e., credal nets. Both the models
are based on a collection of random variables,
structured as a vector X := (X1, . . . ,Xn),2 and
a directed acyclic graph (DAG) G, whose nodes
are associated with the variables of X. In our
assumptions the variables in X take values in
finite sets. For both models, we assume the
Markov condition to make G represent proba-
bilistic independence relations between the vari-
ables in X: every variable is independent of its
non-descendant non-parents conditional on its
parents. What makes BNs and CNs different
is a different notion of independence and a dif-
ferent characterization of the conditional mass
functions for each variable given the values of
the parents, which will be detailed later.

Regarding notation, for each Xi ∈X, ΩXi
=

{xi0, xi1, . . . , xi(di−1)} denotes the possibility
space of Xi, P (Xi) is a mass function for Xi and
P (xi) the probability that Xi =xi, where xi is a
generic element of ΩXi

. A similar notation with
uppercase subscripts (e.g., XE) denotes vectors
(and sets) of variables in X. Finally, the par-
ents of Xi, according to G, are denoted by Πi,
while for each πi ∈ ΩΠi

, P (Xi|πi) is the mass
function for Xi conditional on Πi = πi.

2The symbol “:=” is used for definitions.

2.1 Bayesian nets

For BNs, a conditional mass function P (Xi|πi)
for each Xi∈X and πi∈ΩΠi

should be defined;
and the standard notion of probabilistic inde-
pendence is assumed in the Markov condition.
A BN can therefore be regarded as a joint prob-
ability mass function over X that, according to
the Markov condition, factorizes as follows:

P (x) =
n

∏

i=1

P (xi|πi), (1)

for all the possible values of x ∈ ΩX, with the
values of xi and πi consistent with x. In the fol-
lowing, we represent a BN as a pair 〈G, P (X)〉.
Posterior beliefs about a queried variable Xq,
given evidence XE =xE , are defined as:

P (xq|xE) =

∑

xM

∏n
i=1 P (xi|πi)

∑

xM ,xq

∏n
i=1 P (xi|πi)

, (2)

where XM := X \ ({Xq} ∪ XE), the domains
of the arguments of the sums are left implicit
and the values of xi and πi are consistent with
x = (xq, xM , xE). Evaluating Eq. (2) is an NP-
hard task, but for polytrees, Pearl’s propagation
allows for efficient updating (Pearl, 1988).

2.2 Credal sets and credal nets

CNs relax BNs by allowing for imprecise proba-
bility statements: in our assumptions, the con-
ditional mass functions of a CN are required to
belong to a finitely generated credal set, i.e., the
convex hull of a finite number of mass functions
for a certain variable. Geometrically, a credal
set is a polytope. A credal set contains an infi-
nite number of mass functions, but only a finite
number of extreme mass functions correspond-
ing to the vertices of the polytope. Updating
based on a credal set is equivalent to that based
only on its vertices (Walley, 1991). A credal
set over X will be denoted as K(X) and the
set of its vertices as ext[K(X)]. Given a non-
empty Ω∗

X ⊆ ΩX , an important credal set for
our purposes is the vacuous credal set relative
to Ω∗

X , i.e., the set of all the mass functions
for X assigning probability one to Ω∗

X . We
denote this set by KΩ∗

X
(X). In the following



we will use the well-known fact that the ver-
tices of KΩ∗

X
(X) are the3 |Ω∗

X | degenerate mass
functions assigning probability one to the sin-
gle elements of Ω∗

X . Marginalization general-
izes to credal sets as follows: the marginaliza-
tion K(X) of a joint credal set K(X,Y ) to X

is the convex hull of the mass functions P (X)
obtained from the marginalization of P (X,Y )
to X for each P (X,Y ) ∈ K(X,Y ).

In order to specify a CN over the variables
in X based on G, a collection of conditional
credal sets K(Xi|πi), one for each πi ∈ ΩΠi

,
should be provided separately for each Xi ∈ X;
while, regarding the Markov condition, we as-
sume strong independence (Cozman, 2005). A
CN associated with these local specifications is
said to be with separately specified credal sets.
Fig. 1 reports a CN, whose specification requires
the (separate) assessment of an unconditional
credal set for X1, and two and eight conditional
credal sets for X2 and X3. The specification
becomes global considering the strong extension
K(X) of the CN, i.e., the convex hull of the fol-
lowing collection of joint mass functions:
{

n
∏

i=1

P (Xi|Πi) : P (Xi|πi) ∈ K(Xi|πi)
∀πi ∈ ΩΠi

,

∀i = 1, . . . , n

}

.

(3)

We represent a CN as a pair 〈G,P(X)〉, where
P(X) := {Pk(X)}nv

k=1 := ext[K(X)]. Clearly,
for each k = 1, . . . , nv, 〈G, Pk(X)〉 is a BN. For
this reason a CN can be regarded as a finite
set of BNs. For CNs updating is intended as
the computation of tight bounds of the posterior
probabilities of a queried variable given some
evidence, i.e., Eq. (2) generalizes as:

P (xq|xE) = min
k=1,...,nv

∑

xM

∏n
i=1 Pk(xi|πi)

∑

xM ,xq

∏n
i=1 Pk(xi|πi)

,

(4)
and similarly for upper probabilities P (xq|xE).
Exact updating in CNs displays high complex-
ity. Updating in polytree-shaped CNs is NP-
complete, and NPPP-complete in general CNs
(de Campos and Cozman, 2005). The only
known exact linear-time algorithm for updat-
ing a specific class of CNs is the 2U algorithm,
which we review in the following section.

3The cardinality of a set Ω is denoted as |Ω|.

X1

X2 X3

Figure 1: A separately specified CN over
(X1,X2,X3), with |ΩX1 |=2, |ΩX2 |= |ΩX3 |=4.

2.3 2U and its loopy extension

The adaptation of Pearl’s updating algorithm
to polytree-shaped binary CNs led to an exact
algorithm called 2-Updating (2U) (Fagiuoli and
Zaffalon, 1998). Remarkably, 2U updates bi-
nary polytrees in time linear in the input size.

Loopy propagation is a popular technique
that applies Pearl’s propagation to multiply
connected BNs: propagation is iterated until
probabilities converge or for a fixed number of
iterations. A loopy variant of 2U (L2U) can up-
date multiply connected binary CNs in an ap-
proximate way (Ide and Cozman, 2004). Ini-
tialization of variables and messages follows the
same steps used in the 2U algorithm. Then
nodes are repeatedly updated, until convergence
of probabilities is observed.4 L2U is basically
an iteration of 2U and its complexity is there-
fore linear in the input size and in the number
of iterations. Overall, the L2U algorithm is an
excellent algorithm, it is fast and returns good
results with low errors after a few iterations.

3 Transformations of Credal Nets

In this section we review two different trans-
formations of CNs that have been recently pro-
posed for independent reasons. Their sequential
application is the basis to obtain an equivalent
representation of CNs based on binary variables.

3.1 Binarization algorithm

By definition, L2U (see Sect. 2.3) cannot be
applied to a non-binary CN in the example of
Fig. 1. To overcome this limitation, a binariza-
tion that transforms a CN into a binary CN has
been proposed in (Antonucci et al., 2006).

First, each variable is equivalently repre-
sented by a cluster of binary variables. Assume

4Despite the lack of a formal proof, convergence of
L2U has been always observed in the numerical tests.



di, which is the number of states for Xi, to be an
integer power of two, and let d̃i := log2 |ΩXi

|.5

An obvious one-to-one correspondence between
the states of Xi and the joint states of a vector of

d̃i binary variables X̃i := (X̃0
i , X̃1

i , . . . , X̃
d̃i−1
i ) is

established if the joint state (x̃0
i , . . . , x̃

d̃i−1
i ) ∈

{0, 1}d̃i is associated with xil ∈ ΩXi
, where

l is the integer whose d̃i-bit representation is

x̃
d̃i−1
i · · · x̃1

i x̃
0
i . Elements of X̃i are said bits of

Xi and their position in the vector their order.

Overall, X̃ denotes the vector of bits obtained
binarizing all the elements of X. We write
P (X) = P̃ (X̃), if P (x) = P̃ (x̃) for each x ∈ ΩX,
where x̃ ∈ Ω

X̃
is the state corresponding to x.

A DAG G̃ associated to the variables X̃ can
be obtained from G as follows: (i) two nodes of
G̃ corresponding to bits of different variables in
X are connected by an arc if and only if there
is an arc with the same direction between the
related variables in X; (ii) an arc connects two
nodes of G̃ corresponding to bits of the same
variable of X if and only if the order of the bit
associated to the node from which the arc de-
parts is lower than the order of the bit associ-
ated to the remaining node. An example of this
transformation is depicted in Fig. 2.

X̃0

1

X̃0

2
X̃0

3

X̃1

2
X̃1

3

Figure 2: The binarization of the CN in Fig. 1.

Finally, regarding the quantification of the
conditional credal sets, we have:

P̃ (x̃j
i |π̃

j
i ) := min

k=1,...,nv

P̃k(x̃
j
i |π̃

j
i ), (5)

where the index k is defined like in Eq. (4). De-
noting by Π̃i the parents of X̃

j
i corresponding

to the binarization of Πi, i.e., those that are not
in the same cluster of X̃

j
i , the probabilities to

5This is not a limitation as a number of dummy states
up the the nearest power of two can be always added.
From now on we assume for all the variables a number
of possible values equal to an integer power of two.

be minimized on the right-hand side are:

P̃k(x̃
j
i |x̃

j−1
i , . . . , x̃0

i , π̃i) ∝
∑∗

l
Pk(xil|πi), (6)

where the sum
∑

∗ is restricted to the states
xil ∈ ΩXi

such that l mod 2j+1 is the integer
whose (j+1)-bit representation is x̃

j
i , . . . , x̃

1
i , x̃

0
i ,

πi is the joint state of the parents of Xi corre-
sponding to the joint state π̃i for the bits of the
parents of Xi, symbol ∝ denotes proportional-
ity, and the relations are considered for each
i = 1, . . . , n, j=0, . . . , d̃i − 1, and πi ∈ ΩΠi

.

If both the states of X̃
j
i produce zero in

Eq. (6), the corresponding conditional mass
functions can be arbitrarily specified (we set
a degenerate mass function). Note that mini-
mization in Eq. (5) can be obtained by simply
considering the vertices of K(Xi|πi) in Eq. (6).

The overall procedure returns a well-defined
CN, which is called the binarization of the orig-
inal CN. Given an updating problem on a CN
as in Eq. (4), we can consider the corresponding
problem on its binarization. E.g., the computa-
tion of P (x33|x10) for the CN in Fig. 1 corre-
sponds to P (X̃0

3 = 1, X̃1
3 = 1|X̃0

1 = 0). Accord-
ing to (Antonucci et al., 2006, Th. 2) this is an
outer approximation (i.e., the posterior interval
includes that of the original updating problem),
which can be approximately estimated by L2U.

This approach entails a twofold approxima-
tion: (i) the approximation introduced by the
binarization and (ii) that due to the loopy prop-
agation. Approximation (i) can be regarded as
originated by replacing each credal set of the
original net with an enclosing polytope that can
have a smaller number of vertices. By construc-
tion, the latter number cannot be controlled and
could be too low to lead to a satisfactory ap-
proximation of the original credal set, which in
turns leads approximation (i) to be quite crude.
In the next section, we recall an independently
developed transformation that will be used to
remove approximation (i).

3.2 Decision-theoretic specification

In (Antonucci and Zaffalon, 2008), a general
graphical language for CNs based on the so-
called decision-theoretic specification (DTS) has



been proposed. A DTS of a CN is obtained aug-
menting the original CN by a number of control
nodes, used to enumerate the vertices of the
conditional credal sets. That turns the orig-
inal nodes into precise-probability ones, while
the control nodes can be formulated as chance
nodes with vacuous credal sets.

Let us briefly describe this transformation in
the case of a CN 〈G,P(X)〉. First, we obtain
from G a second DAG G′ defined over a wider
domain X′ := (X1, . . . ,X2n). This is done by
iterating, for each i = 1, . . . , n, the following
operations: (i) add a node Xi+n; (ii) draw an
arc from each parent of Xi to Xi+n; (iii) delete
the arcs connecting the parents of Xi with Xi;
(iv) draw an arc from Xi+n to Xi. An example
of this transformation is shown in Fig. 3.

X4 X1

X5 X2 X6 X3

Figure 3: The output of the transformation de-
scribed in Sect. 3.2 for the CN in Fig. 1.

Note that, for each i = 1, . . . , n, Π′

i+n = Πi,
i.e., the parents of Xi+n in G′ are the parents of
Xi in G, and also Π′

i = Xi+n, i.e., Xi+n is the
only parent of Xi in G′ and is therefore called
the control variable of Xi.

We assume a one-to-one correspondence be-
tween the possible states of a control variable
Xi+n and the collection of all the (distinct)
extreme mass functions of all the conditional
credal sets specified over Xi, i.e., ΩXi+n

:=
⋃

πi∈ΩΠi
ext[K(Xi|πi)], for each i = 1, . . . , n. As

an example, assuming the number of vertices for
the credal sets of the CN in Fig. 1 equal to the
number of possible states of the relative vari-
ables, we have that X4 in Fig. 3 is a binary
variable, whose states correspond to the two
vertices of K(X1); X5 has eight possible states
corresponding to the four vertices of K(X2|x1)
and the four of K(X2|¬x1); X6 has 32 possible
states corresponding to the vertices, four per
each set, of the conditional credal sets over X3.

Finally, in order to obtain a well-defined
CN over X′ associated to G′, we quantify the

conditional credal sets as follows. For each
i = 1, . . . , n, we set K ′(Xi|xi+n) := P (Xi)xi+n

,
where P (Xi)xi+n

is the element of ext[K(Xi|πi)]
corresponding to xi+n. For the control
nodes {Xi+n}

n
i=1, we set K ′(Xi+n|π

′

i+n) :=
KΩ

πi
Xi+n

(Xi), where Ωπi

Xi+n
⊆ ΩXi+n

is the set

of vertices of K(Xi|πi).

The CN returned by this transformation will
be denoted as 〈G′,P′(X′)〉, and its strong exten-
sion as K ′(X′). Remarkably, 〈G′,P′(X′)〉 pro-
vides an equivalent representation of 〈G,P(X)〉
being that K ′(X) = K(X) as stated by Th. 2 in
(Antonucci and Zaffalon, 2008), where K ′(X) is
the marginalization of K ′(X′) to X.

4 Exact Binarization & GL2U

Now we present the original contributions of
this paper, consisting of a general representa-
tion result (Sect. 4.1), the definition of GL2U
(Sect. 4.2), the study of its computational com-
plexity, and its empirical evaluation (Sect. 5).

4.1 Exact binarization

Consider the sequential application of the trans-
formations detailed in Sect. 3.2 and Sect. 3.1.
Thus, given a CN 〈G,P(X)〉, obtain 〈G′,P′(X′)〉
by a DTS, and hence 〈G̃′, P̃′(X̃′)〉 through bina-
rization. The latter CN is said the exact bina-
rization of the first, a terminology justified by
the following result.

Theorem 1. Consider a CN 〈G,P(X)〉 and
its exact binarization 〈G̃′, P̃′(X̃′)〉. Let K(X)
and K̃ ′(X̃′) be their corresponding strong exten-
sions. Then:

K(X) = K̃ ′(X̃), (7)

with K̃ ′(X̃) marginalization of K̃ ′(X̃′) to X̃.

According to Eq. (7), 〈G̃′, P̃′(X̃′)〉 is an equiv-
alent binary representation of 〈G,P(X)〉. It
should be pointed out that, even if we focus
on the case of CNs with separately specified
credal sets, Th. 1 holds also for so-called non-
separately specified CNs, for which a DTS can
be provided as well. Similarly, the algorithm
presented in the next section can be applied to
any CN, separately or non-separately specified.



4.2 GL2U

Th. 1 is a basis for the solution of general in-
ference problems, as stated by the following
straightforward corollary.

Corollary 1. Any inference problem on a CN
can be equivalently computed in its exact bina-
rization.

According to Cor. 1, we can consider a
so-called generalized L2U algorithm (GL2U),
where given an updating problem on a CN, we
solve by L2U the corresponding updating prob-
lem on the exact binarization of the original CN.
The overall procedure is still approximate, but
differently from the case without DTS consid-
ered in (Antonucci et al., 2006), the only source
of approximation is the loopy component.

4.3 Complexity issues

According to the discussion in the previous sec-
tion, the computational time required by GL2U
to update a CN 〈G,P(X)〉 is basically that re-
quired by L2U to update 〈G̃′, P̃′(X̃′)〉. This
is O(t · 22a), where t is the number of itera-
tions and a the maximum indegree of G′. It

can be checked that X̃ d̃i−1
i has the maximum

indegree among the d̃i binary nodes in the

cluster X̃i; similarly, X̃
d̃i+n−1
i+n has the maxi-

mum indegree among the d̃i+n nodes of X̃i+n.
Note also that the number of nodes in Π̃i is
∑

j/Xj∈Πi
d̃j . Therefore, the indegrees of X̃ d̃i−1

i

and X̃
d̃i+n−1
i+n are respectively d̃i + d̃i+n − 1 and

d̃i+n +
∑

j/Xj∈Πi
d̃j − 1. Thus, considering that

by definition 2d̃i = di,
6 the local complexity of

the algorithm for these two worst cases is re-
spectively O(t · (di · di+n)2) and O(t · (di+n ·
∏

j/Xj∈Πi
dj)

2).

Globally, any iteration of 2U is linear in the
size (i.e., the longest path) of the net, and the
size of the exact binarization grows of a factor
at most equal to 2 · max2n

i=1d̃i with respect to
the original net. The factor depends (i) on the
decision-theoretic transformation that doubles

6As in Sect. 4.1, the number of states for each variable
in X

′ is assumed to be an integer power of two. The
discussion of the general case is omitted because of lack
of space and will be presented in a future work.

the number of nodes, and on (ii) the binariza-
tion that makes of each node Xi ∈ X′ a cluster
of binary nodes X̃i whose size depends on the
logarithm d̃i of its number of states di. We can
approximate the global complexity by assuming
that a not-too-big constant bounds both the log-
arithms of (i) the maximum number of states
for each variable in X, and (ii) the maximum
overall number of vertices of the credal sets as-
sociated to these variables. Thus, we conclude
that any iteration of GL2U is roughly linear in
the size of the net.

5 Numerical Tests

In order to test the performance of GL2U,
we have chosen the Alarm and the Insurance
nets, as well as some random generated nets.
We work with random polytrees with 50 nodes
(Polyt-50), and random multiply connected nets
with 10 and 25 nodes (Multi-10 and Multi-25,
respectively). For the Alarm and the Insurance
nets, we use the original graph with the original
number of states. For the random polytrees, we
generate random graphs with 50 nodes and at
most 4 categories in each variable. With ran-
dom multiply connected nets, we work with 10
and 25 nodes, and 4 and 8 categories.

Table 1: Average mean square errors of
LS, GL2U and BIN. Maximum number of
states/vertices is indicated in the second col-
umn. Best accuracies are bolded.

LS GL2U BIN

Multi-10 4 / 2 0.0189 0.0140 0.0181
Multi-10 8 / 2 0.0195 0.0107 0.0338
Multi-10 4 / 4 0.0120 0.0175 0.0308
Multi-10 4 / 8 0.0027 0.0125 0.0222
Multi-10 8 / 4 0.0234 0.0189 0.0693
Multi-25 4 / 2 0.0231 0.0160 0.0184
Multi-25 4 / 4 0.0248 0.0204 0.0303
Polyt-50 4 / 2 0.0112 0.0193 0.0289
Polyt-50 4 / 4 0.0145 0.0221 0.0392
Insurance 5 / 2 0.0055 0.0117 0.0175
Insurance 5 / 4 0.0113 0.0132 0.0193
Alarm 4 / 2 0.0290 0.0190 0.0302
Alarm 4 / 4 0.0331 0.0239 0.0423

We run marginal inferences using GL2U, the
“rough” binarization without DTS (BIN), the
approximate local search method (da Rocha et
al., 2003) (LS) limited to 20 iterations in or-
der to have running times similar to those of
GL2U, and the exact method presented in (de
Campos and Cozman, 2007). Tab. 1 shows



the mean square errors. GL2U improves, of-
ten substantially, the approximation accuracy
when compared to BIN; moreover, it has accu-
racy similar to LS. Moreover, the running time
and the amount of allocated memory for LS
rapidly increases with the size of the net, that
makes unfeasible a solution for large nets, which
can be instead quickly updated by GL2U (see
Fig. 4).7 As far as we know other existing al-
gorithms besides LS are at least exponential in
the treewidth of the moralized graph and suffer
from the same complexity issues. In fact, some
comparisons have been done also with the hill-
climbing algorithm in (Cano et al., 2007) and a
behavior very similar to that in Fig. 4 has been
observed. Hence, GL2U has a great expected
speed up with respect to them.

20 40 60 80 100

50
10

0
15

0

Network Size (number of nodes)

Av
era

ge
 Ru

nn
ing

 Ti
me

 (s
ec

)

Figure 4: Average running time versus net size
for LS (triangles) and GL2U (circles). LS can-
not solve CNs with more than 80 nodes.

6 Conclusions

This paper has proposed a new approximate al-
gorithm for CNs updating. This task is achieved
augmenting the net by a number of nodes enu-
merating the vertices of the credal sets and
then transforming the CN in a corresponding
net over binary variables, and updating such bi-
nary CN by the loopy version of 2U. The proce-
dure applies to any CN, without restrictions re-
lated to the topology or the number of possible
states, and the only approximation is due to the
loopy propagation. Empirical analysis shows
that GL2U is a competitive procedure for ap-
proximate inference in CNs both in terms of ac-
curacy and scalability. The algorithm is purely

7A software implementation of GL2U is freely avail-
able at www.idsia.ch/∼sun/g2lu.html. The running
times in Fig. 4 refer to an earlier implementation, while
the last release is significantly faster.

distributed and allows for simultaneous updat-
ing of all the variables in the net: these charac-
teristics are usually not shared by optimization-
based algorithms. Moreover, the computational
complexity of GL2U makes it possible to solve
large nets, which cannot be updated, at least
with the same accuracy, by existing algorithms.

Acknowledgments

Work partially supported by the Swiss NSF
grants 200021-113820/1 and 200020-116674/1,
and Hasler Foundation grant 2233.

A Proofs

Lemma 1. Consider a CN with a single node
X and vacuous K(X) := KΩ∗

X
(X), where Ω∗

X ⊆

ΩX . Let K̃(X̃) denote the strong extension of
its binarization (as in Sect. 3.1). Then:

K̃(X̃) = K(X). (8)

Proof. Consider a generic P̃∗(X̃) ∈ ext[K̃(X̃)],

where X̃ := (X̃0, . . . , X̃ d̃−1) with d̃:=log2 |ΩX |.
A corresponding mass function P∗(X) := P̃∗(X̃)
can be therefore defined. Thus:

P̃∗(x̃) =
d̃−1
∏

j=0

P̃∗(x̃
j |x̃j−1, . . . , x̃0), (9)

for each x̃ ∈ ΩX̃ such that (x̃0, . . . , x̃d̃−1) = x̃.

For each j=0, . . . , d̃ − 1 and each possible value
of their parents, the conditional mass functions
P̃∗(X̃

j |x̃j−1, . . . , x̃0) are vertices of their cor-
responding conditional credal sets because of
Proposition 1 of (Antonucci and Zaffalon, 2008).
Thus, the values of the conditional probabilities
on the right-hand side of Eq. (9) are obtained by
a minimization as in Eq. (5). The values to be
minimized are obtained from Eq. (6), where the
conditional probabilities on the right-hand side
are the vertices of K(X), i.e., the m := |Ω∗

X |
degenerate extreme mass functions of the vacu-
ous credal set KΩ∗

X
(X). This means that there

is only a non-zero term in the sum in Eq. (6)
and therefore each vertex of KΩ∗

X
produces a de-

generate conditional mass function for the cor-
responding binary variable. Consequently, also
the extreme values returned by Eq. (5) will be



degenerate. We can therefore conclude that, ac-
cording to Eq. (9), also P̃∗(X̃) and hence P∗(X)
is a degenerate mass functions. Let x∗ ∈ ΩX be
the state of X such that P∗(x∗) = 1. Consid-
ering Eq. (9) for x̃∗ ∈ ΩX̃ , we conclude that
all the conditional probabilities on the right-
hand side are equal to one. Considering the
highest order bit, according to Eq. (6) and de-
noting by Pk(X) a vertex of Ω∗(X), we have

P̃∗(x̃
d̃−1
∗

|x̃d̃−2
∗

, . . . , x̃0
∗
) = Pk(x∗) = 1, that re-

quires x∗ ∈ Ω∗

X . Thus, P∗(X) ∈ ext[K(X)],
that implies ext[K̃(X̃)] ⊆ ext[K(X)], and fi-
nally K̃(X̃) ⊆ K(X). On the other side,
K̃(X̃) ⊇ K(X) because of Th. 2 in (Antonucci
et al., 2006), and hence the thesis.

Proof of Th. 1. Given a P̃ ′

∗
(X̃′) ∈ ext[K̃ ′(X̃′)],

the following factorization holds:

P̃
′

∗(x̃
′) =

2n
∏

i=1

d̃i−1
∏

j=0

P̃
′

∗(x̃
j

i |π̃
j

i ) =

2n
∏

i=1

P̃
′

∗(x̃
0
i , . . . , x̃

d̃i−1
i |π̃′

i),

(10)

for each x̃′ ∈ Ω
X̃′ , where the values of the

other variables are consistent with x̃, and the
last equality follows from chain rule. Eq. (10)

defines P ′

∗
(Xi|π

′

i) := P̃ ′

∗
(X̃0

i , . . . , X̃
d̃i−1
i |π̃′

i). As
noted in Sect. (3.2), for each i = 1, . . . , n and
πi ∈ ΩΠi

, K ′(Xi|π
′

i) is a credal set made of a
single point. Thus, as a corollary of Th. 1 in
(Antonucci et al., 2006), we have P ′

∗
(Xi|π

′

i) ∈
ext[K ′(Xi|π

′

i)], being in fact the only element of
this credal set. Similarly, for each i = 1, . . . , n,
the credal set K ′(Xi+n|π

′

i+n) is vacuous. Thus,
regarding this credal set as a CN made of a
single node, we invoke Lemma 1 and obtain
from P̃ ′

∗
(X̃i+n|π̃

′

i+n) ∈ ext[K̃ ′(X̃i+n|π̃
′

i+n)] that
P ′

∗
(Xi+n|π

′

i+n) ∈ ext[K ′(Xi+n|π
′

i+n)]. Over-
all, we proved that P ′

∗
(X′) is a combina-

tion of local vertices of the credal sets of
〈G′,P′(X′)〉. Thus, P ′

∗
(X′) ∈ ext[K ′(X′)], from

which ext[K̃ ′(X̃′)] ⊆ ext[K ′(X′)], and finally
K̃ ′(X̃′) ⊆ K ′(X′). According to Lemma 1 in
(Antonucci et al., 2006), K̃ ′(X̃′) ⊇ K ′(X′).
Thus, K̃ ′(X̃′) = K ′(X′). Marginalizing on
both the sides we get K̃ ′(X̃) = K ′(X). But
Th. 2 in (Antonucci and Zaffalon, 2008) states
K(X) = K ′(X), from which the thesis.

References

A. Antonucci and M. Zaffalon. 2008. Decision-
theoretic specification of credal networks: A uni-
fied language for uncertain modeling with sets of
Bayesian networks. Int. J. Approx. Reasoning.
Forthcoming.

A. Antonucci, M. Zaffalon, J. S. Ide, and F. G. Coz-
man. 2006. Binarization algorithms for approx-
imate updating in credal nets. In Proceedings of
the third European Starting AI Researcher Sym-
posium, pages 120–131, Amsterdam. IOS Press.

A. Cano, M. Gómez, S. Moral, and J. Abellán.
2007. Hill-climbing and branch-and-bound al-
gorithms for exact and approximate inference in
credal networks. International Journal of Approx-
imate Reasoning, 44(3):261–280.

F. G. Cozman. 2005. Graphical models for im-
precise probabilities. Int. J. Approx. Reasoning,
39(2–3):167–184.

J. C. da Rocha, F. G. Cozman, and C. P. de Campos.
2003. Inference in polytrees with sets of probabil-
ities. In Conference on Uncertainty in Artificial
Intelligence, pages 217–224, Acapulco.

C. P. de Campos and F. G. Cozman. 2005. The
inferential complexity of Bayesian and credal net-
works. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1313–
1318, Edinburgh.

C. P. de Campos and F. G. Cozman. 2007. Inference
in credal networks through integer programming.
In Proceedings of the Fifth International Sympo-
sium on Imprecise Probability: Theories andAp-
plications, Prague. Action M Agency.

E. Fagiuoli and M. Zaffalon. 1998. 2U: an ex-
act interval propagation algorithm for polytrees
with binary variables. Artificial Intelligence,
106(1):77–107.

J. S. Ide and F. G. Cozman. 2004. IPE and
L2U: Approximate algorithms for credal net-
works. In Proceedings of the Second Starting AI
Researcher Symposium, pages 118–127, Amster-
dam. IOS Press.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Mateo.

P. Walley. 1991. Statistical Reasoning with Impre-
cise Probabilities. Chapman and Hall, New York.



Carmen: An open source project
for probabilistic graphical models

Manuel Arias and Francisco J. Dı́ez
Dept. Inteligencia Artificial. UNED
Juan del Rosal, 16. 28040 Madrid

Abstract

Carmen is an open-source software package for probabilistic graphical models (PGMs),
which aims at being useful for different research groups and for building real-world appli-
cations. After reviewing similar projects launched in the last years, we analyze the general
properties of Carmen and how it adheres to the principles of software engineering, in par-
ticular by including exhaustive documentation and systematic tests. We then describe the
current state of development, i.e., which algorithms and modules have been implemented
so far, and discuss the results of a preliminary analysis of its performance.

1 Introduction

Graphical probabilistic models (PGMs), such
as Bayesian networks and influence diagrams,
are a powerful tool for uncertain reasoning
in real-world problems (Pearl, 1988). Sev-
eral computer packages for building and
evaluating PGMs have been developed in
the last years—see K. Murphy’s list at
www.cs.ubc.ca/~murphyk/Software/bnsoft.html.
In particular, many researchers, practioners,
and teachers of PGMs felt the advisability
of having an open source package supported
by a large community of programmers. One
of the main reasons is that every people or
group who wished to use a PGM had to do
a lot of programming from scratch. Another
reason was that an open source tool would
allow to compare the performance of different
algorithms.

Several projects started with the objective of
building such a tool. However, in our opinion, it
still makes sense to try to build an open source
tool for PGMs, as we discuss at length in Sec-
tion 2. The tool that we present in this paper
is Carmen.

The rest of the paper is structured as follows.
In Section 2 we review some of the open source
packages developed in the last years. Then we
describe Carmen’s general properties (Sec. 3),

the methods and modules implemented so far
(Sec. 4) and a rough premilinary comparison
of Carmen’s performance with three well-known
tools (Sec. 5). In Section 6 we state the delivery
schedule and conclude in Section 7.

In this paper we assume that the reader is fa-
miliar with PGMs. Due to the lack of space, we
do not give references to standard algorithms,
such as variable elimination, Hugin, lazy propa-
gation, etc., nor for well-known computer appli-
cations, such as CVS, subversion, listserv, etc.

2 Previous work

In Table 1 we list some open source programs
for PGMs.1 In the following, we analyze four of
the most successful packages: BNT, PNL, Weka,
and Elvira, in order to show that, despite all
these open-source projects started in the last
years, it still makes sense to propose a new one
that aspires to involve developers from different
research groups.

1Some members of the free software community in-
sist on the difference between “free software” and “open
source software”, arguing that the latter is confusing.
However, for most of the people “open source” means
not only that the source code is visible, but also that
it can be modified and distributed; i.e., both terms are
synonymous. Furthermore, we prefer “open source” be-
cause it avoids the ambiguity of “free”: for instance, in
K. Murphy’s list, the latter does not mean “free soft-
ware” but “free of charge”.

1



B
N

T

P
N

L

O
B

P

J
av

a
B

ay
es

B
N

J

R
is

o

B
ay

es
L
in

e

W
ek

a

E
lv

ir
a

C
a
rm

en

Language Matlab C++ Python Java Java Java Java Java Java Java
License GPL IOSL GPL GPL GPL GPL LGPL GPL LGPL
User manuals yes no yes yes yes yes no yes yes yes
Users list/forum yes no yes no yes yes yes yes yes yes
Developer manuals no no no no no no no yes yes yes
Developers list yes no yes no yes yes yes yes yes yes
Source HTML docs no no no yes no yes yes yes yes yes
Version control no no yes no yes yes yes yes yes yes
Bug tracker no no yes yes yes yes yes yes no yes
Start 1999 2003 2006 1996 2004 2000 2003 1993 1997 2004
Stopped 2007 2005 2007 2001 2004 2004 2003 – – –

Table 1: Open-source packages for PGMs. The URLs for these packages can be found in K. Mur-
phy’s list, at www.cs.ubc.ca/~murphyk/Software/bnsoft.html. (OBP = OpenBayes for Python.
IOSL = Intel Open Source License.)

2.1 BNT and its successors

BNT (BayesNetToolbox) was built by Kevin
Murphy (2001) on Matlab, a numerical matrix-
oriented environment, which includes a specific
programming language. The reasons for its
success are the many features implemented in
BNT (Bayesian networks, influence diagrams,
dynamic models, learning and inference with
both discrete and continuous variables...), its
robustness, and the clarity of the code and its
documentation.

The main limitations of BNT stem from its
dependence on Matlab, which requires an ex-
pensive licence (although there is a relatively
cheap student licence), is much slower than
other programming languages, and has limited
support for object-oriented programming.

This has motivated several attempts to build
a new program on an efficient language, but
none of them has been able to replace BNT.
The OpenBayes project, initiated by R. Dy-
bowski and K. Murphy in 2001, was aban-
donned some months later without even ar-
riving at a decision about which programming
language to use. In 2005, Intel Labs in Rus-
sia, with the collaboration of K. Murphy, re-
leased PNL (Probabilistic Networks Library),
an open-source C++ library for PGMs. The
project was abandonned that same year. Simi-
larly, the project OpenBayes for Python was

stopped before the release of version 0.2, which
was announced in February 2007.

2.2 Weka

This project started in 1993 at the University
of Waikato, in New Zealand, with the purpose
of including several data mining methods in a
single tool. The Bayesian network (BN) classi-
fiers were implemented by Remco R. Bouckaert
(2004).

The main advantages of Weka is that it
has good documentation, which facilitates the
development of new learning algorithms, and
the possibility of empirically comparing many
methods, not only those that build BNs, but
also “traditional algorithms”, like C4.5, nearest
neighbors, etc.

2.3 gR

R is “a language and environment for statistical
computing and graphics”. It is an evolution of
a previous language, S. gR was a subproject of
R aimed at providing facilities for PGMs. The
development of gR stoppped in 2003.

2.4 Elvira

Elvira (Elvira Consortium, 2002) started in
1997 as a join project of several Spanish univer-
sities. The main objectives were to foster the
collaboration of the different groups working on
PGMs in our country and to build a package

2



that be (1) a workbench for new PGM algo-
rithms, (2) a tool for tuition, (3) a tool for build-
ing real-world applications, and (4) an open-
source program. It was very successful in almost
all of them. The meetings of the project were an
interesting forum for the exchange of ideas. The
Elvira program, whose development still contin-
ues, has served to try new methods that led to
around 15 or 20 PhD theses and many papers;
as a consequence, Elvira is probably the tool
having more algorithms for inference and learn-
ing PGMs. As a tool for tuition, Elvira has been
used by hundreds of computer science studends
and postgraduate medical students, in at least
8 countries. Several applications were built or
are currently under development using Elvira,
most of them for medical problems, but also for
other domains.

However, Elvira has not been so successful
as an open-source tool: as far as we can tell,
aside from the Spanish groups involved in the
project, only a few Mexican researchers use it.
Some European colleagues who started using it
gave up because of the difficulties they encoun-
tered. In our opinion, it was a consequence of
the “publish or perish” pressure: some members
of Elvira argued that writing extensive docu-
mentation, reorganizing the source code, opti-
mizing the basic data structures, improving the
interface, giving support to external developers,
etc., are time-consuming tasks that return little
benefit.

On the other hand, an important drawback
of Elvira is the lack of efficiency (see the ex-
periments in 5), due to the fact that some of
the basic data structures and algorithms do not
scale up properly. Unfortunately, any attempt
to optimize one class or method might cause
an unpredictable number of conflicts with other
classes: currently Elvira contains over 600 Java
files; the biggest one occupies 390 KB and has
almost 10,000 lines; the second and the third
occupy around 200 KB. Finally, the program
is still buggy, mainly its GUI, but debugging
Elvira is not easy. Similarly, adding new func-
tionalities is more and more a daunting task.

These are the main reasons why we decided
to build a new tool, that takes profit from the

many good ideas implemented in Elvira, and
also from the lessons that we learnt during its
development, thus trying to avoid some of the
mistakes that we made.

2.5 Discussion

The end of the development of BNT and
the “death” of its successors shows that it
is still desirable to build an open-source
program that does not depend on Mat-
lab. Another drawback of BNT is that
it has ceased to add new features—see
www.cs.ubc.ca/~murphyk/Software/BNT/whyNotSourceforge.html

Weka might be a good candidate, but in our
opinion, a general-purpose package for PGMs
should be developed as an independent project,
rather than as an appendix of a data mining
tool: even though the two fields overlap in the
construction of BN classifiers, they have very
different goals and needs. For instance, when
building stand-alone applications, such as med-
ical expert systems, it would be desirable to
have a library that has only some inference al-
gorithms, without the need to include all the
learning methods implemented in Weka. Ad-
ditionally, it is significant, in our opinion, that
despite the excellent work done by R. Bouck-
aert, nobody in the PGM community has tried
to use Weka for any purpose other than learning
BNs.

Elvira has many of the features of an open
source program that might be used by a large
community of programmers, but unfortunately
this was not one of the priorities of the project:
its developers concentrated their efforts in cre-
ating new algorithms rather than in analyzing
design issues (which would have made the code
more efficient and easier to mantain) and writ-
ing extensive documentation (which would fa-
cilitate the task of external developers).

We have discussed in detail these packages
to explain why, in spite of the excellent contri-
butions that they have made, we think that it
still makes sense to develop a new open source
package. In the rest of the paper, we will try to
show how the new package that we are devel-
oping might meet the needs and expectations of
the PGM community.

3



3 Carmen’s general properties

3.1 Programming language

The development language for Carmen is Java,
mainly in order to allow it to run on differ-
ent platforms. Since the begining we used
version 1.5, which introduced new syntacti-
cal features, such as typed collections (for in-
stance, ArrayList<CertainClass>) and en-
hanced loops, which significantly facilitate the
iteration on lists.

3.2 Documentation

There are two kinds of documentation for the
Carmen project: on-line comments and PDF
documents. On-line documentation consists
of comments included in the Java files, and
works in combination with Sun’s Javadoc util-
ity,2 which generates a set of HTML pages with
many cross-references. We devoted a significant
effort to carefully choosing the names of fields,
methods, and variables, and to writing thorough
and clear explanations.

Sun has proposed a set of tags for document-
ing the Java code, such as @author, @param,
@return, etc. We have extended this collec-
tion with new tags especially intended for guar-
anteeing the correctness of the code. For in-
stance, @precondition indicates a condition
that must be fulfilled before invoking a certain
method; @postcondition is a logical condition
fulfilled after the execution of a certain method;
@paramCondition indicates a property that the
parameters must satisfy; @invariant refers to a
logical property always satisfies by the objects
of a certain class; @frozen means that an at-
tribute is set by the constructor and will not
be modified afterwards; and @sideEffect refers
to secondary effects of the the execution of a
method. These tags may be useful for the veri-
fication of the source code by human program-
mers and in the future might be adapted to be
used by automatic verification tools.

Additionally, we are generating PDF docu-
ments, which offer a general overview of Carmen
and contain several UML diagrams, mainly of
types class, object, sequence, and components.

2http://java.sun.com/j2se/javadoc.

3.3 Testing

We have built a test suite for each class in Car-
men with JUnit.3 After introducing a modifica-
tion in Carmen, we run the battery of tests in
order to detect possible bugs in the program. It
would be desirable that each new package con-
tributed by an external developer come with its
JUnit test, at least for those packages thay might
be used by real-world applications.

3.4 Version control and support for
developers

As a version control tool, we chose subversion,
which offers several advantages over CVS. Fol-
lowing subversion’s standard, Carmen’s repos-
itory is organized in three directories: trunk,
branch, and tag, which facilitates the collab-
oration of different programmers. The utility
WebSVN allows Carmen’s developers to receive
customized notifications of changes in subver-
sion, via RSS. In the near future we will install
a distribution list (majordomo or listserv) and
a bug tracking utility (probably Trac,4 because
it was designed to integrate with subversion).
Later on, we will set up a web utility for the
automatic registration of users and developers.

In our opinion, these facilities are a requisite
for the success of any open source project.

4 Carmen’s implementation

4.1 Basic data structures

The package graph implements graph opera-
tions, such as adding nodes or links. In prin-
ciple it can be used for any kind of graph. In
the case of a probabilistic network, each node
represents a chance variable, a decision, or a
utility; in a cluster tree, each node represents a
set of chance variables; in the case of a Markov
transition diagram, each node might represent
a state of a variable.

The package networks is specific of probabilis-
tic graphical models. Each network has an asso-
ciated graph and a set of restrictions (see Fig-
ure 1). This allows to maximun flexibility for
defining new types of PGMs. For example, the

3http://www.junit.org.
4http://trac.edgewall.org.

4



Figure 1: Main data structures for probabilistic
networks.

only default restriction for a Markov network is
OnlyUndirectedLinks. Both a Bayesian network
and an influence diagram have the restrictions
OnlyDirectedLinks and NoCycles; the former also
has an OnlyChanceNodes restriction, while the
latter has additional restrictions for preventing
certain types of links; for instance, the children
of utility nodes can only be utility nodes.

The distinction between ProbNode and Vari-

able (cf. Fig. 1) is introduced to save memory
space when a variable shared by several struc-
tures; for instance, a Bayesian network, its po-
tentials, its moral graph (in fact, a Markov net-
work), and a clique tree.

The package editSupport has two purposes:
to allow undo/redo operations on ProbNets and
to inform the listeners, i.e., the objects inter-
ested in the changes performed on a probNet.
Each modification, such as adding or removing
a node or a link or modifying a potential, is per-
formed by first creating an instance of PNEdit

and then passing this object to an instance of
PNESupport (where PNE stands for “probabilis-
tic network edit”), which informs the listeners,
executes the “edit”, and tracks it in a pushdown
list to be able to undo it if necessary.

4.1.1 Edits

In general, each modification of a probabilis-
tic network is performed by building a PNEdit.
This design address three goals. First, to imple-
ment the undo/redo operations, because class

PNEdit implements the Java Swing interface Un-

doableEdit. Second, to supervise the fulfillment
of restrictions. For instance, the NoCycles re-
striction may register as a listener at a Prob-

Net to be able to veto certain additions of links.
And third, to inform other classes about the
changes performed to a ProbNet. For instance,
an elimination heuristic might store the num-
ber of neighbors of each node, or a learning al-
gorithms might store some scores in a cache;
such information should be updated after the
removal of a variable or the addition of a link.
Similarly, the GUI might be interested in dis-
playing the changes introduced by an inference
algorithm (like variable elimination or arc rever-
sal) or by a learning algorithm. This way, the
possibility of adding listeners to the network of-
fers a high degree of flexibility for fulfill these
purposes and many others that future develop-
ers might imagine.

4.2 Inference

4.2.1 Purely probabilistic networks

The package inference contains methods
for computing the posterior probabilities of
Bayesian networks, Markov networks, and in
general any kind of network that satisfies the
OnlyChanceNodes restriction. The key feature
of these models is that the joint probability is
given by the product of a list of probabilistic
potentials.

Each inference algorithm is implemented as a
class that implements the Java interface Eviden-

cePropagation, whose main methods are individ-

ualProbabilities and joinProbability. The former
receives a list of variablesOfInterest and an evi-

denceCase, and returns a list of potentials, each
one giving the posterior probability of a vari-
able. An evidence case consists of several find-
ings. Each finding is formed by a variable and
the value that it takes. The method joinProba-

bility receives a list of variables of interest, called
query, and an evidenceCase, and returns a single
potential.

Currently, we have implemented three infer-
ence algorithms for purely probabilistic net-
works: variable elimination, Hugin propaga-
tion, and lazy propagation. The two latter are

5



implemented as subclasses of ClusterPropaga-

tion, because they operate on the same struc-
ture, HuginForest. Currently Carmen offers
three elimination heuristics: SimpleElimination,
which chooses the node having fewer neighbors,
CanoMoralElimination (Cano and Moral, 1995),
and FileElimination.5

In the future, we will propose our students
to add other heuristics and other exact and ap-
proximate algorithms, and to carry out experi-
mental comparisons among them.

4.3 Influence diagrams

We have implemented the standard variable
elimination method for influence diagrams
(Jensen and Nielsen, 2007) and will later code a
variable elimination method for diagrams with
super-value nodes (Luque and Dı́ez, 2004).

4.4 Learning

Carmen can learn Bayesian networks from
databases using basic search and score tech-
niques. The only search method implemented
so far is hill climbing. The metrics im-
plemented currently are Bayesian (which in-
cludes K2 and BDe as particular cases), cross-
entropy, AIC, and MDL—see (Bouckaert, 2004;
Neapolitan, 1990) for references. The file for-
mats that Carmen can read are dbc (used by
Elvira), arff (used by Weka), and Microsoft
Excel.

In the future we will add other search meth-
ods, learning algorithms based on the detection
of conditional independences, and learning al-
gorithms for databases with missing values.

4.5 Markov models

One of our postgraduate students is im-
plementing dynamic Bayesian networks,
DBNs (Dean and Kanazawa, 1989), and
factored Markov decision processes, MDPs
(Boutilier et al., 2000), and another one will
implement dynamic limited-memory influence
diagrams, DLIMIDs (van Gerven et al., 2007).

5
FileElimination is not properly a heuristic method,

because it reads the list of variables from a file. It is used
for forcing Carmen to use a certain elimination order, for
sake of comparison with other software tools (see Sec. 5).

Later we would like to add partially observ-
able Markov decision processes, POMDPs
(Åström, 1965), which are much more difficult
to solve than MDPs.

4.6 Graphical user interface (GUI)

Two undergraduate students are implementing
a GUI for Carmen, whose look will be very sim-
ilar to Elvira’s.

5 Performance of Carmen

As a first approach to assessing the performance
of Carmen, we have compared it with some well-
known software tools, such as Elvira (version
0.16), GeNIE (v. 2.0), Hugin (v. 5.6), and Net-
ica (v. 3.14).6 We have built some test networks
with a double requirement: small number of
nodes and states (to make the network tractable
by the demo versions of some programs) and big
clusters in the clique tree, to make the measure-
ment of time more reliable.

A solution has been the definition of networks
containing m × n nodes Xi,j , m nodes Ri, and
n nodes Cj . Each node Ri is a child of all the
Xi,j ’s (the i-th row) and each Cj is a child of all
the Xi,j ’s (the j-th column), with 0 ≤ i ≤ m−1
and 0 ≤ j ≤ n − 1. The size of the largest
clique is roughly m × n, which means that the
complexity of a network grows extremely fast
with the number of nodes.

We have made some experiments with a 6×6
network by introducing evidence on all the R

and C nodes. Both GeNIE and Netica needed
around 3-4 seconds to compile the network and
1.5 seconds to propagate evidence, i.e., to com-
pute the posterior probabilities of all the X

nodes. Hugin needed around 10 seconds to com-
pile the network and the same amount of time to
propagate evidence; these times were the same
for the four triangulation algorithms offered by
that version of Hugin. Carmen, in turn, needed
0.42 seconds to compile the network and 16.0
to propagate evidence. Given that GeNIE and
Netica are all implemented in C or C++, it is
not surprising that they are around 10 times

6See www2.sis.pitt.edu/~genie, www.hugin.com,
and www.norsys.com.

6



faster than Carmen, which is implemented in
Java.

Elvira ran out of memory for the 6 × 6 net-
work; when both tools were compared on a 5×5
network, Carmen was over 100 times faster than
Elvira.

The fact that in our experiments Hugin was
slower than GeNIE and Netica might due to the
fact that we used an old version of that pro-
gram, which seems to be based on non-efficient
triangulations. In fact, when analyzing Hugin’s
log files, we saw that the biggest clique for that
network contained 24 variables, while Carmen,
which used the heuristic method by Cano and
Moral, built a tree whose biggest clique con-
tains only 22 variables. When we forced Car-
men to use the same elimination ordering as
Hugin and, consequently, to propagate evidence
on a tree containing the same cliques, Carmen
needed 50.4 seconds, i.e., it was five times slower
than Hugin with the same triangulation and it
was three times slower than Carmen itself with
the tree built with the Cano-Moral heuristic.

However, the fact that Carmen is slower when
propagating evidence can be compensated by
the fact that it is able to compile the network
around 7 to 10 times faster than GeNIE and
Netica. This means that, instead of always us-
ing the same clique tree, we can speed up the
propagation of evidence by pruning the barren
nodes (i.e., nodes that are neither variables of
interest nor parents of evidence nodes) before
compiling the network, which in general speeds
up significantly the propagation of evidence: the
time spent in compiling the pruned network is
negligible compared to the time saved in the
phase of inference.

In any case, we insist, these are only very pre-
liminary results. It is necessary to perform fur-
ther experiments with diffent kinds of networks,
such as as those in the Bayesian Network Repos-
itory,7, comparing Carmen with other software
tools.

7www.cs.huji.ac.il/labs/compbio/Repository.

5.1 Discussion

In the implementation of Carmen we have
used several well-known software design pat-
terns (Gamma et al., 2005): the undo/redo op-
erations are based on the Command pattern, lis-
teners an example of Observer, etc. In the same
way, the GUI will be based on the arquitectural
pattern MVC (Model-View-Controler). Some of
these patterns have been combined and adapted
to our particular needs. In a future paper we
will analyze in detail how we are applying the
principles and methods of software engineering
in an attempt to make Carmen as efficient, ro-
bust, clearly organized, and extensible as possi-
ble.

6 Release schedule

We intend to release a beta version of Car-
men before the end of 2008. As an advance,
some preliminary information can be found
at http://www.cisiad.uned.es/carmen.
It is possible to browse the JavaDoc
pages, linked to the source code, at
http://www.cisiad.uned.es/carmen/javadoc.
After receiving the feedback from the PGM
community (hopefully), we will later release
the first stable version of Carmen.

7 Conclusion

In Section 2 we showed that, even thought it
may seem that there are many open source
packages for PGMs, only Weka and Elvira are
currently active, and we argued that it still
makes sense to offer a new package that might
be useful for researchers of different groups and
for building real-world applications. For this
reason we decided to build Carmen, a project
in which we are trying to adhere to the prin-
ciples of software engineering in order to make
our package robust, efficient, scalable, and ex-
tensible. A particular effort has been devoted to
clearly documenting the source code, by means
of tools such as Javadoc and UML, not only to
facilitate the work of the programmers that will
use Carmen, but also as a requisite to make the
software robust to future additions and changes.
We have also developed an extensive battery of

7



tests (in JUnit) for checking the stability of Car-
men under new modifications.

We have already implemented algorithms for
inference in Bayesian networks and influence
diagrams with discrete variables, as well as
the standard “search and score” learning algo-
rithms. Other learning methods, several types
Markovian decision models, and a GUI are un-
der development.

A preliminary evaluation of Carmen’s per-
formance seems to indicate that it is efficient
enough (when compared to commercial tools)
to be used in real-world applications.

We would like to present Carmen to the
PGM community at the PGM-08 conference, in
Hirtshals, Denmark, to attrack the interest of
other researchers that might be willing to con-
tribute to this project.

Acknoledgements

José E. Mendoza and Alberto M. Ruiz are im-
plementing Carmen’s GUI, Jorge Fernández is
implementing Markov decision processes, and
Jesús Oliva is implemeting some learning algo-
rithms, all under the supervision of the authors
of this paper. Manuel Luque has helped to set
up a web server for Carmen.

We thank all the members of the Elvira
project for all that they have taught us.

This work has been supported by the Spanish
Ministry of Education and Science, under grant
TIN-2006-11152.

References

[Åström1965] K. J. Åström. 1965. Optimal con-
trol of Markov decision processes with incomplete
state estimation. Journal of Mathematical Anal-
ysis and Applications, 10:174–205.

[Bouckaert2004] R. R. Bouckaert. 2004. Bayesian
networks in Weka. Technical Report 14/2004,
Computer Science Department, University of
Waikato, New Zealand.

[Boutilier et al.2000] C. Boutilier, R. Dearden, and
M. Goldszmidt. 2000. Stochastic dynamic pro-
gramming with factored representations. Artifi-
cial Intelligence, 121(1-2):49–107.

[Cano and Moral1995] A. Cano and S. Moral. 1995.
Heuristic algorithms for the triangulation of

graphs. In B. Bouchon-Meunie, R. R. Yager,
and I. A. Zadeh, editors, Advances in Intelligent
Computing (IPMU-94), pages 98–107. Springer-
Verlag, Berlin.

[Dean and Kanazawa1989] T. Dean and K. Kana-
zawa. 1989. A model for reasoning about persis-
tence and causation. Computational Intelligence,
5:142–150.

[Elvira Consortium2002] The Elvira Consortium.
2002. Elvira: An environment for creating
and using probabilistic graphical models. In
Proceedings of the First European Workshop on
Probabilistic Graphical Models (PGM’02), pages
1–11, Cuenca, Spain.

[Gamma et al.2005] E. Gamma, R. Helm, R. John-
son, and J. Vlissides. 2005. Design Patterns:
Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, MA.

[Jensen and Nielsen2007] F. V. Jensen and T. D.
Nielsen. 2007. Bayesian Networks and Decision
Graphs. Springer-Verlag, New York, second edi-
tion.

[Luque and Dı́ez2004] M. Luque and F. J. Dı́ez.
2004. Variable elimination for influence diagrams
with super-value nodes. In P. Lucas, editor, Pro-
ceedings of the Second European Workshop on
Probabilistic Graphical Models, pages 145–152.

[Murphy2001] K. Murphy. 2001. The Bayes net tool-
box for Matlab. Computing Science and Statis-
tics, 33:1–20.

[Neapolitan1990] R. E. Neapolitan. 1990. Probabilis-
tic Reasoning in Expert Systems: Theory and Al-
gorithms. Wiley-Interscience, New York.

[Pearl1988] J. Pearl. 1988. Probabilistic Reasoning
in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, San Mateo, CA.

[van Gerven et al.2007] M. A. J. van Gerven, F. J.
Dı́ez, B. G. Taal, and P. J. F. Lucas. 2007. Se-
lecting treatment strategies with dynamic limited-
memory influence diagrams. Artificial Intelli-
gence in Medicine, 40:171–186.

8



Bayesian Networks: the Parental Synergy

Janneke H. Bolt
Department of Information and Computing Sciences, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

In a Bayesian network, for any node its conditional probabilities given all possible com-
binations of values for its parent nodes are specified. In this paper a new notion, the
parental synergy, is introduced which can be computed from these probabilities. This
paper also conjectures a general expression for the error which is found in the marginal
prior probabilities computed for a node when the parents of this node are assumed to be
independent. The parental synergy is an important factor of this expression; it determines
to what extend the actual dependency between the parent nodes can affect the computed
probabilities. This role in the expression of the prior convergence error indicates that the
parental synergy is a fundamental feature of a Bayesian network.

1 Introduction

A Bayesian network is a concise representation
of a joint probability distribution over a set
of stochastic variables, consisting of a directed
acyclic graph and a set of conditional probabil-
ity distributions (Pearl, 1988). The nodes of
the graph represent the variables of the distri-
bution. From a Bayesian network, in theory,
any probability of the represented distribution
can be inferred. Inference, however, is NP-hard
in general (Cooper, 1990) and may be infeasi-
ble for large, densely connected networks. For
those networks, approximate algorithms have
been designed. A widely used algorithm for ap-
proximate inference with a Bayesian network is
the loopy-propagation algorithm (Pearl, 1988).

In Bolt and van der Gaag (2004), we stud-
ied the performance of the loopy-propagation
algorithm from a theoretical point of view. We
observed that in a network in its prior state,
a prior convergence error may arise in the
marginal probabilities computed for a node with
two or more incoming arcs and noted that such
an error may arise because the algorithm as-
sumes the parents of a node to be independent,
while, in fact, they may be dependent. There-
after, for binary networks, we derived an ex-
pression for the prior convergence error found

in a node with two incoming arcs. This expres-
sion is composed of some factors that capture
the degree of dependency between the parents
of this node, and of a weighting factor w that
determines to what extent this degree of depen-
dency can contribute to the prior convergence
error. The factor w is composed of the condi-
tional probabilities specified for the node.

In this paper, the notion of parental synergy
is introduced. This notion is a generalisation
of the factor w and can be computed for each
node, irrespective its number of parents and
irrespective of the cardinality of the involved
nodes. Thereafter, the expression for the prior
convergence error is generalised to nodes with
an arbitrary number of parents and to network
with nodes of arbitrary cardinality. In this gen-
eralised expression, the parental synergy ful-
fils the role of weighting factor. The role of
the parental synergy in the expression of the
prior convergence error indicates that it cap-
tures a fundamental feature of the probability
landscape in a Bayesian network.

More details about the research described in
this paper can be found in Bolt (2008).

2 General Preliminaries

A Bayesian network is a model of a joint prob-
ability distribution Pr over a set of stochas-



tic variables V, consisting of a directed acyclic
graph and a set of conditional probability dis-
tributions1. Each variable A is represented by
a node A in the network’s digraph2. (Condi-
tional) independency between the variables is
captured by the digraph’s set of arcs accord-
ing to the d-separation criterion (Pearl 1988).
The strength of the probabilistic relationships
between the variables is captured by the con-
ditional probability distributions Pr(A | p(A)),
where p(A) denotes the instantiations of the
parents of A. The joint probability distribution
is presented by:

Pr(V) =
∏

A∈V

Pr(A | p(A))

Figure 1 depicts the graph of an example
Bayesian network. The network includes a node
C with n parents A1, . . . , An, n ≥ 0. The nodes
A1, . . . , An in turn have a common parent D.
For n = 0 and n = 1, no loop is included in
the network. For n = 2, the graph consists of a
simple loop. For n > 2, the graph consists of a
compound loop; for n = 3, this compound loop
will be termed a double loop.

For a Bayesian network with a graph as de-
picted in Figure 1, the marginal probability
Pr(ci) equals:

Pr(ci) =
∑

A

Pr(ci | A) · Pr(A)

Wrongfully assuming independence of the par-

ents A1, . . . , An would give the approximation
P̃r(ci):

P̃r(ci) =
∑

A

Pr(ci | A) · Pr(A1) · . . . · Pr(An)

In the loopy-propagation algorithm (Pearl,

1Variables will be denoted by upper-case letters (A,
A

i), and their values by indexed lower-case letters (ai);
sets of variables by bold-face upper-case letters (A) and
their instantiations by bold-face lower-case letters (a).
The upper-case letter is also used to indicate the whole
range of values of a variable or a set of variables. Given
binary variables, A = a1 is often written as a and A = a2

is often written as ā.
2The terms node and variable will be used inter-

changeably.

A
1

A
n

C

D

..................

Figure 1: An example graph of a Bayesian net-
work with a node C with the dependent parents
A1, . . . , An.

1988), a widely used algorithm for approxi-
mate inference, indeed the parents of a node
are always considered to be independent. With
this algorithm, in the network from Figure 1
for node C the probabilities P̃r(ci) would be
yielded.

In Bolt and van der Gaag (2004), we termed
the error which arises in the marginal prior
probabilities computed for a child node under
assumption of independence of its parent nodes,
a prior convergence error. Moreover, we anal-
ysed the prior convergence error found in a bi-
nary network with a graph consisting of a node
C with just the parents A and B with the com-
mon parent D, as the network depicted in Fig-
ure 2.

A B

C

D

Pr(d) = 0.5

Pr(a | d) = 0.5
Pr(a | d̄) = 0.9

Pr(b | d) = 0.1
Pr(b | d̄) = 0.9

Pr(c | ab) = 1
Pr(c | ab̄) = 0

Pr(c | āb) = 0
Pr(c | āb̄) = 1

Figure 2: An example Bayesian network with a
node C with the dependent parents A and B.

For the prior convergence error vi = Pr(ci)−

P̃r(ci) in such a network the following expres-
sion was found:

vi = l · m · n · w



where

l = Pr(d) − Pr(d)2

m = Pr(a | d) − Pr(a | d̄)

n = Pr(b | d) − Pr(b | d̄)

w = Pr(ci | ab) − Pr(ci | ab̄)

−Pr(ci | āb) + Pr(ci | āb̄)

The factors were illustrated graphically with
Figure 3. The line segment in this figure cap-
tures the exact probability Pr(c) as a function
of Pr(d), given the conditional probabilities for
the nodes A, B and C from Figure 2. Pr(d)
itself is not indicated in the figure, note how-
ever, that each particular Pr(d) has a corre-
sponding Pr(a) and Pr(b). The end points of
the line segment, for example, are found at
Pr(d) = 1 with the corresponding Pr(a) = 0.5
and Pr(b) = 0.1 and at Pr(d) = 0 with the cor-
responding Pr(a) = 0.9 and Pr(b) = 0.9. The

surface captures P̃r(c) as a function of Pr(a)
and Pr(b), given the conditional probabilities
for node C. The convergence error equals the
distance between the point on the line segment
that matches the probability Pr(d) from the net-
work and its orthogonal projection on the sur-
face. For Pr(d) = 0.5 the difference between

Pr(c) and P̃r(c) is indicated by the vertical dot-
ted line segment and equals 0.66 − 0.5 = 0.16.
The factor l now reflects the location of the
point with the exact probability on the line seg-
ment and the factors m and n reflect the loca-
tion of the line segment. The factor w, to con-
clude, reflects the curvature of the surface with
the approximate probabilities. This curvature
is determined by the change of the influence of
one of the parent nodes on C occasioned by the
change of the value of the other parent node.
We argued that the factors l, m and n capture
the degree of dependency between the parent
nodes A and B and that the factor w acts as
a weighting factor, determining to what extent
the dependence between A and B can affect the
computed probabilities.

The factor w, as used in the expression for
the convergence error above, only applies to

Pr(c)

01Pr(a)

1
Pr(b)

0.66

0.5

1

0

Figure 3: The line segment capturing Pr(c) and

the surface capturing P̃r(c), for the example net-
work from Figure 2.

nodes with two binary parents. In the next Sec-
tion, this factor is extended to a general notion
which will be called the parental synergy. Sub-
sequently, in Sections 4 and 5, the expression of
the prior convergence error is generalised to a
node C with an arbitrary number of dependent
parents and with parents of arbitrary cardinal-
ity. The parental synergy is an important factor
of these expressions and, analogous to the factor
w, has the function of weighting factor.

3 The Parental Synergy

Before formally defining the parental synergy,
the indicator function δ on the joint value
assignments a1

i1, . . . , a
n
in to a set of variables

A1, . . . , An, n ≥ 0, given a specific assignment
a1

s1, . . . , a
n
sn to these variables is introduced:

δ(a1

i1, . . . , a
n
in | a1

s1, . . . , a
n
sn) =

{
1 if

∑
k=1,...,n ak

ik 6= ak
sk is even

−1 if
∑

k=1,...,n ak
ik 6= ak

sk is odd

where true ≡ 1 and false ≡ 0. The in-
dicator function compares the joint value as-
signment a1

i1, . . . , a
n
in with the joint assignment

a1

s1, . . . , a
n
sn, and counts the number of differ-

ences: the assignment a1

i1, . . . , a
n
in is mapped to

the value 1 if the number of differences is even
and is mapped to −1 if the number of differ-
ences is odd. For the binary variables A and B,



for example, δ(ab | ab) = 1, δ(ab̄ | ab) = −1,
δ(āb | ab) = −1 and δ(āb̄ | ab) = 1.

Building upon the indicator function δ, the
notion of parental synergy is defined as follows:

Definition 3.1. Let B be a Bayesian net-
work, representing a joint probability distribu-
tion Pr over a set of variables V. Let A =
{A1, . . . , An} ⊆ V, n ≥ 0, and let C ∈ V such
that C is a child of all variables in the set A,
that is, Aj → C, j = 1, . . . , n. Let a be a joint
value assignment to A and let ci be a value of
C. Furthermore, let X ⊆ ρ(C)\A, where ρ(C)
denotes the parents of C, and let x be a value as-
signment to X. The parental synergy of a with
respect to ci given X = x, denoted as Y

⋆

x (a, ci),
is

Y
⋆

x (a, ci) =
∑

A

δ(A | a) · Pr(ci | Ax)

2

Given an an empty value assignment to the
nodes X, the parental synergy is denoted by
Y

⋆

(a, ci).

Example 3.2. Consider an arbitrary-valued
node C with the two ternary parents A and
B; the conditional probabilities for the value
ci of C given A and B, are listed in Table 1.
The parental synergy Y

⋆

(a2b2, ci) of a2 and b2

with respect to ci, for example, is computed
from Pr(ci | a1b1) − Pr(ci | a1b2) + Pr(ci |
a1b3) − Pr(ci | a2b1) + Pr(ci | a2b2) − Pr(ci |
a2b3) + Pr(ci | a3b1) − Pr(ci | a3b2) + Pr(ci |
a3b3) = 2.0. Table 2 lists all parental synergies
Y

⋆

(ajbk, ci), j, k = 1, 2, 3. 2

Table 1: The conditional probabilities Pr(ci |
AB) for a variable C with the ternary parents
A and B.

Pr(ci | AB) a1 a2 a3

b1 0.7 0.2 0.3
b2 0.2 1.0 0.8
b3 0.4 0.1 0.9

Table 2: The parental synergies matching the
conditional probabilities Pr(ci | AB) from Ta-
ble 1.

Y
⋆

(AB, ci) a1 a2 a3

b1 2.4 0.4 −0.6
b2 −1.2 2.0 −0.2
b3 0.8 −0.4 1.4

From the definition of parental synergy, it is
readily seen that for a binary parent Ak of C,
we have that Y

⋆

x (aak, ci) = −Y
⋆

x (aāk, ci) for
any value assignments a and x. For a node C
with binary parents only, therefore, for a given
x the parental synergies with respect to some
value ci can only differ in sign. From the defini-
tion it further follows that given a binary par-
ent Ak of C, with the values ak

m and ak
n, that

Y
⋆

x (aak
m, ci) = Y

⋆

xak
m

(a, ci) − Y
⋆

xak
n

(a, ci).

Example 3.3. Consider an arbitrary-valued
node C with the ternary parent A and the bi-
nary parent B; the conditional probabilities for
the value ci of C given A and B, are listed in Ta-
ble 3; the matching parental synergies are listed
in Table 4. It is easily verified that Y

⋆

(Ab, ci)
equals −Y

⋆

(Ab̄, ci) for all possible values of A.
Furthermore from, for example, Y

⋆

(a1b, ci) =
(0.8 − 0.3 − 0.5) − (0 − 0.4 − 0.9) = 1.3,
Y

⋆

b (a1, ci) = 0.8−0.3−0.5 = 0 and Y
⋆

b̄
(a1, ci) =

0 − 0.4 − 0.9 = −1.3, it is readily verified that
Y

⋆

(a1b, ci) = Y
⋆

b (a1, ci) − Y
⋆

b̄
(a1, ci). 2

Table 3: The conditional probabilities Pr(ci |
AB) for a node C with the ternary parent A
and the binary parent B.

Pr(ci | AB) a1 a2 a3

b 0.8 0.3 0.5
b̄ 0.0 0.4 0.9

For a node with only binary parents, the
parental synergies can be thought of as a mea-
sure of the feasible changes in its probability
landscape, given a change in the value of one of
its parents. This is explained in more detail be-
low. When no parents are involved, the parental



Table 4: The parental synergies matching the
conditional probabilities Pr(ci | AB) from Ta-
ble 3.

Y
⋆

(AB, ci) a1 a2 a3

b 1.3 −0.5 −1.1
b̄ −1.3 0.5 1.1

synergy with respect to a value ci of a node C
equals zero, reflecting that no change is possible.
For a node C with a parent A, the parental syn-
ergy of, for example, a with respect to ci equals
Pr(ci | a)−Pr(ci | ā) and thus gives the feasible
change in the probability of ci, given a change of
the value of A from ā to a. For a node C with
parents A and B, the parental synergy of, for
example, ab with respect to ci equals

(
Pr(ci |

ab)−Pr(ci | āb)
)
−
(
Pr(ci | ab̄)−Pr(ci) | āb̄)

)
3.

It thus gives the difference between the feasible
change of the probability of ci given a change of
the value of A from ā to a when the value of B
is b and when the value of B is b̄4. And so on.
Note that the number of parent nodes involved
in the computation of the parental synergy can
be considered to determine a kind of ‘dimen-
sionality’ of the synergy. Note furthermore that
for multiple-valued variables, the interpretation
of the parental synergy as a measure of feasible
change does not hold straightforwardly. Con-
sider, for example, a three valued parent A with
a child C. Given, for example, the conditional
probabilities Pr(c | a1) = 0.7, Pr(c | a2) = 0.7
and Pr(c | a3) = 0.7, the parental synergy of ai

with respect to c equals 0.7 − 0.7 − 0.7 = −0.7,
whereas no change in the probability of c can
be occasioned by a change in the value of A.
Note, to conclude, that the parental synergy
is related to the concepts of qualitative influ-
ence and additive synergy as defined for qualita-
tive probabilistic networks by Wellman (1990).
Most obviously, in a binary network, given a
node C with a single parent A, the sign of the

3Or equally
`

Pr(ci | ab) − Pr(ci | ab̄)
´

−
`

Pr(ci |

āb) − Pr(ci | āb̄)
´

.
4Or equally: it gives the difference between the feasi-

ble change of the probability of ci given a change of the
value of B from b̄ to b when the value of A is a and when
the value of A is ā

qualitative influence between A and C is com-
puted from Pr(c | a) − Pr(c | ā), which equals
Y

⋆

x (a, c); given a node C with just the parents
A and B the sign of the additive synergy of
A and B with respect to C is computed from
Pr(c | ab) − Pr(c | ab̄) − Pr(c | āb) + Pr(c | āb̄),
which equals Y

⋆

x (ab, c).

4 The Convergence Error given

Binary Nodes

In section 2 an expression for the prior conver-
gence error found in the marginal prior proba-
bilities of a node C with the two binary parent
nodes A and B with a common binary parent
D was given. In Section 4.1 an alternative for
this expression is stated. This alternative ex-
pression is more apt for generalisation. It will
be extended to apply to convergence nodes with
more than two binary parents in Section 4.2 and
it will be extended to multiple valued nodes in
Section 5.

4.1 Two Parent Nodes; an Alternative

Expression

The expression for the prior convergence error
from Section 2 can also be written as

vi = (s − t) · w

where w is as before and

s =
∑

D

Pr(a | D) · Pr(b | D) · Pr(D)

t =

(
∑

D

Pr(a | D) · Pr(D)

)
·

(
∑

D

Pr(b | D) · Pr(D)

)

The degree of dependency between the nodes A
and B now is captured by s − t instead of by
l · m · n. Note that the term s equals Pr(ab)
and that the term t equals Pr(a) · Pr(b). Note
furthermore that w = Pr(ci | ab)−Pr(ci | ab̄)−
Pr(ci | āb) + Pr(ci | āb̄) equals Y

⋆

(ab, ci).



A
1

A
2

A
3

C

D

Figure 4: A node C with the dependent parents
A1, A2 and A3.

4.2 Multiple Parent Nodes

Consider the network from Figure 4. For three
parent nodes, the expression for the prior con-
vergence error vi is found by subtracting the
approximate probability

P̃r(ci) =
∑

A1,A2,A3

Pr(ci | A1A2A3)·

Pr(A1) · Pr(A2) · Pr(A3)

from the exact probability

Pr(ci) =
∑

A1,A2,A3,D

Pr(ci | A1A2A3)·

Pr(A1 | D) · Pr(A2 | D) · Pr(A3 | D) · Pr(D)

and manipulating the resulting terms. This re-
sults in the following expression

vi = (sa1a2a3 − ta1a2a3) · w +

(sa2a3 − ta2a3) · wā1(a2a3) +

(sa1a3 − ta1a3) · wā2(a1a3) +

(sa1a2 − ta1a2) · wā3(a1a2)

where

sa1a2a3 =
∑

D

∏

i=1,2,3

Pr(ai | D) · Pr(D)

ta1a2a3 =
∏

i=1,2,3

∑

D

Pr(ai | D) · Pr(D)

w = Y
⋆

(a1a2a3, ci)

saman =
∑

D

Pr(am | D) · Pr(an | D) · Pr(D)

taman =

(
∑

D

Pr(am | D) · Pr(D)

)
·

(
∑

D

Pr(an | D) · Pr(D)

)

wāl(aman) = Y
⋆

āl(a
man, ci)

The convergence error is composed of the term
(sa1a2a3 − ta1a2a3) · w which pertains to the en-
tire double loop, and the three terms (saman −
taman) · wāl(aman) which pertain to the three
simple loops that are included within the dou-
ble loop. Note that sa1a2a3 equals Pr(a1a2a3);
ta1a2a3 equals Pr(a1) · Pr(a2) · Pr(a3); saman

equals Pr(aman) and taman equals Pr(am) ·
Pr(am).

Now consider a convergence node C with the
binary parents A1, . . . , An and the common par-
ent D of A1, . . . , An. It is posed as a conjecture
that the following expression captures the prior
convergence error vi for the value ci of C:

vi =
∑

m

(sam − tam) · wā1...ān\am(am)

where

m ∈ P({1, . . . , n})

am = ax . . . ay for m = {x, . . . , y}

sam =
∑

D

∏

i∈m

Pr(ai | D) · Pr(D)

tam =
∏

i∈m

∑

D

Pr(ai | D) · Pr(D)

wā1...ān\am(am) = Y
⋆

ā1...ān\am(am, ci)

in which ā1 . . . ān\am denotes the value assign-
ment ‘False’ to the nodes included in the set
{A1, . . . , An}\{Ax, . . . , Ay}. This expression is
a straightforward generalising of the expression
for the prior convergence error given three par-
ent nodes. Note that, analogous to before, the
term sam equals Pr(ax . . . ay) and the term tam

equals Pr(ax) · . . . · Pr(ay). Further note that



the expression includes terms for all possible
loops included in the compound loop. The term
with m = 1, . . . , n, pertains to the entire com-
pound loop. With |m| = n − 1, the n com-
pound loops with a single incoming arc of C
deleted are considered, and so on. Note also
that, if the number of elements of m is smaller
than two, just one parent or no parents are
left; the term sam then equals the term tam and
(sam − tam) · wā1...ān\am(am) equals zero.

5 The Convergence Error given

Multiple-valued Nodes

In the generalisation of the expression of
the prior convergence error to multiple-valued
nodes, a preliminary observation is that the ex-
pressions for this error from Section 4 involve
just a single value ci of the convergence node
and therefore are valid for multiple-valued con-
vergence nodes as well. Furthermore is ob-
served that these expressions also provide for
a multiple-valued node D. In this section ex-
pressions for the convergence error given parent
nodes with an arbitrary number of values are
proposed.

5.1 Two Parent Nodes

Consider a Bayesian network with a graph as
the graph of network from Figure 2. It is posed
as a conjecture that the following expression
captures the prior convergence error for C.

vi =
∑

A,B

(sAB − tAB) · w(AB)/4

where

sAB =
∑

D

Pr(A | D) · Pr(B | D) · Pr(D)

tAB =

(
∑

D

Pr(A | D) · Pr(D)

)
·

(
∑

D

Pr(A | D) · Pr(D)

)

w(AB) = Y
⋆

(AB, ci)

This conjecture was supported by the fact that
for several example networks the expression in-
deed yielded the prior convergence error.

Note that, analogous to the binary case, the
term sAB equals Pr(AB) and the term tAB

equals Pr(A) · Pr(B). In contrast with the bi-
nary case, now all different value combinations
of the nodes A and B are considered. The im-
pact of the dependency between a specific com-
bination of values for the nodes A and B on the
convergence error is determined by the parental
synergy of this combination with respect to the
value ci of node C. Further note that the ex-
pression for the convergence error now includes
a division by a constant. This constant equals
2n, where n is the number of loop parents of the
convergence node.

5.2 Multiple Parent Nodes

In Section 4.2, the expression for the conver-
gence error was extended to convergence nodes
with an arbitrary number of binary parent
nodes and in Section 5.1 the expression was ex-
tended to convergence nodes with two multiple
valued parent nodes. Now, it is posed as a con-
jecture, that these expressions combine into the
following general expression for the prior con-
vergence error. Given a network with a graph,
consisting of a convergence node C with the par-
ents A1, . . . , An and the common parent D of
A1, . . . , An, as the graph depicted in Figure 1,
the convergence error equals

vi =
∑

m

[∑

Am

(
(sAm − tAm)·

∑

A1,...,An\Am

wA1,...,An\Am(Am)
)]

/2n

where

m ∈ P({1, . . . , n})

Am = Ax, . . . , Ay, m = {x, . . . , y}

sAm =
∑

D

∏

i∈m

Pr(Ai | D) · Pr(D)

tAm =
∏

i∈m

∑

D

Pr(Ai | D) · Pr(D)

wA1...An\Am(Am) = Y
⋆

A1...An\Am(Am, ci)



Again, this conjecture was supported by the fact
that for several example networks the expres-
sion indeed yielded the prior convergence error.

Note that, as before, the term sAm equals
Pr(Ax . . . Ay) and the term tAm equals Pr(Ax) ·
. . . · Pr(Ay). As in the binary case given mul-
tiple parent nodes, all combinations of parent
nodes are considered, now however, for each
combination of parent nodes also all combi-
nations of value assignments to these parent
nodes have to be taken into account. Again,
if the number of elements of m is smaller than
two, that is, if just one parent or zero parents
are considered, then the term sAm equals the

term and tAm and thus
∑

Am

(
(sAm − tAm) ·

∑
A1,...,An\Am wA1,...,An\Am(Am)

)
equals zero.

The general expression, shows that, also in the
general case, the parental synergy is the weight-
ing factor that determines the impact of the de-
gree of dependency between the parent nodes
for a given value assignment, as reflected by
sAm − tAm on the size of the convergence er-
ror.

6 Discussion

In this paper the notion of parental synergy was
introduced. This synergy is computed from the
conditional probabilities as specified for a node
in a Bayesian network. For a node with binary
parents, the parental synergies can be thought
of as a measure of the feasible changes in its
probability landscape, given a change in the
value of one of its parents. Moreover, a gen-
eral expression for the prior convergence error,
was proposed. A prior convergence error arises
in the prior marginal probabilities computed for
a node when its parents are considered to be in-
dependent. This type of error arises in the prob-
abilities computed by the loopy-propagation al-
gorithm; a widely used algorithm for approxi-
mate probabilistic inference. The expression of
the prior convergence error for a node is com-
posed of the parental synergies of this node and
of terms that capture the degree of dependence
between its parent nodes. The parental synergy
acts as weighting factor determining the impact
of the degree of dependency between the parent

nodes on the size of the convergence error.
In this paper, the parental synergy just fea-

tures in the expression of the prior convergence
error. Its role as weighting factor in this ex-
pression, however, indicates that the parental
synergy captures a fundamental characteristic
of the probability landscape of a Bayesian net-
work. It is conceivable, therefore, that the
parental synergy has a wider range of applica-
tion.

Acknowledgments

The research reported in this thesis was sup-
ported by the Netherlands Organisation for Sci-
entific Research (NWO). I would like to thank
Linda van der Gaag for her useful comments on
earlier drafts.

References

J.H. Bolt, L.C. van der Gaag. 2004. The convergence
error in loopy propagation. Paper presented at the
International Conference on Advances in Intelli-
gent Systems: Theory and Applications.

J.H. Bolt. 2008. Bayesian Networks: Aspects of
Approximate Inference. PhD thesis, Department
of Information and Computing Sciences. Utrecht
University.

G.F. Cooper. 1990. The computational complexity
of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42:393–405.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers, Palo Alto.

M.P. Wellman. 1990. Fundamental concepts of qual-
itative probabilistic networks. Artificial Intelli-
gence, 44:257–303.



A Score Based Ranking of the Edges for the PC Algorithm

A. Cano, M. Gómez-Olmedo, and S. Moral
Department of Computer Science and Artificial Intelligence

University of Granada
18071 - Granada, Spain

Abstract

The result of applying the PC learning algorithm can depend of the order in which in-
dependence tests are carried out. Even if these tests are ordered by increasing size of
conditional sets, the PC algorithm does not take into account which edges are weaker in
order to be considered to be removed before the stronger edges. This paper proposes a
new learning algorithm which scores the edges according to a Bayesian metric and adds
them to the final graph according to this score. Then, conditional independence tests are
carried out to remove edgess as in the PC algorithm. Also, this algorithm is hybridized
with a variation of the PC algorithm consisting in determining minimum size cut sets
between two nodes to study the deletion of an edge. Some experiments are carried out to
evaluate the performance of the new proposals against the PC algorithm.

1 Introduction

There are two main approaches to learning
Bayesian networks from data. One is based on
scoring and searching (Cooper and Herskovits,
1992; Heckerman, 1995). Its main idea is to
define a global measure (score) which evaluates
a given Bayesian network model as a function
of the data. The problem is solved by search-
ing in the space of possible Bayesian network
models trying to find the network with optimal
score. The other approach (constraint learning)
is based on carrying out several independence
tests on the database and building a Bayesian
network in agreement with tests results. The
main example of this approach is the PC algo-
rithm (Spirtes et al., 1993).

In the past years, searching and scoring pro-
cedures have received more attention, due to
some clear advantages (Heckerman et al., 1999).
One is that constraint based learning makes
categorical decisions from the very beginning.
These decisions are based on statistical tests
that may be erroneous and these errors will af-
fect all the future algorithm bahaviour. On the
other hand, the PC algorithm has some advan-
tages. One of them is that it has an intuitive

basis and under some ideal conditions it has
guarantee of recovering a graph equivalent to
the one being a true model for the data. It can
be considered as a smart selection and ordering
of the questions that have to be done in order
to recover a causal structure.

In this paper, our basic idea is to combine
the PC strategies with additional procedures to
improve its performance. In this line, we can
cite the work of van Dijk et al. (2003) who pro-
pose a combination of order 0 and 1 tests of
the PC algorithm with a scoring and searching
procedure; Dash and Druzdzel (1999) carry out
several PC algorithms with different orders of
the variables, which are scored afterwards with
a Bayesian metric. In Abellán et al. (2006) we
studied several variations of the basic PC strat-
egy. Of them, the best performance was ob-
tained by considering the minimum cut sets to
carry out independence tests and changing the
Chi-square based tests to Bayesian tests.

In this paper, we propose an algorithm, which
considers two graphs: a graph of candidate
edges and a graph of added edges (final graph).
Each link in the candidates graph is scored
with a Bayesian metric. While there are edges
with a positive score, the edge with great-



est score is added to the final graph. Each
time that an edge is added to the final graph,
some conditional independence tests are car-
ried out to deleted links from the candidates
graph as in the PC algorithm. These tests
are used to update the scores of the candi-
dates graph. We will also test an hybridized
version of this algorithm with the algorithm
presented in Abellán et al. (2006), consisting in
applying the new algorithm but doing only tests
of order 0 and 1, and then the final graph is
used as the initial structure for the algorithm
presented in Abellán et al. (2006) considering
minimum cut sets for the independence tests.
Tsamardinos et al. (2006) follow a similar idea,
but with some differences: the candidate links
are locally computed for each single node (in-
stead of following a global procedure) and the
procedure finishes with a greedy optimization of
a Bayesian score (without the orientation phase
of the PC algorithm).

We will describe the new algorithms and we
will make some experiments showing their per-
formance when learning Asia and Alarm net-
works (Beinlich et al., 1989). The quality of the
learned networks will be measured by the num-
ber of missing-added links and the Kullback-
Leibler distance of the learned network to the
original one.

The paper is organized as follows: Section 2
is devoted to describe the fundamentals of the
PC algorithm and the variations introduced in
Abellán et al. (2006). Section 3 introduces the
new algorithm and its hybridization; in Section
4 the results of the experiments are reported
and discussed; Section 5 is devoted to the con-
clusions.

2 The PC Algorithm

Assume that we have a set of variables X =
(X1, . . . ,Xn) with a global probability distribu-
tion about them P . By an uppercase bold letter
A we will represent a subset of variables of X.
By (A ⊥ B|C) we will denote that sets A and
B are conditionally independent given C.

The PC algorithm assumes faithfulness. This
means that there is a directed acyclic graph, G,

such that the independence relationships among
the variables in X are exactly those represented
by G by means of the d-separation criterion
(Pearl, 1988). The PC algorithm is based on
the existence of a procedure which is able to say
when (A ⊥ B|C) is verified in graph G. It first
tries to find the skeleton (underlying undirected
graph) and on a posterior step makes the orien-
tation of the edges. Our variations are mainly
applied to the first part (determining the skele-
ton). So we shall describe it with some detail:

1. Start with a complete undirected graph G′

2. i = 0
3. Repeat

4. For each X ∈ X

5. For each Y ∈ ADJX

6.Test whether ∃S ⊆ ADJX − {Y }
with |S| = i and (X ⊥ Y |S)

7. If this set exists
8. Make SXY = S

9. Remove X − Y edge from G′

10. i = i + 1
11. Until |ADJX | ≤ i, ∀X

In this algorithm, ADJX is the set of nodes
adjacent to X in graph G′. The basis is that if
the set of independencies is faithful to a graph,
then there no link between X and Y , if and
only if there is a subset S of the adjacent nodes
of X such that (X ⊥ Y |S). For each pair of
variables, SXY will contain such a set if it is
found. This set will be used in the posterior
orientation stage.

The orientation step will proceed by looking
for sets of three variables {X,Y,Z} such that
edges X −Z, Y −Z are in the graph by not the
edge X − Y . Then, if Z 6∈ SXY , it orients the
edges from X to Z and from Y to Z creating a
v-structure: X → Z ← Y . Once, these orienta-
tions are done, then it tries to orient the rest of
the edges following two basic principles: not to
create cycles and not to create new v-structures.
It is possible that the orientation of some of the
edges has to be arbitrarily selected.

If the set of independencies is faithful to a
graph and we have a perfect way of determin-
ing whether (X ⊥ Y |S), then the algorithm has



guarantee of producing a graph equivalent (rep-
resents the same set of independencies) to the
original one.

However, in practice none of these conditions
are verified. Independencies are decided in the
light of statistical tests based on a set of data
D. The usual way of doing these tests is by
means of a chi-square test based on the cross en-
tropy statistic measured in the sample (Spirtes
et al., 1993). Statistical tests have errors and
then, even if faithfulness hypothesis is verified,
it is possible that we do not recover the original
graph. The number of errors of statistical tests
increases when the sample is small or the cardi-
nality of the conditioning set S is large (Spirtes
et al., 1993, p. 116). In both cases, due to the
nature of frequentist statistical tests, there is
a tendency to always decide independence (Co-
hen, 1988). This is one reason of doing statis-
tical tests in increasing order of the cardinality
of the sets to which we are conditioning.

In the PC algorithm it is possible that we
delete the link between X and Y by testing
the independence (X ⊥ Y |S), when S is a set
containing nodes that do not appear in a path
(without cycles) from X to Y . The inclusion
of these nodes is not theoretically wrong, but
statistical tests make more errors when the size
of the conditioning set increases, then it can be
a source of problems in practice. For this rea-
son, Steck and Tresp (1999) proposed to reduce
ADJX − {Y } in Step 6, by removing all the
nodes that are not in a path from X to Y . In
(Abellán et al., 2006), we considered any subset
CUTX,Y disconnecting X and Y in the graph in
which the link X − Y has been deleted, playing
the role of ADJX − {Y }. Consider that in the
skeleton, we want to see whether link X − Y

can be deleted, then we first remove it, and if
the situation is the one in Figure 1, we consider
CUTX,Y = {Z}. This version of the algorithm
will be called BPC algorithm. The computa-
tion of this set needs some extra time, but it
can be done in polynomial time with a modi-
fication of Ford-Fulkerson algorithm (Acid and
de Campos, 1996).

The PC algorithm performs a chi-square
statistical test to decide about independence.

X Z Y

Figure 1: An small cut set

However, as shown by Moral (2004), sometimes
statistical tests make too many errors. They
try to keep the Type I error (deciding depen-
dence when there is independence) constant to
the significance level. However, if the sample
is large enough this error can be much lower
by using a different decision procedure, without
an important increase in Type II error (decid-
ing independence when there is dependence).
Cooper (1997) had proposed a different inde-
pendence test based on a Bayesian score, but
only when conditioning to 0 or 1 variable. In
(Abellán et al., 2006) we proposed to do all the
statistical tests by using a Bayesian Dirichlet
score (Heckerman, 1995) with a global sample
size s equal to 1.0. The test (X ⊥ Y |S) is car-
ried out by comparing the scores of X with S as
parents and of X with S∪{Y } as parents. If the
former is larger than the later, the variables are
considered independent, and in the other case,
they are considered dependent. The score of X

with a set of parents Pa(X) = Z, denoted as
BDe(X,Z) is the logarithm of:

∏

z

(

Γ(s′)

Γ(Nz + s′)

∏

x

Γ(Nz,x + s′′)

Γ(s′′)

)

where Nz is the number of occurrences of [Z =
z] in the sample, Nz,x is the number of occur-
rences of [Z = z,X = x] in the sample, s′ is s

divided by the number of possible values of Z,
and s′′ is equal to s′ divided by the number of
values of X.

We considered other variations as refinement
and triangle resolution, but they did not prove
to be very effective to recover the causal struc-
ture.



3 The Score Based PC Algorithm

This algorithm could be carried out with clas-
sical statistical tests or with Bayesian scores.
In preliminary experiments, the statistical tests
did not show a good performance in measuring
the strength of an edge, so finally only Bayesian
scores have been finally considered.

Instead of starting with a full graph G′, now
we start with two graphs: a full graph of can-
didate links Gc and an empty graph of added
links Ga. We also have an array T in which
we store a numerical value for each link X −Y ,
representing its strength.

The following steps are carried out:

• First, we compute the strength T [X−Y ] of
each edge, by measuring the Bayesian score
of Y conditioned to X minus the score of
Y (conditioned to the empty set).

• If the score of an edge is negative, then it is
removed from the graph of candidates Gc.

• While there are links in Gc, we select the
edge with greatest score X − Y . This edge
is removed from Gc and added to Ga.

• Once X − Y is added to Ga, we make all
the new necessary independence tests for
all the candidate edges Z − V in Gc. This
is done in the following way:

– We consider one of the extreme nodes,
Z, of the edge Z−V and compute the
set of its adjacent nodes in graph Ga

such that there is a path from each one
of these nodes to the other extreme,
V , before adding link X − Y (denoted
as PADJZ) and the set of adjacent
nodes to Z such that there is a path
from these nodes to V after adding link
X − Y , but they are not in PADJZ

(denoted as NewPADJZ).

– For each S ⊆ PADJZ ∪ NewPADJZ

such that S ∩ NewPADJZ 6= ∅ we
compute the degree of dependence of
Z and V given S, by means of the ex-
pression: Dep(Z, V |S) = BDe(Z,S ∪
{V })−BDe(Z,S).

If this value is less or equal to zero,
we can consider that Z is independent
of V given S and the link Z − V is
removed from Gc.

If Dep(Z, V |S) is positive, then T [Z −
V ] is set to the minimum of its present
value and Dep(Z, V |S).

– If the link is not removed, we repeat
above computations for the other ex-
treme V of Z − V .

To compute NewPADJZ , we consider the
nodes U in ADJZ − PADJZ , then this node
is included in NewPADJZ if there is a path
from one of the extremes of X − Y to V and a
path from U to the other extreme.

The PC algorithm makes the statistical tests
in increasing order of the cardinality of the con-
ditional sets, but for the same cardinality the
order is arbitrary. It can be the case that we
have two links X − Y and U − V and that for
a given cardinality, the link that is removed de-
pends of whether X or U is considered first in
step 4 of PC algorithm. Here, we try to make
less arbitrary this selection, by measuring the
strength of the links and adding the strongest
links first, leaving the others for candidates to
be removed.

Another source of inconsistencies is the fol-
lowing: the PC algorithm starts with a full net-
work and then it removes the links in subse-
quent steps. When in step 6 of the algorithm,
we are testing the independence of X and Y

given a subset S ⊆ ADJX − {Y }, then it is
possible that the result is independence and the
link X −Y is removed, but later some link con-
necting X with a node of S is also removed. So,
link X − Y is removed by making a test con-
ditional to a set containing nodes that are not
adjacent to X in the final learned graph. This
would not be a problem if all the tests were al-
ways correct, but the errors are more probable
when the size of the conditional sets increases.
So, this is a real problem in practice.

The new algorithm has some similarities with
K2 greedy algorithm (Cooper and Herskovits,
1992) as adds the edges in increasing order of
scoring, but there are some differences: first



it keeps the idea from PC algorithm of carry-
ing out independence tests to remove candidate
edges; and it leaves the orientation of the edges
for a posterior step (K2 adds oriented links and
our algorithm non-oriented edges).

The algorithm does not have the guarantee
of recovering a directed acyclic graph under the
faithfulness hypothesis and assuming that the
statistical tests make always the right decision,
as when a link is added to the final graph, it is
never considered for deletion again. For having
guarantee, it would be necessary that given a
graph, the maximum of the scores T computed
by the algorithm for a subset of the edges of the
candidates graph is always obtained for an edge
that is present in the original graph. However,
the guarantee can be recovered if after our al-
gorithm, the PC algorithm is applied to graph
Ga (instead of starting with a full graph). This
is precisely the basis of our hybridized version
of the algorithm (called MPC algorithm):

1. To apply our algorithm, but doing only
tests of order 1: instead of testing indepen-
dence for each S ⊆ PADJZ ∪NewPADJZ

such that S ∩ NewPADJZ 6= ∅, the inde-
pendence is tested for every set S = {U},
where U ∈ NewPADJZ .

2. To apply BPC algorithm, starting with
graph G′ = Ga, instead of the full graph,
and considering minimum size cut sets.

That is, the idea of links strength is only ap-
plied to order 0 and 1 statistical tests. The rest
works as in BPC algorithm. The basis is that
in the experiments, we can observe that a great
numbers of links are deleted precisely with these
types of tests. Also, our algorithm had lost the
property of doing the statistical tests in increas-
ing cardinality of the conditional sets, and this
new hybridized version recovers this property
as the first part only carry out tests of order 0
and after order 1 tests. Then we apply BPC
algorithm to carry our tests in increasing cardi-
nality (starting with 1, as order 0 tests are not
necessary).

4 Experiments

We have done some experiments with the Asia
and Alarm networks for testing the PC varia-
tions. In all of them, we have generated sam-
ples of different sizes by simulation using logic
sampling (Henrion, 1988). Then, we have tried
to recover the original network from the sam-
ples by using the different variations of the PC
algorithm including the orientation step. We
have considered the following measures of error
in this process: number of missing links, num-
ber of added links, and the Kullback-Leibler dis-
tance of the learned probability distribution to
the original one1. Kullback-Leibler distance is
a more appropriate measure of error when the
objective is to approximate the joint probability
distribution for all the variables and the mea-
sures of number of differences in links is more
appropriate when our objective is to recover the
causal structure of the problem. We do not
consider the number of wrong orientations as
our variations are mainly focused in the skele-
ton discovery phase of the PC algorithm.

Experiments have been carried out in Elvira
environment (Elvira Consortium, 2002). The
sample sizes we have used are: 100, 500, 1000,
5000, 10000, and for each sample size, we have
repeated the experiment 100 times. The algo-
rithms we have tested are the following:

• The classical PC algorithm with tests done
by comparing Bayesian scores.

• The BPC algorithm as introduced in
(Abellán et al., 2006) with minimal sepa-
rating sets and score based tests.

• The new algorithm (HPC) consisting in
adding edges in increasing strength value.

• The hybridized version (MPC).

Table 1 contains the average number of miss-
ing links, Table 2 the average number of added
links, Table 3 the average Kulback-Leibler dis-
tance, and finally Table 4 contains the average
running times of the different algorithms for the
Asia network, whereas Tables 6, 7, and 8 con-
tain the same data for the Alarm network.

1The parameters are estimated with a Bayesian
Dirichlet approach with a global sample size of 2.



100 500 1000 5000 10000

BPC 3,07 1,75 1,43 0,56 0,45

HPC 2,88 1,78 1,29 0,5 0,36

PC 4,46 3,35 3,23 2,77 2,62

MPC 3,01 1,74 1,34 0,51 0,41

Table 1: Average number of missing links (Asia)

100 500 1000 5000 10000

BPC 1,61 0,79 0,73 0,19 0,25

HPC 1,4 0,52 0,31 0,15 0,13

PC 0,36 0,17 0,18 0,03 0,06

MPC 1,51 0,87 0,64 0,16 0,18

Table 2: Average number of added links (Asia)

100 500 1000 5000 10000

BPC 0,2034 0,0842 0,0500 0,0209 0,0248

HPC 0,2147 0,0678 0,0344 0,0175 0,0192

PC 0,2934 0,1883 0,1957 0,2042 0,2020

MPC 0,2248 0,1644 0,1444 0,117 0,076

Table 3: Aver. K-L distance (Asia)

100 500 1000 5000 10000

BPC 0,0540 0,2548 0,5327 2,9321 6,1866

HPC 0,0414 0,2408 0,5098 2,8342 6,1092

PC 0,0567 0,3508 0,7404 4,3941 9,3542

MPC 0,052 0,2784 0,6056 3,3988 7,1766

Table 4: Average time (Asia)

100 500 1000 5000 10000

BPC 22,1 11,3333 7,8666 4,5 3,833

HPC 18,3 10,3 7,733 5,4666 5

PC 27,833 18,533 14,566 8,466 7,066

MPC 19,6 9,5 6,1 4,033 3,666

Table 5: Aver. number of missing links (Alarm)

100 500 1000 5000 10000

BPC 13,9666 7,0333 4,9 3,7666 3,6333

HPC 9,1333 5,6666 4,8666 5,066 5,1333

PC 3,7 0,66 0,3660 0 0,033

MPC 11,2 5,5 2,8666 2,3 3

Table 6: Aver. number of added links (Alarm)

100 500 1000 5000 10000

BPC 4,4597 2,3188 1,7611 0,8902 0,6839

HPC 3,9895 1,8093 1,3292 0,6411 0,6009

PC 5,0719 3,2705 2,5012 1,1374 0,7460

MPC 4,3594 2,5936 1,8357 0,7917 0,6289

Table 7: Aver. K-L distance (Alarm)

100 500 1000 5000 10000

BPC 2,8917 8,4428 16,6012 92,8290 197,5764

HPC 0,9107 4,7952 10,5295 62,3101 132,7068

PC 1,1023 6,8248 16,2425 114,1656 252,8078

MPC 1,881 6,6598 13,1989 76,6548 168,1496

Table 8: Average time (Alarm)

In these results we highlight the following
facts:

• In the simple Asia network new algorithm
(HPC) has a better performance than BPC
in terms of added links, deleted links and
Kulback-Leibler distance, being more effi-
cient in time, for all the sample sizes. With
respect to PC algorithm and the Asia net-
work, HPC has more errors in terms of
added links, but the total number of errors
(added + missing links) is lower in the new
HPC algorithm.

• The hybridized algorithm (MPC) has an
intermediate behaviour between BPC and
HPC in terms of error and time in the Asia
network. The Kullback-Leibler distance is
worse than in both algorithms.

• In the Alarm network, the new algorithm
is better in terms of total errors (added
+ missing links) than BPC for small or
medium sample sizes (less or equal than
1000). However, the behaviour deteriorates
for larger sample sizes. The hybridized al-
gorithm is the best in terms of total errors
for medium or larger sample sizes. How-
ever, the Kulback-Leibler distance is al-
ways lower for the new HPC algorithm.
This can be interpreted in the following
way: even if for large sample sizes, we can
make more errors than in the BPC or MPC
algorithms, these errors are less important
(for example the missing links represent
weaker dependencies).

• The new algorithm is always more efficient
in time than all the other algorithms. This
may be due to the fact that adding first the
more important dependencies and making
tests taking them into account, makes these



tests more successful in removing candidate
links. The extra time necessary to compute
NewPADJZ is not as high as the time we
save making less independence tests.

We were a bit surprised by the fact that the
HPC algorithm does not show the best perfor-
mance in terms of total number of errors in
Alarm network for large sample sizes. Then, we
analyzed the type of errors that the algorithm
was doing in concrete cases. We have found
that the errors are almost the same (same miss-
ing or added links) for different databases. In
the case of missing links, these are usually one
link pointing to one variable with several par-
ents. Furthermore, only for a few combinations
of values of the other variables, this new variable
is really relevant (for the other combinations,
the missing parent has little influence). When
we make the test, it should produce dependence
and it produces independence in a systematic
way (with different databases). Our explana-
tion is the following: assume that we are testing
independence of X and Y given S, by compar-
ing the scores BDe(X,S∪{Y }) and BDe(X,S).
Both scores, can be expressed as a sum in the
different values s of S. If Y is relevant to X only
for some values of s, it is possible that for these
values, we have BDe(X, s∪{Y }) > BDe(X, s),
but for the other values we may have the oppo-
site inequality BDe(X, s ∪ {Y }) < BDe(X, s).
The final score is computed by adding in the
different values s. Then, the final result will de-
pend of which of the differences is larger. Then,
if we have asymmetrical independencies (or very
weak dependencies) for a majority of values of
s, then the test will produce an error. This is
due to the nature of the test. So, very little can
be done by playing with the strategy of ordering
the different independence tests.

The case of added links is different. As we
have said, even under the faithfulness hypoth-
esis and with no errors in the tests, our HPC
algorithm does not have guarantee of recover-
ing the original network, as it is possible that
some of the tests necessary for the deletion of
a link are never considered. When, this algo-
rithm is combined with the BPC algorithm in

the MPC algorithm, then the number of added
links decreases, as more additional tests are car-
ried out.

5 Conclusions

In this paper we have proposed two new strate-
gies to organize the statistical tests in the
PC algorithm: the HPC and the MPC algo-
rithms. In general, the results of the HPC
algorithm are better than in the classical PC
algorithm and BPC algorithm proposed in
Abellán et al. (2006). Furthermore, the HPC
algorithm if the fastest in time. The MPC algo-
rithm is not as good, but it produces the least
number of errors in Alarm network for large
sample sizes.

We recognize that the experiments in this pa-
per are clearly insufficient and that more ex-
tensive experiments are necessary to determine
in which conditions is appropriate to apply the
new algorithms, but even that we want to high-
light two points:

The first one is that though, at the present,
general search algorithms are more common in
practice, we believe that it is very promising
to work in this type of PC based strategies.
We believe that there are good opportunities of
improving performance in terms of errors and
time. In general, algorithms in graphs are fast
compared with the time devoted to carry out
statistical tests, so it is worthy to make some
work in graph computations to save some sta-
tistical tests. We believe, that the orientation
step could also use some of the ideas of this pa-
per (sometimes there are conflicts among the
different rules used for orientation, and it could
be useful to decide with the help of an score).

The second point is that some more work is
necessary to determine how to carry out the
statistical tests. Classical statistical tests have
known problems (Moral, 2004; Abellán et al.,
2006). But, as we have shown here, Bayesian
tests based on scores can produce systematic er-
rors, for example in the case of asymmetrical in-
dependencies (or situations in which some of the
dependencies are really weak). Perhaps, if for a
value s, we have BDe(X, s∪{Y }) > BDe(X, s),



we should consider X and Y dependent given S,
with some correction given that we make mul-
tiple comparisons.

Acknowledgments

This work has been jointly supported by the
Spanish Ministry of Education and Science un-
der project TIN2007-67418-C03-03, by Euro-
pean Regional Development Fund (FEDER),
and by the Spanish research programme Con-
solider Ingenio 2010: MIPRCV (CSD2007-
00018).

References

J. Abellán, M. Gómez-Olmedo, and S. Moral. 2006.
Some variations on the PC algorithm. In Proceed-
ings of the Third European Workshop on Proba-
bilistic Graphical Models (PGM’ 06), pages 1–8.

S. Acid and L.M. de Campos. 1996. Finding min-
imum d-separating sets in belief networks. In
Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence (UAI–96),
pages 3–10, Portland, Oregon.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and
G.F. Cooper. 1989. The Alarm monitoring sys-
tem: A case study with two probabilistic inference
techniques for belief networks. In Proceedings of
the Second European Conference on Artificial In-
telligence in Medicine, pages 247–256. Springer-
Verlag.

J. Cohen. 1988. Statistical power analysis for the
behavioral sciences (2nd edition). Erlbaum, Hills-
dale, NJ.

Elvira Consortium. 2002. Elvira: An environment
for probabilistic graphical models. In J.A. Gámez
and A. Salmerón, editors, Proceedings of the 1st
European Workshop on Probabilistic Graphical
Models, pages 222–230.

G.F. Cooper and E.A. Herskovits. 1992. A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning, 9:309–347.

G.F. Cooper. 1997. A simple constraint-based
algorithm for efficiently mining observational
databases for causal relationships. Data Mining
and Knowledge Discovery, 1:203–224.

D. Dash and M.J. Druzdzel. 1999. A hybrid any-
time algorithm for the construction of causal mod-
els from sparse data. In Proceedings of the Fif-
teenth Annual Conference on Uncertainty in Arti-

ficial Intelligence (UAI-99), pages 142–149. Mor-
gan Kaufmann.

D. Heckerman, C. Meek, and G. Cooper. 1999. A
Bayesian approach to causal discovery. In C. Gly-
mour and G.F. Cooper, editors, Computation,
Causation, and Discovery, pages 141–165. AAAI
Press.

D. Heckerman. 1995. A tutorial on learning with
Bayesian networks. Technical Report MSR-TR-
95-06, Microsoft Research.

M. Henrion. 1988. Propagating uncertainty by logic
sampling in Bayes networks. In J. Lemmer and
L.N. Kanal, editors, Uncertainty in Artificial In-
telligence, 2, pages 149–164. Horth-Holland, Am-
sterdam.

S. Moral. 2004. An empirical comparison of score
measures for independence. In Proceedings of the
Tenth International Conference IPMU 2004, Vol.
2, pages 1307–1314.

J. Pearl. 1988. Probabilistic Reasoning with Intelli-
gent Systems. Morgan & Kaufman, San Mateo.

P. Spirtes, C. Glymour, and R. Scheines. 1993. Cau-
sation, Prediction and Search. Springer Verlag,
Berlin.

H. Steck and V. Tresp. 1999. Bayesian belief net-
works for data mining. In Proceedings of the 2nd
Workshop on Data Mining und Data Warehous-
ing als Grundlage moderner entscheidungsunter-
stuetzender Systeme, pages 145–154.

I. Tsamardinos, L. E. Brown, and C. F. Alif-
eris. 2006. The max-min hill-climbing Bayesian
network structure learning algorithm. Machine
Learning, 65:31–78.

S. van Dijk, L.C. can der Gaag, and D. Thierens.
2003. A skeleton-based approach to learning
Bayesian networks from data. In Proceedings of
the Seventh Conference on Principles and Prac-
tice of Knowledge Discovery in Databases, pages
132–143. Springer Verlag.



A Bayesian approach to estimate probabilities in classification
trees

Andrés Cano and Andrés R. Masegosa and Seraf́ın Moral
Department of Computer Science and Artificial Intelligence

University of Granada
18071, Granada, Spain

Abstract

Classification or decision trees are one of the most effective methods for supervised clas-
sification. In this work, we present a Bayesian approach to induce classification trees
based on a Bayesian score splitting criterion and a new Bayesian method to estimate
the probability of class membership based on Bayesian model averaging over the rules
of the previously induced tree. In an experimental evaluation, we show as our approach
reaches the performance of Quinlan’s C4.5, one of the most known decision tree inducers,
in terms of predictive accuracy and clearly outperforms it in terms of better probability
class estimates.

1 Introduction

Decision trees or classification trees (decision
trees where is predicted a probability of class
membership instead of the class label simply)
have been one the most used and better stud-
ied predictive models. Several reasons appear
examining their wide popularity such as their
simplicity and their easy interpretability. At the
same time, they are fast and effective as classi-
fiers (Lim et al., 2000) even at very large data
sets (Provost and Kolluri, 1999) and there have
been available several software packages for
learning classification trees (CART (Breiman et
al., 1984) and C4.5 (Quinlan, 1993)).

One of the main problems of classification
trees is the poor estimates of class probabilities
they usually produce (Breiman, 1996a; Pazzani
et al., 1994). In many situations, a good esti-
mate of the probability class is a strong require-
ment, specially, when it is needed a ranking of
the samples by the class they belong to. E.g.,
most of the web search engines ranks the web
pages based on their probability of being rele-
vant for a given query.

Let us see an example of the problem to assign
class probabilities in a classification tree. Sup-
pose we have induced a classification tree for a

two-class classification problem and we find that
a leaf node defines a subset of 3 samples, all of
them belonging to the positive class. Maximum
likelihood estimate shall assign a probability of
1.0. The question that arises now if there is
enough evidence with 3 samples to assess such
a strong statement.

In (Provost and Domingos, 2003) a survey
study of different methods for better probabil-
ity of class estimates was carried out based on
C4.5. They compare three different methods:
Laplace estimate, C4.5 pruning (Quinlan, 1993)
and, specially, bagging (Breiman, 1996b). They
conclude with a positive evidence in favor of
Laplace and Bagging, but they do not find a
definitive conclusion for pruning.

In this work, we present a Bayesian approach
to induce classification trees with the aim to
maintain the predictive accuracy of one of the
state-of-the-art classification tree inducers J48
(an advanced version of Quinlan’s C4.5) and
produce significative improvements in the es-
timates of probability class beyond the use of
Laplace correction or a post-pruning process.
We conduct an experimental study over 27 UCI
databases to evaluate our Bayesian approach.

The rest of the paper is organized as follows.
In Section 2 we introduce the necessary nota-



tions and we briefly explain classification trees
and C4.5 tree inducers (Quinlan, 1993). After
that, in Section 3 we describe our Bayesian ap-
proach to induce classification trees. The exper-
imental evaluation and the results are shown in
Section 4. Finally, Section 5 is devoted to the
final conclusions and future works.

2 Previous Knowledge

In a classification problem, we have a target or
dependent variable C with k cases (c1, ..., ck),
|C| = k, and a set of predictive or indepen-
dent variables X = (X1, ..., Xn). The goal is
to induce a probability function for every un-
seen sample x to a probability distribution of
C: (L(X) → P(C)). This function is repre-
sented as a posterior probability of C given a
sample x: P (C|x) = P (C|X1 = x1, ..., Xn = xn).

This posterior probability has to be inferred
from a limited set of samples of the joint distri-
bution (X, C), the learning data D1.

2.1 Classification Trees

A classification tree, T is an efficient represen-
tation of this posterior probability of C as a tree
recursive structure, such as the one in Figure 1.

�

���

��������� ��������	� ���
������

�� ��

����

�� �� �� ��

�� ��

�

Figure 1: Classification Tree

Each path in the tree from the root node to
another descendant node t (not necessarily to a
leaf node) defines a configuration xt for the vari-
ables in Xt, Xt ⊆ X, where Xt is the set of vari-
ables that labels the internal nodes contained in
the path from the root node to the descendant
node t without considering the variable at node
t. We also denote as X̄t = X − Xt the set of
attributes not included in Xt. E.g., supposing
for the tree of Figure 1 that X = {X, Y, Z}, we

1Absence of missing values and continuous attributes
in D are assumed.

have at the node t: xt = {X = x2, Y = y1},
Xt = {X, Y } and X̄t = {Z}.

We also have for each xt in the tree T an esti-
mate of the a posteriori conditioned probability
of C given xt, P̂T (C|xt).

Let us XT be the set of configurations xt as-
sociated to set of nodes (internal or leaf) in
a tree T and P̂XT

their associated set of esti-
mated probabilities. We say that a configura-
tion xt ∈ XT is consistent with a sample x,
xt ∼ x, if for each Xi ∈ Xt, xt and x contains
the same value xi for Xi. In the previous exam-
ple, if x = {X = x2, Y = y1, Z = z2} then x is
consistent with xt = {X = x2, Y = y1}.

Let us denote as X x

T = {xt ∈ XT : xt ∼ x}
to the set of configurations xt consistent with
the sample x. It can be seen that this set con-
tains the configurations xt of the nodes t in
the path from the root node until one of the
leaf nodes. This set shall contain p elements,
X x

T = {xt0 ,xt1 , ...,xtp}, where t0 is the root
node (xt0 is an empty configuration), t1 is the
children of t0 in the previous path (xt1 is con-
figuration for the variable at the root node) and
so on until tp, which is the leaf node in the pre-
vious defined path. For the previous example,
X x

T = {∅, {X = x2}, {X = x2, Y = Y1}}.
The largest configuration, xtp , is taken to

make the classification through the use of the
estimated conditional probability P̂T (C|xtp).

In order to build or induce a classification tree
there are two main elements that need to be
defined: a splitting criterion and a stop crite-
rion. The splitting criterion is based on a mea-
sure or score, SCt, to decide which attribute is
placed in the node t′ of the tree as descendent
of the node t. Usually it is taken the attribute
Xt = arg maxXi∈X̄t SCt(Xi).

The stop criterion at the branch of the node
t is normally associated with SCt and it decides
when no more attributes are added to the actual
configuration xt.

We shall use x instead of xt for simplicity
reasons when there is no possibility of confusion.

2.2 C4.5: A classification tree inducer

As we have already commented, C4.5 (Quinlan,
1993) is one of the most known and widely used



classification tree inducers.
J48 is an advanced version of C4.5 imple-

mented in Weka (Witten and Frank, 2000) uses
the following score as splitting criterion known
as Info-Gain Ratio (Quinlan, 1993) based on
the Info-Gain measure, IG, and the entropy
measure, H:

SCt(X) =
IG(X, C)

H(X|xt)

The attributes X that does not verify that
its Info-Gain measure is greater than the mean
value of the Info-Gain measure of the rest of
candidate variables are discarded. SCt(X) =
0 if IGxt(X, C) < Average{IGxt(Xi, C) : Xi ∈ X̄

t}.
This C4.5 version stops at xt when ∀Xi ∈ X̄

t :

SCxt(Xi) ≤ 0.
Once the tree is built, C4.5 applies a post-

pruning process (Quinlan, 1993) in order to re-
duce the size of the tree and avoid an overfitting
to the data. This pruning process is a single
bottom-up pass where the estimated error rate
for each subtree is computed as an upper bound
of the misclassification rate with a confidence
level of 0.25 through the use of a binomial trial
process. A subtree is removed if there is not
reduction in the estimated error rate. We shall
call C4.5ρ the version with pruning and C4.5¬ρ

the version without pruning.
In both cases, a Laplace estimate is used in

order to smooth the probabilities of class mem-
bership.

3 A Bayesian Approach for

classification tree induction

In this section, our approach is presented.
Firstly, we describe the splitting criterion prob-
lem as a Bayesian model selection problem. Sec-
ondly, we express the problem of probability
class estimates as a Bayesian model averaging
problem. And finally, we present a method to
introduce non-uniform priors in the two previ-
ous Bayesian approaches.

3.1 Bayesian Model Selection to

Classification Tree induction

Bayesian model selection (BMS) (Wasserman,
2000) is an approach to choose among a set

of alternative models in a model space M =
{M1, ...,Mk} where Mi is a set of probability
densities with unknown parameters θi: Mi =
{Pθi

(x) : θi ∈ Ωi}. In this approach the qual-
ity of a model is estimated by the posterior
probability of the model given the learning data
D. Where P (M |D) can be computed through
Bayes’ rule as:

P (M |D) =
P (D|M)P (M)

P (D)
=

P (M)
R
L(θ)P (θ)dθ

P (D)

where L(θ) is the likelihood of the parameters
given the data (P (D|M, θ)) and P (θ) the prior
distributions over the parameters of the model.

The use of Bayesian metrics (Heckerman et
al., 1994) are suitable to compute model qual-
ity because of the inherent penalty they give to
the more complex models in order to prevent
against over-fitting and they provide closed-
form equations to compute the posterior prob-
abilities of the model given the learning data.

The metric, denoted as β(M), computes these
probabilities assuming an uniform prior prob-
ability over the possible models, P (M), and a
prior Dirichlet distribution over the parameters,
θ, with independence for the parameters at the
different conditional distributions. Usually a
global or equivalent sample size, S, is consid-
ered and then it is assumed that for each vari-
able X the prior probability about the vector
σX = (σ1, ..., σ|X|)X is Dirichlet with the same
parameters αk = S/|X| for all values, where |X| is
the number of possible cases of X. P (D) can be
also discarded because is the same for all mod-
els. So that P (M |D) ∝ P (D|M). The score will
be the value β(M) = P (D|M) (usually the log
of this value for computational reasons).

In the classification tree induction process,
the model selection problem appears when we
have to choose between to stop the branching
or to branch by one of the available attributes.

Formally, we are at a given leaf node t. Let
us denote by Dt the learning data D restricted
to xt and projected over the variables (X̄t, C),
where X̄t are the variables not included at the
node t (or available variables for branching at
node t, Section 2.1).



In the model selection problem we face here,
our model space problem M is composed by the
following alternatives:

• Model M t: stop branching at node t.

• For each variable X ∈ X̄t, model M t
X :

branch node t by variable X and then stop.

Each one of these models M in M is scored by
P (Dt|M). In this computation, only the class
and available variables X̄t are relevant. If we
denote by ci and x̄t

i the actual values of class
variable and available attributes in case ri of Dt

and if we assume that each ri is independent
and identically distributed, the scores can be
expressed as:

P (Dt|M) =
Y

ri∈Dt

P (ci, x̄
t
i|M) = P (x̄t

i|M).P (ci|M, x̄t
i)

Models M t and M t
X only differs in the val-

ues P (ci|M, x̄t
i) as they not make any hypoth-

esis about the way in which the rest of the
variables are distributed, so that we could as-
sume equally distributed in both cases. Then
the score of model M will be proportional to∏

ri∈Dt
P (ci|M, x̄t

i). In the concrete models we
have, we obtain:

• In model M t, variable C is independent of
the rest of variables (no branching). So,
β(M t) = P (Dt|M

t) ∝
Q

ri∈Dt
P (ci|Mt).

• In models M t
X , C is only dependent of

the branching variable X, so that β(M t
X) =

P (Dt|M
t
X) ∝

Q
ri∈Dt

P (ci|Mt, xi), where xi is
the value of the branching variable X in
case ri.

Assuming Dirichlet prior probabilities for the
class C with uniform parameters αk = S/|C|,
where S is a fixed equivalent sample size, then
these values can be obtained with the standard
expressions:

β(M t) ∝
Γ(S)

Γ(S + nt)

Q
k Γ(nck

+ αk)Q
k Γ(αk)

β(M t
X) ∝

|X|Y
j

Γ(S)

Γ(S + nxj
)

Q
k Γ(nck,xj

+ αk)Q
k Γ(αk)

where Γ(.) is the gamma function (Γ(α + 1) =

α · Γ(α)), nck,xj
is the number of occurrences of

{(C = ck, X = xj)} in the learning sample at node
t, Dt (analogously for nck

, nxj
) and nt is the

number of cases in Dt.

In that way, our approach branches at
the node leaf t by the variable X∗ =

arg maxX∈X̄t{β(M t
X)}. It stops branching when

β(M t) > β(M t
X∗), in other words, when the model

without branching has a higher probability.

Another important factor, which will be used
when estimating the probabilities at the leaves,
is that when variable X∗ is selected for branch-
ing, as the score is proportional to the posterior
probability of the data given the model, we have
that the value

Bt =
β(M t

X∗)

β(M t)
=

P (Dt|M
t
X∗)

P (Dt|M t)

As only data in Dt are relevant at node t, we
can assume that the rest of data in D is equally
distributed in this node and that

Bt =
P (D|M t

X∗)

P (D|M t)
=

P (M t
X∗ |D)

P (M t|D)

So we also have a value equal to the ratio
between the probability of the model branching
at t with X∗ and not branching at all given the
data.

3.2 Bayesian Model Averaging to

estimate class probabilities

Most of approaches to predictive learning are
based on the assumption of the whole database
had been completely generated by one model,
the ”right” one, ignoring the underlying model
decision uncertainty involved in the classifier in-
ducing process. This problem specially happens
to model selection processes in classification tree
inducers, because as smaller the learning sam-
ple size is as more uncertain model selection be-
comes. In a classification tree, the sample size
decreases exponentially with the depth of the
branch, so decision of branching at final leaves
accumulates a big uncertainty.

Bayesian Model Averaging (BMA) (Wasser-
man, 2000; Hoeting et al., 1999) provides



a foundation to deal with this uncertainty
through the use of a weighting scheme for each
candidate hypothesis of the hypothesis space
computing its posterior probability given the
learning data.

Formally, we start with a hypothesis space H
and a set of learning data D. So, the poste-
rior probability of C given a new sample x is
computed by:

P (C|x,D,H) =
X
h∈H

P (C|x, h)P (h|D)

Our application of BMA is an alternative to
pruning the final tree: as for each inner nodes
t we can compute the value Bt which is pro-
portional to the ratio of the probability of the
model branching by variable X∗ and the prob-
ability of the model without branching, instead
of deciding by one of the models, we can make
the average of the probabilities estimated with
each one of the models weighted by a value pro-
portional to their probability. This averaging is
applied in each leaf node for all the nodes in the
path from this node to the root.

One advantage of this application of BMA is
that only the final estimation of the probabili-
ties at the leaves change, having only one deci-
sion tree structure.

In this way, for each inner node ti we compute
a weight proportional to the posterior proba-
bility that the induced tree stops at this point
(that is denoted as the hypothesis hti) and it
is computed using the Bayes factors Btj in the
following way:

P̂ (hti |D) ∝
i−1∏

j=1

Btj =
i−1∏

j=1

P (M
tj
X∗ |D)

P (M tj |D)

where P̂ (ht1 |D) = 1.
So, the estimated probability in a leaf node

tp is computed as follows:

P (ck|x
tp) ∝

p∑

i=1

nckxti + αk

nxti + S
P̂ (hti |D)

where nxti is the size of the learning sample at
the node ti, Dti , and nckxti is the number of oc-
currences of {C = ck} in this set Dti . The αk and

S values correspond to the same Dirichlet prior
probability used in the induction process of the
previous Section 3.1. Finally, a normalization is
required.

This approach has the advantage that all
these probabilities can be efficiently computed
at the same time that the tree is built, with only
a linear increasing in the complexity.

3.3 A non-Uniform Priors Approach

In all the previous developments we have as-
sumed uniform values, αk = S/|C|, for the pa-
rameters of the prior Dirichlet distributions. In
this subsection, we are giving a new approach
to define non-uniform priors in the induction of
decision trees, which will be incorporated in the
computation of the Bayesian split criterion, Sec-
tion 3.1, and in the computation of averaging
probabilities, Section 3.2, trough the definition
of new αk values.

To justify this approach, we start with the
following idea: if at some node ti the frequency
nck

is zero, then ∀j > i at tj descendant nodes
the frequency nck

shall also be zero. So it makes
sense to assume that nckx will probably be zero
or close to zero for most of future samples x. So
decreasing the prior probability for ck at xti+1

is coherent.

We propose the following heuristic to modify
the parameters of the Dirichlet priors distribu-
tions: Let us δi = |{nck

= 0 : ck ∈ C}| in Dti
, if

δi > 1 we define α
ti+1

k as follows:

α
ti+1

k =
S

(|C| − δi + 1)
: nckx

ti 6= 0

α
ti+1

k =
S

(|C| − δi + 1)δi

: nckx
ti = 0

As we can see, those cases with non-null
frequency have the same prior probability,

1
(|C|−δi+1) , while all those cases with null fre-
quency share among them the same probabil-
ity mass of one non-null frequency case, i.e.,

1
(|C|−δi+1)δi

. Let us point out that for a two-
class problem we get with this heuristic a uni-
form prior.



4 Experimental Results

In this section, we present the experimental
evaluation of our approach. Firstly, the evalu-
ation methodology is described and, after that,
the experimental results of the different ap-
proaches are presented.

4.1 Evaluation Methodology

We used the following 27 databases from the
UCI repository: anneal, audiology, autos, breast-

cancer, colic, credit-german, diabetes-pima, glass-2, hep-

atitis, hypothyroid, ionosphere, kr-vs-kp, labor, letter,

lymph, mfeat-pixel, mushrooms, optdigits, segment, sick,

solar-flare, sonar, soybean, sponge, vote, vowel and zoo.
The features of the databases are very different
among them: from 2 to 24 class cases, from 57
to 20000 samples and from 9 to 240 attributes.

The classification tree inducers were imple-
mented in Elvira platform (Consortium, 2002)
and evaluated in Weka (Witten and Frank,
2000). And then we preprocessed the data re-
placing the missing values (with the mode value
for nominal attributes and with the mean value
for continuous attributes) and discretized with
an equal-frequency method with 5 bins using
Weka’s own filters.

Two evaluation or performance measures
are employed in this experimental evaluation:
the classical prediction accuracy (noted as
Accuracy); and the logarithm of the likelihood
of the true class, computed as: log-likelihood=
ln(P̂ (cri

|x)), where cri
is the true class value of

the example of the test data set. This last score
is introduced with the aim to evaluate the pre-
cision of probability class estimates. The use-
fulness of this score for this task is justified in
many ways, as for example in (Roulston and
Smith, 2002; Gneiting and Raftery, 2005).

The evaluation of the classifiers was achieved
by a 10-fold-cross validation repeated 10 times
scheme for each database. So, 100 train and
test evaluations are carried out. With these es-
timates, the comparison among classifiers was
achieved using a corrected paired t-test (Nadeau
and Bengio, 2003) implemented in Weka with
a 1% of statistically significant level. In this
way, a classifier is fixed as reference (marked

with ⋆) and then each proposed classifier is com-
pared against it. The comparison is made sum-
ming up the times that the proposed classifier
gets a statistically significant difference respect
to the reference classifier in accordance with
the corrected paired t-test in a given database.
The test result can show an statistically signif-
icant improvement or Win (marked with W),
a not statistically significant difference or Tie
(marked with T) and a statistically significant
deterioration (marked with D) in the evaluation
measures. These results are shown in the rows
starting with W/T/D. E.g., in Table 1, βS=1

gets a statistically improvement or win in the
accuracy respect to C4.5ρ in 3 databases, there
is no differences in 23 databases and it looses or
gets a significant deterioration in the accuracy
respect to C4.5ρ in 1 databases.

As it is commented, our approach is three
fold: a Bayesian model selection (BMS) ap-
proach as splitting criterion, Section 3.1; a
Bayesian model averaging approach (BMA) to
estimate the probabilities class membership,
Section 3.2; and a non-uniform prior (NUP) def-
inition approach, Section 3.3. In all cases, we
use the same prior Dirichlet distributions with
the same global sample size, S.

Let us define the four combinations we eval-
uate: βS : only BMS; β̂S : BMS + BMA; βθ

S :

BMS + NUP; β̂θ
S : BMS + BMA + NUP.

In all cases, three different global sample sizes
are evaluated: S = 1, S = 2 and S = |C|.

4.2 Bayesian Metric as splitting

criterion for inducing CT

We test the use of a Bayesian metric as a split-
ting criterion for inducing classification trees
(CT), previously describe in Section 3.1. In or-
der to compare its efficiency as a CT inducer, we
compare, in Table 1, the performance of their in-
duced trees respect to the trees induced by C4.5
with pruning (C4.5ρ) and without pruning pro-
cess (C4.5¬ρ).

The results of Table 1 show as the use of a
Bayesian metric with S = 1 and S = 2 as splitting
criterion is competitive to C4.5ρ and C4.5¬ρ

in terms of accuracy: it wins in three to five
databases (always databases with high number



Table 1: Bayesian metric as Splitting Criterion

Classifier ⋆C4.5ρ βS=1 βS=2 βS=|C|

Accuracy 85.50 85.30 85.56 84.03
W/T/D 3/23/1 3/24/0 1/23/3

log-likelih. -0.79 -0.79 -0.78 -0.78
W/T/D 4/20/3 6/20/1 5/21/1

Classifier ⋆C4.5¬ρ βS=1 βS=2 βS=|C|

Accuracy 84.08 5/22/0 5/22/0 1/24/2

log-likelih. -0.84 7/19/1 9/17/1 9/17/1

Tree Size 482.5 482.1 459.9 319.6

of classes) and it looses once in sick database (a
very imbalanced two class data set). In terms
of log-likelihood the behavior of βS is competi-
tive and slightly better (significance differences
in 6 databases of S = 2), which is important
considering the absence of a complex and costly
pruning process of our approach.

It is interesting to see as the tree size is quite
similar to C4.5¬ρ for S = 1 and S = 2. But,
obviously, it is greater than C4.5ρ average tree
size: 306.6 nodes.

4.3 Bayesian Model Averaging for

probability class estimate

Here it is evaluated the introduction of our
BMA approach, β̂S . Firstly, we compare this
approach versus its respective version without
probability averaging, βS , using the same S in
each case. It is also evaluated respect to C4.5ρ.

Table 2: Bayesian Model Averaging

Classifier ⋆βS
bβS=1

bβS=2
bβS=|C|

Accuracy 85.50 85.82 83.98
W/T/D 0/27/0 0/27/0 0/23/1

log-likelih. -0.63 -0.63 -0.77
W/T/D 12/14/1 14/11/2 4/20/3

Classifier ⋆C4.5ρ
bβS=1

bβS=2
bβS=|C|

Accuracy 3/24/0 3/24/0 1/23/3

log-likelih. 12/15/0 11/15/1 4/22/1

Results are presented in Table 2. As we can
see, the introduction of the BMA approach do
not produce an improvement in terms of accu-
racy (although it avoids the defeat versus C4.5ρ

for S = 1). But, in terms of log-likelihood, there
is a clear outperforming for S = 1 and S = 2 re-

spect to the basic version, βS , and respect to
C4.5ρ, excepting S = |C|.

4.4 Non-Uniform Dirichlet Priors

Definition

Finally, we test the introduction of non-uniform
priors in both Bayesian approaches for model
selection and model averaging. In Table 3 the
comparative results are divided in 4 folds.

Firstly, we evaluate the introduction of non-
uniform priors in the Bayesian metric as split-
ting criterion, βθ

S , where it is compared respect
to the basic version, βS , with the same S value.
In the second part, it is evaluated the non-
uniform priors definition at the BMA approach,
β̂θ

S , also comparing against the basic version,

β̂S . And in the last two parts, we compare the
full approach β̂θ

S respect to the two versions of
C4.5.

Table 3: Non-Uniform Priors Definition

Classifier ⋆βS βθ
S=1 βθ

S=2 βθ
S=|C|

Accuracy 85.64 85.82 85.20
W/T/D 2/25/0 2/25/0 3/24/0

log-likelih. -0.82 -0.81 -0.78
W/T/D 0/21/6 0/21/6 0/25/2

Classifier ⋆bβS
bβθ

S=1
bβθ

S=2
bβθ

S=|C|

Accuracy 85.85 86.04 85.37
W/T/D 2/25/0 2/25/0 4/23/0

log-likelih. -0.61 -0.60 -0.69
W/T/D 3/23/0 5/21/0 10/17/0

Classifier ⋆C4.5ρ
bβθ

S=1
bβθ

S=2
bβθ

S=|C|

Accuracy 3/24/0 4/23/0 0/27/0

log-likelih. 13/14/0 11/15/1 10/16/1

Classifier ⋆C4.5¬ρ
bβθ

S=1
bβθ

S=2
bβθ

S=|C|

Accuracy 7/20/0 6/21/0 3/24/0

log-likelih. 12/15/0 12/14/1 11/15/1

Tree Size 596.2 591.2 491.2

Summarizing, we find that the effect of the in-
troduction of non-uniform priors is more clear
at β̂θ

S comparison. It supposes a slight improve-
ment in terms of accuracy (2 wins) but strong
in terms of log-likelihood (specially for S = |C|).
The evaluation respect to C4.5ρ remains quite



similar for S = 1 and S = 2 but suppose an im-
portant enhancement for S = |C|.

A close review of the results at database
level indicates that the introduction of non-
uniform priors implies better estimates in those
databases where the Bayesian approach with
uniform priors has already achieved them. That
is to say, non-uniform priors is suitable for
databases with a high number of classes.

5 Conclusions and Future Works

We have presented a new method to induce clas-
sification trees with a Bayesian model selection
approach as split criterion and with a Bayesian
model averaging approach to estimates proba-
bility class. We also introduce a new approach
to define non-uniform priors over the parame-
ters of the models.

We have carried out an experimental evalua-
tion over 27 different UCI data sets comparing
against one of the state-of-the-art tree inducers,
J48. We have shown as these approaches sup-
pose an slight but robust improvement in terms
of accuracy, while all of them offer an important
improvement in terms of better probability class
estimates by the induced decision trees.

Acknowledgments

This work has been jointly supported by the Span-

ish Ministry of Education and Science under project

TIN2007-67418-C03-03, by European Regional Develop-

ment Fund (FEDER), the FPU scholarship programme

(AP2004-4678) and by the Spanish Consejeŕıa de Inno-

vación, Ciencia y Empresa de la Junta de Andalućıa un-

der project TIC-276.

References

Leo Breiman, Jerome H. Friedman, Richard A. Ol-
shen, and Charles J. Stone. 1984. Classification
and Regression Trees. Wadsworth International
Group, Belmont.

L. Breiman. 1996a. Out-of-bag estimation. Private
communication.

Leo Breiman. 1996b. Bagging predictors. Mach.
Learn., 24(2):123–140.

Elvira Consortium. 2002. Elvira: An environment
for probabilistic graphical models. In J.A. Gámez

and A. Salmerón, editors, Proceedings of the 1st
European Workshop on Probabilistic Graphical
Models, pages 222–230.

Tilmann Gneiting and Adrian E. Raftery. 2005.
Strictly proper scoring rules, prediction, and esti-
mation. Technical Report. Department of Statis-
tics, University of Washington, 463R.

David Heckerman, Dan Geiger, and David Maxwell
Chickering. 1994. Learning bayesian networks:
The combination of knowledge and statistical
data. In KDD Workshop, pages 85–96.

Jennifer A. Hoeting, David Madigan, Adrian E.
Raftery, and Chris T. Volinsky. 1999. Bayesian
model averaging: A tutorial. Statistical Science,
14(4):382–417.

Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih.
2000. A comparison of prediction accuracy, com-
plexity, and training time of thirty-three old
and new classification algorithms. Mach. Learn.,
40(3):203–228.

Claude Nadeau and Yoshua Bengio. 2003. Infer-
ence for the generalization error. Mach. Learn.,
52(3):239–281.

Michael J. Pazzani, Christopher J. Merz, Patrick M.
Murphy, Kamal Ali, Timothy Hume, and Clifford
Brunk. 1994. Reducing misclassification costs. In
ICML, pages 217–225.

Foster Provost and Pedro Domingos. 2003. Tree
induction for probability-based ranking. Mach.
Learn., 52(3):199–215.

Foster Provost and Venkateswarlu Kolluri. 1999. A
survey of methods for scaling up inductive algo-
rithms. Data Min. Knowl. Discov., 3(2):131–169.

J.R. Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Francisco.

M. S. Roulston and L.A. Smith. 2002. Evaluating
probabilistic forecasts using information theory.
Monthly Weather Review, 130:1653–1660.

Larry Wasserman. 2000. Bayesian model selec-
tion and model averaging. J. Math. Psychol.,
44(1):92–107.

Ian H. Witten and Eibe Frank. 2000. Data mining:
practical machine learning tools and techniques
with Java implementations. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.



Efficient Model Evaluation in the Search-Based Approach to
Latent Structure Discovery

Tao Chen, Nevin L. Zhang and Yi Wang
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Kowloon, Hong Kong, China

Abstract

Latent tree (LT) models are tree-structured Bayesian networks where leaf nodes are ob-
served while internal nodes are hidden. We are interested in learning LT models through
systematic search. A key problem here is how to efficiently evaluate candidate models
during search. The problem is difficult because there is a large number of candidate mod-
els, the candidate models contain latent variables, and some of those latent variables are
foreign to the current model. A variety of ideas for attacking the problem have emerged
from the literature. In this paper we observe that the ideas can be grouped into two dis-
tinct approaches. The first is based on data completion, while the second is based on what
we call maximum restricted likelihood. We investigate and compare the two approaches
in the framework of EAST, a newly developed search procedure for learning LT models.

1 Introduction

Learning Bayesian networks (BNs) from data
has been the focus of much research over the
past two decades. Deep insights have been
gained for the case where all variables are ob-
served (e.g. Chickering 2002). However, rela-
tively little progress has been made for the case
with latent variables. This is not due to the lack
of interest on the problem, but its difficulty.

Imagine a search-based algorithm for learn-
ing BNs with latent variables. At each step,
the algorithm would evaluate a potentially large
number of candidate models. Assume the BIC
score is used for model selection.1 To calcu-
late the BIC score of a candidate model m′,
one needs to compute its maximum loglikeli-
hood maxθ′ log P (D|m′, θ′), where D is the data
set and θ′ is the parameter vector for m′. This
requires the expectation-maximization (EM) al-
gorithm. The difficulty is that running EM on
a large number of candidate models is compu-
tationally prohibitive.

1The BICe score suggested by Geiger et al. (1996) is
currently impractical due to the lack of efficient methods
for computing effective model dimension.

Two methods for overcoming the difficulty
have emerged from the literature. The first
method is based on the idea of data comple-
tion. It first completes the data set D based
on the current model m and uses the completed
data set D̄ to evaluate the candidate models.
When all the variables in a candidate model m′

are observed with respect to D̄, one can evaluate
the model using the maximum expected loglike-
lihood maxθ′ log P (D̄|m′, θ′) (Friedman 1997).
When a candidate model contains variables that
are not observed with respect to D̄, one can eval-
uate the model using heuristics that are com-
puted from D̄ (Zhang and Kočka 2004, Elidan
and Friedman 2005).

The second method is based on what we
call maximum restricted likelihood. A candi-
date model m′ typically shares many parame-
ters with the current model m. Suppose we
have computed the maximum likelihood esti-
mation (MLE) of the parameters of m. Let
θ∗1 be the MLE for the parameters that m has
in common with m′. Let δ2 be the parame-
ters of m′ that are not shared with m. The
method approximates maxθ′ log P (D|m′, θ′) us-



Y1

X2X1

X4

Y2

X3 X6X5

Y3

X7

(a) m (rooted)

Y1

X2

X1

X4

Y2

X3

X6

X5

Y3

X7

(b) m (unrooted)

X5X1

X4

X3X2 X7X6

Y2

Y1

Y3 Y4

(c) m′

Figure 1: Rooted and unrooted latent tree models.

Y1

X7 X6

X2

X1

X4

X5

X3

Y2

Y1

X7 X6

X2

X1

X4

X5

X3

Y2

Y3
Y1

X7 X6

X3

X2

X4

X5

Y2

Y3

X1

1m 2m 3m

Figure 2: The NI and NR operators.

ing the maximum restricted loglikelihood, i.e.
maxδ2 log P (D|m′, θ∗1, δ2), and uses the latter to
evaluate m′. This method is implicitly used in
(Zhang and Kočka 2004). Similar ideas are used
in, among others, phylogenetic tree reconstruc-
tion (Guindon and Gascuel 2003) and learning
of continuous Bayesian networks (Nachman et
al. 2004).

In this paper we investigate and compare
the two methods in the context of latent tree
models. Called hierarchical latent class mod-
els previously (Zhang 2004), latent tree (LT)
models are tree-structured Bayesian networks
where variables at leaf nodes are observed and
are hence called manifest variables, while vari-
ables at internal nodes are hidden and hence
are called latent variables. All variables are as-
sumed discrete. Figure 1 (a) shows the struc-
ture of an LT model.

LT models are interesting for three reasons.
First, they relax the local independence as-
sumption of latent class (LC) models (Lazars-
feld and Henry 1968) and hence offer a more
general framework for cluster analysis of cate-
gorical data (Zhang 2004). Second, LT anal-
ysis can reveal latent structures behind data.
In this sense LT analysis is a generalization
of phylogenetic tree reconstruction (Durbin et
al. 1998). Using LT models, researchers have
found interesting latent structures from stocks
data (Elidan and Friedman 2005), marketing
data (Zhang 2007) and medical data (Zhang
et al. 2008). Third, LT models are computa-
tionally simple to handle and at the same time
can model complex interactions among mani-
fest variables (Pearl 1988). Those two proper-
ties make LT models a good tool for density
estimation for discrete variables.

2 Search for Optimal Model

Suppose there is a data set D on a set of man-
ifest variables. To learn an LT model from D
means to find a model m that maximizes the
BIC score:

BIC(m|D) = max
θ

log P (D|m, θ)−
d(m)

2
log N,

where θ denotes the set of model parameters,
d(m) the number of independent parameters,
and N the sample size. It has been shown that
edge orientations cannot be determined from
data (Zhang 2004). So we can learn only un-
rooted latent tree models, which are latent tree
models with all directions on the edges dropped.
An example is given in Figure 1 (b). From now
on when we speak of latent tree models we al-
ways mean unrooted latent tree models unless
it is explicitly stated otherwise.

In this section we present a search proce-
dure for learning LT models. Called EAST,
the procedure uses five search operators, namely
state introduction (SI), node introduction (NI),
node relocation (NR), state deletion (SD), and
node deletion (ND). They are borrowed from
(Zhang and Kočka 2004) with minor modifica-
tions. Given an LT model and a latent vari-
able in the model, the SI operator creates a new
model by adding a new state to the domain of
the variable. The SD operator does the oppo-
site. The NI operator involves one latent node
Y and two of its neighbors. It creates a new
model by introducing a new latent node Y ′ to
mediate the latent variable and the two neigh-
bors. The cardinality of Y ′ is set to be that of
Y . In m1 of Figure 2, introducing a new node
Y3 to mediate Y1 and its neighbors X1 and X2

results in m2. For the sake of computational ef-
ficiency, we do not consider introducing a new
node to mediate Y and more than two of its



neighbors. The ND operator is the opposite of
NI. The NR operator involves two latent nodes
Y1 and Y2 and a neighbor Z of Y1. It creates a
new model by relocating Z to Y2, i.e. removing
the link between Z and Y1 and adding a link be-
tween Z and Y2. In m2 of Figure 2, relocating
X3 from Y1 to Y3 results in m3.

The search operators can be divide into three
groups. NI and SI make the current model more
complex and hence are expansion operators. ND
and SD make the current model simpler and
hence are simplification operators. NR rear-
ranges connections between the variables and
hence is an adjustment operator.

The BIC score consists of two terms. The
first term measures model fit while the second
term penalizes model complexity. Our objective
is to optimize the BIC score. Suppose we start
with a model that does not fit the data at all.
Then improving model fit is the first priority at
the initial stage of search. So we first improve
model fit by searching with the expansion op-
erators. When the BIC ceases to increase, we
switch to the simplification operators in order to
minimize the penalty term. The process repeats
itself until model score ceases to increase. This
is similar to the idea behind the greedy equiva-
lence search (GES) algorithm (Chickering 2002)
for learning Bayesian networks.

In the following, we introduce several modifi-
cations to the above simple scheme and eventu-
ally obtain the EAST procedure given in Figure
3. To understand the first modification, con-
sider the three models in Figure 2. Due to the
constraint imposed on NI, it is impossible to
reach m3 directly from m1. A natural remedy
is to consider node relocations after each appli-
cation of NI. Suppose we have just applied NI
to m1 and have obtained m2. What we do next
is to consider repeatedly relocating the other
neighbors of Y1 in m1, i.e. X3, X4, X5 and
Y2, to the new latent variable Y3. This is the
localAdjust(m2,m1,D) subroutine.

The second modification is about choosing
between candidate models generated by NI and
SI. Let m be the current model and m′ be a
candidate model. Define the improvement ratio
of m′ over m to be

IR(m′,m|D) =
BIC(m′|D) − BIC(m|D)

d(m′) − d(m)
.

It is the increase in model score per unit increase
in model complexity. The cost-effectiveness
principle (Zhang and Kočka 2004) states that,
among all candidate models generated by SI and
NI, choose the one that has the highest improve-
ment ratio.

We have now completed explaining the
expand subroutine in Figure 3. The other sub-
routines are more or less straightforward. The
simplify subroutine first repeatedly applies SD
to the current model until the BIC score ceases
to increase and then it does the same with
ND. The adjust subroutine repeatedly applies
the NR operator to the current model until
it is no longer beneficial to do so. Unlike in
localAdjust, there is no restriction on the NR
operator here. One can relocate a node to any-
where in the current model. This is an effective
mechanism to avoid local maxima.

Located at the top of Figure 3 is the EAST
procedure itself. The name EAST is a short-
hand for Expansion, Adjustment, Simplification
until Termination. The procedure takes a data
set and an initial model as inputs. It first
runs the expand subroutine on the initial model.
Then it adjusts connections between nodes.
Thereafter, it passes the resultant model to the
simplify subroutine. If model score is im-
proved in any of the three steps, the entire pro-
cess repeats itself with the best model obtained
as the initial model.

EAST is similar to the search procedure de-
scribed in (Zhang and Kočka 2004). There are
two main differences. The latter groups NR
with NI and SI and hence does not have a sep-
arate model adjustment phase. It also restricts
how far one can relocate a node.

3 Model Evaluation based on Restricted

Likelihood

Each of the arg max operators in EAST eval-
uates a potentially large number of candidate
models. In this section we describe the re-
stricted likelihood method for doing this effi-
ciently.



EAST(m,D)
Repeat until termination:

m1 ← expand(m,D).
m2 ← adjust(m1,D).
m3 ← simplify(m2,D).
If BIC(m3|D) ≤ BIC(m|D), return m;
Else m← m3.

expand(m,D)
Repeat until termination:

m1 ← arg maxm′∈NI(m)∪SI(m) IR(m′, m|D).
If BIC(m1|D) ≤ BIC(m|D), return m.
If m1 ∈ SI(m), m← m1;
Else m← localAdjust(m1, m,D)

adjust(m,D)
Repeat until termination:

m1 ← arg maxm′∈NR(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), return m;
Else m← m1.

simplify(m,D)
Repeat until termination:

m1 ← arg maxm′∈SD(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), break;
Else m← m1.

Repeat until termination:
m1 ← arg maxm′∈ND(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), return m;
Else m← m1.

Figure 3: The EAST search procedure.

Conceptually EAST works with unrooted LT
models. In implementation, however, we repre-
sent unrooted models as rooted models. Rooted
LT models are BNs and their parameters are
clearly defined. This makes it easy to see how
the parameter composition of a candidate model
m′ is related to that of the current model m.
Consider the models m and m′ in Figure 1 (a)
and (c). m′ is obtained from m by introducing
a new latent variable Y4 to mediate Y3 and two
of its neighbors X6 and X7. The two models
share the parameters for describing the distri-
butions P (Y1), P (Y2|Y1), P (X1|Y2), P (X2|Y2),
P (X3|Y2), P (X4|Y1), P (Y3|Y1) and P (X5|Y3).
On the other hand, the parameters for describ-
ing P (Y4|Y3), P (X6|Y4) and P (X7|Y4) are pecu-
liar to m′ while those for describing P (X6|Y3)
and P (X7|Y3) are peculiar to m.

We write the parameters of a candidate model
m′ as a pair (δ1, δ2), where δ1 is the collection
of parameters that m′ shares with m. Similarly,
we write the parameters of the current model m
as a pair (θ1, θ2), where θ1 is the collection of
parameters that m shares with m′. Suppose we

have computed MLE (θ∗1, θ
∗
2) of the parameters

of m. For a given value of δ2, (m′, θ∗1, δ2) is a
fully specified BN. In this BN, we can compute

P (D|m′, θ∗1, δ2) =
∏

d∈D

P (d|m′, θ∗1, δ2).

As a function of δ2, this will be referred to as the
restricted likelihood function of δ2. The maxi-
mum restricted loglikelihood, or simply the max-
imum RL, of the candidate model m′ is defined
to be

max
δ2

log P (D|m′, θ∗1, δ2).

The restricted likelihood (RL) method for model
evaluation replaces the likelihood term in the
BIC score of m′ with its maximum RL and uses
the resulting approximate score to evaluate m′.

Local EM is a procedure for computing the
maximum RL of a candidate model m′. It works
in the same way as EM except with the value of
δ1 fixed at θ∗

1. It starts with an initial value δ
(0)
2

for δ2 and iterates. After t − 1 iterations, it ob-
tains δ

(t−1)
2 . At iteration t, it completes the data

D using the BN (m′, θ∗
1 , δ

(t−1)
2 ), calculates some

sufficient statistics, and therefrom obtains δ
(t)
2 .

Suppose the parameters δ2 of m′ describe distri-
butions P (Zj |Wj) (j = 1, . . . , ρ). The distributions
P (Zj |Wj , δ

(t)
2 ) that make up δ

(t)
2 can be obtained

in two steps:

• E-Step: For each data case d ∈ D, make in-
ference in the BN (m′, θ∗

1 , δ
(t−1)
2 ) to compute

P (Zj , Wj |d, m′, θ∗
1 , δ

(t−1)
2 ).

• M-Step: Obtain
P (Zj |Wj , δ

(t)
2 ) = f(Zj , Wj)/

∑
Zj

f(Zj , Wj),
where the sufficient statistic
f(Zj , Wj) =

∑
d∈D

P (Zj , Wj |d, m′, θ∗
1 , δ

(t−1)
2 ).

Local EM converges. The series of loglike-
lihood log P (D|m′, θ∗

1 , δ
(t)
2 ) increase monotonically

with t. This fact can be seen if one examines
the proof for the same result about EM. Like
EM, local EM might converge to local maxima.

When implemented properly, local EM is
much more efficient than EM. There are two
reasons. First, fewer sufficient statistics are
computed in local EM than in EM. EM re-
quires sufficient statistics for each pair of neigh-
boring variables, while local EM needs the
sufficient statistics only for those pairs that
are affected by the search operation. Second,



there are abundant opportunities for computa-
tion sharing. Consider calculating the poste-
rior P (Zj , Wj |d, m′, θ∗

1 , δ
(t−1)
2 ) in a candidate model

(m′, θ∗
1 , δ

(t−1)
2 ). The candidate model is the same

as the current model (m, θ∗
1 , θ∗

2) except for the
part affected by the search operation. Conse-
quently, some of the computational steps can
be pre-computed in the current model, and they
can be shared at all iterations and among dif-
ferent candidate models.

Local maxima is an issue in local EM as well
as in EM. To avoid local maxima, we adopt
the pyramid scheme proposed by Chickering and
Heckerman (1997). The idea is to randomly
generate µ initial values for the new parame-
ters δ2, resulting in µ initial models. One local
EM iteration is run on all the models and af-
terwards the bottom µ/2 models are discarded.
Then two local EM iterations are run on the re-
maining models and afterwards the bottom µ/4
models were discarded. Then four local EM it-
erations are run on the remaining models and
so on. The process continues until there is only
one model. After that some more local EM it-
erations are run on the only remaining model to
refine the parameters until the total number of
iterations reaches a predetermined number ν.

We have described the RL method for im-
plementing the arg max operators in EAST. It
takes a list of candidate models as input and
outputs a single model. Full EM is run on the
output model to optimize its parameters before
the search moves on to the next step.

4 Model Evaluation based on Data

Completion

We now turn to the data completion (DC)
method for efficient model evaluation. The
method first completes the data set D using the
current model (m, θ∗), where θ∗ is the MLE of
the parameters of m. It then uses the completed
data set D̄ to evaluate candidate models. The
completed data set is used in different ways in
different subroutines of EAST.

A candidate model m′ in the adjust sub-
routine shares the same variables as m. All
the variables are observed with respect to D̄.
Hence it is easy to compute the maximum ex-

pected loglikelihood maxθ′ log P (D̄|m′, θ′). The
DC method replaces the first term of the BIC
score by the maximum expected loglikelihood
and uses the resulting function to evaluate m′.
This idea is due to Friedman (1997) and it is
also used in the localAdjust subroutine.

Next consider a candidate model m′ in the
second loop in the simplify subroutine. Sup-
pose it is obtained from m by deleting a latent
node Z. Let D̄Z be the data set obtained from
D̄ by removing the values for Z. Then all the
variables in m′ are observed with respect to D̄Z .
The DC method replaces the first term of the
BIC score by maxθ′ log P (D̄Z |m

′, θ′) and uses
the resulting function to evaluate m′. This idea
is from Zhang and Kočka (2004).

The SD operator deletes a state from the do-
main of a latent variable. A related operator is
state merging. It merges two states of a latent
variable. Suppose a candidate model m′ is ob-
tained from m by merging two states, i and j, of
a latent variable Z. Use îj to denote the merged
state. Let D̄îj be the data set obtained from D̄

by replacing both i and j with îj. Then all the
variables in m′ are observed with respect to D̄îj .
One can replace the first term of the BIC score
by maxθ′ log P (D̄îj |m

′, θ′) and use the resulting

function to evaluate m′. This idea is borrowed
from Elidan and Friedman (2005).

Now suppose m′ is a candidate model in the
first loop in the simplify subroutine, obtained
from m by reducing the cardinality of a latent
variable Z by 1. The DC method considers
all possible ways to achieve the cardinality re-
duction through state merging, obtains a model
score for each way using the above method, and
uses the maximum of the scores to evaluate m′.

The candidate models in the expand subrou-
tine are generated by two different operators.
The DC method first separately evaluates can-
didate models generated by different operators,
picks one model for each operator, runs full EM
on the two resultant models and selects between
them using improvement ratios.

Let m′ be a candidate model obtained from
the current model m by introducing a latent
node Z to mediate a latent node Y and two



of its neighbors Z1 and Z2. Intuitively the new
node would be necessary if, in the current model
m, Z1 and Z2 are not conditionally independent
given Y . This condition can be tested based on
D̄ because all the three variables are observed in
D̄. So the DC method evaluates m′ using the G-
squared statistic, computed from D̄ for testing
the hypothesis that Z1 and Z2 are conditionally
independent given Y . The larger the statistic,
the further away Z1 and Z2 are from being inde-
pendent given Y , and hence the more necessary
it is to introduce the new node Z. This idea is
due to Zhang and Kočka (2004).

Finally consider a candidate model m′ ob-
tained from the current model m by adding a
new state to the domain of a latent variable Y .
Let Z1, Z2, . . . , Zk be the neighbors of Y in
m. Intuitively the new state would be neces-
sary if the interactions among Z1, Z2, . . . , Zk

are not properly modeled by Y . Let P̂ be the
empirical joint distribution computed from D̄
and Pm be the joint distribution given by the
model m. For any two neighbors Zi and Zj of
Y , the KL distance KL(P̂ (Zi, Zj)‖Pm(Zi, Zj))
is a measure of how well the interactions be-
tween them are modeled. The larger the KL
distance, the poorer the interactions are mod-
eled, and hence the more necessary it is to add
a new state to Y . The DC method evaluates m′

using the KL distance averaged over all pairs of
neighbors of Y . This idea is due to Zhang and
Kočka (2004).

Note that although the DC method concep-
tually starts with data completion, it does not
compute an explicit representation of D̄. All the
heuristic model scores can be computed from
the current model (m, θ∗) and the original data
set D and the computations all boil down to cal-
culating sufficient statistics on some variables.
Full EM is run on the model picked by any
arg max operator to optimize its parameters be-
fore the search moves on to the next step.

5 Empirical Results

Coupling the EAST search procedure with ei-
ther the RL method or the DC method for
model evaluation, one obtains two different al-
gorithms for learning LT models, which we de-

note by EAST-RL and EAST-DC respectively.
The main purpose of our empirical studies is to
compare the two algorithms.

We also attempt to answer two other ques-
tions. First, EAST-RL has two parameters µ
and ν. How do they influence the performance
of the algorithm? Second, the cost-effectiveness
principle mentioned in section 2 was introduced
to deal with the problem of operation granular-
ity, i.e. some operations might increase model
complexity much more than others. Is the prin-
ciple necessary given that model complexity is
considered already in the BIC score?

The Data: The synthetic data used in our ex-
periments were generated using three manually
constructed LT models that contain 7, 12 and 18
manifest variables respectively. Three data sets
of sizes 1k, 5k and 10k were sampled from the
18 variable model. We denote them by D18(1k),
D18(5k) and D18(10k). One data set was sam-
pled from each of the other two models. They
consists of 5k and 10k samples and hence are de-
noted by D7(5k) and D12(10k). The data sets
were analyzed by various algorithms and their
variants. The quality of a learned model is mea-
sured by the empirical KL distance of the model
to the corresponding generative model, an ap-
proximation to the true KL distance that was
computed based on 5k testing data. The results
are shown in Table 1. They are averaged over
10 runs. The standard deviations are given in
the parentheses.

There are three real-world data sets. Their
basic information is given in the table.

# vars # states sample size
per var train test

ICAC 31 3.5 1200 301
KIDNEY 35 4.0 2000 600

COIL 42 2.7 5822 4000

The COIL data set originates from the COIL
Challenge 2000 (van der Putten and van
Someren 2004). It consists of customer records
of a Dutch insurance company. The ICAC
data set is from a telephone survey by Hong
Kong’s anti-corruption agency on public per-
ception about various issues related to corrup-
tion. KIDNEY is a medical data set studied
by Zhang et al. (2008). Each of the data sets
was split into two subsets, one for training and



Table 1: Empirical results on synthetic data (the top two) and on real-world data (the bottom).

D7(5k) D12(10k)
emp-KL time(mins) emp-KL time(hrs)

EAST-RL(µ,ν) (1,20) 0.0117(2.1e-3) 3.8(2.2) 0.0062(4.2e-3) 1.8(0.3)
(8,20) 0.0105(1.3e-3) 5.9(1.6) 0.0049(3.8e-3) 2.2(0.3)
(8,40) 0.0101(4.5e-5) 7.1(0.1) 0.0032(2.4e-4) 2.6(0.2)

EAST-DC 0.0101(5.7e-5) 5.8(0.1) 0.0051(5.0e-3) 1.4(0.1)

EAST-RL0(µ, ν) (8,40) 0.0101(4.8e-05) 6.3(0.1) 0.0079(4.7e-3) 1.5(0.1)

D18(1k) D18(5k) D18(10k)
emp-KL time(hrs) emp-KL time(hrs) emp-KL time(hrs)

EAST-RL(µ,ν) (1,20) 0.1865(1.5e-5) 0.5(0.03) 0.0245(9.1e-3) 4.3(0.7) 0.0097(4.0e-3) 9.4(1.1)
(8,20) 0.1865(2.3e-5) 0.6(0.05) 0.0175(5.3e-3) 5.7(0.9) 0.0067(2.5e-3) 13.8(1.6)
(8,40) 0.1865(7.5e-6) 0.7(0.02) 0.0148(4.5e-3) 6.0(0.6) 0.0047(7.0e-4) 18.4(3.9)

EAST-DC 0.2171(3.3e-2) 0.6(0.04) 0.0371(3.5e-3) 3.9(0.4) 0.0113(3.0e-3) 8.2(1.5)

EAST-RL0(µ, ν) (8,40) 0.1865(6.3e-06) 0.6(0.01) 0.0326(1.1e-2) 4.4(0.9) 0.0207(1.2e-2) 10.1(1.8)

KIDNEY COIL ICAC
EAST-RL BIC logscore time(days) BIC logscore time(days) BIC logscore time(days)

(µ,ν)=(4,10) -57214(61) -16882(41) 0.4(0.1) -52116(205) -34943(203) 0.9(0.2) -26102(52) -6198(23) 0.10(0.01)
(8,20) -57158(73) -16818(56) 0.6(0.1) -51773(159) -34577(195) 1.1(0.2) -26033(22) -6167(15) 0.16(0.03)

(16,40) -57066(52) -16761(25) 1.0(0.1) -51505(74) -34198(41) 2.3(0.4) -26042(27) -6173(15) 0.22(0.02)

EAST-DC -57699(158) -17236(156) 0.3(0.0) -52560(295) -35103(226) 0.7(0.1) -26156(1) -6213(13) 0.09(0.00)

the other for testing. LT models were obtained
from the training sets. For each learned model,
we computed its BIC score on the training set
and its logarithmic score on testing set. The
logscore measures how well the model predicts
future data. The results are shown in Table 1.
They are averaged over 5 runs.

Impact of µ and ν: The parameter µ controls
the effort that local EM spends on avoiding local
maxima, while ν controls the effort that local
EM spends on refining parameters. In general
we expect EAST-RL to find better models as
they increase. Consider the KL distance from a
learned model to the corresponding generative
model as the parameter setting (µ, ν) changes
from (1, 20) to (8, 20) and then to (8, 40). We
see that the KL distance changes, on average,
from 0.0097 to 0.0067 and then to 0.0047 for
D18(10k); from 0.0245 to 0.0175 and then to
0.0148 for D18(5k); from 0.0062 to 0.0049 and
then to 0.0032 for D12(10k); and from 0.0117 to
0.0105 and then to 0.0101 for D7(5k). It stays
unchanged for D18(1k).

The results on real-world data show similar
trends with one exception. In the case of the
ICAC data, the BIC score and the logscore drop
slightly from (8, 20) to (16, 40), probably due
to randomness.

EAST-RL vs. EAST-DC: The main purpose
of our empirical studies is to compare EAST-RL
and EAST-DC. Consider the experiments with
synthetic data first. We compare the models

found by the two algorithms in terms of the KL
distances from those models to the correspond-
ing generative models. For D18(10k), the aver-
age KL distance of the models found by EAST-
DC is 0.0113, while that of the models found
by EAST-RL is 0.0097 in the lowest parameter
setting and 0.0047 in the highest setting. As a
matter of fact, EAST-RL found better models
for D18(10k) than EAST-DC in all the param-
eter settings considered. The same is true for
D18(5k) and D18(1k). For D12(10k), EAST-RL
found better models than EAST-DC in all the
settings except for (1, 20). For D7(5k), EAST-
RL found models of the same quality as EAST-
DC in the highest setting.

EAST-RL also performed better than EAST-
DC on the real-world data. It found better mod-
els on all the data sets and in all the settings.

Running times are also reported in Tables 1.
They were collected on an Intel(R) Core(TM)2
PC with clock rate of 2.4GHz. EAST-DC is
clearly more efficient than EAST-RL. On the
COIL data, for instance, it was about 4 times
faster than EAST-RL in the setting (16, 40).

Operator Granularity: In Table 1, EAST-
RL0 denotes an implementation of EAST-RL
where operation granularity is not considered
when evaluating candidate models generated
by SI and NI. We see that the models that
EAST-RL0 found for D18(10k), D18(5k) and
D12(10k) are significantly worse than those
found by EAST-RL. They are tied on the other



cases. This suggests that it is necessary to
deal with operation granularity using the cost-
effectiveness principle in the expand subroutine.

6 Discussions and Conclusions

This paper is concerned with the search-based
approach to learning latent tree model. A key
problem in the approach is how to efficiently
evaluate large numbers of candidate models. A
variety of ideas for attacking the problem were
previously proposed by Zhang and Kočka (2004)
and Elidan and Friedman (2005). In this paper
we observe that those ideas can be grouped into
two distinct approaches, namely the restricted
likelihood (RL) approach and the data comple-
tion (DC) approach. We study and compare
the approaches in the framework of EAST, a
newly developed search procedure for learning
latent tree models. This is the first time that
the two approaches to efficient model evaluation
are clearly identified and studied.

The RL method is conceptually simpler than
the DC method. It is based on one principle,
while the DC method is based on several heuris-
tic ideas. The RL method is easier to under-
stand than the DC method.

Ideally one should select the candidate model
with the maximum BIC score. In the RL
method, we replace the likelihood term in the
BIC score with the maximum restricted loglike-
lihood. What it results in is an approximation
that lower bounds the BIC score. So the RL
method selects a model to maximize a lower
bound of the true objective function. This is
common practice in machine learning.

The DC method also selects candidate models
to maximize some objective functions. However
it is less clear how those functions are related
to the BIC score. In the case of the adjust

subroutine, some relationship exists because
maxθ′ log P (D̄|m′, θ′)≥maxθ log P (D̄|m, θ) im-
plies maxθ′ log P (D|m′, θ′)≥maxθ log P (D|m, θ).
The same relationship is not known to be true
for the other cases.

We empirically tested EAST-RL and EAST-
DC on a number of synthetic and real-world
data sets. Several parameter settings were tried
for EAST-RL. At the lowest setting, EAST-RL

found better models than EAST-DC on almost
all the data sets and it took roughly the same
amounts of time on almost all the data sets.
At the highest setting, EAST-RL found better
models than EAST-DC on all the data sets and
much better models on many of the data sets.
However, it was also significantly slower.

Acknowledgements

We thank Kin Man Poon for valuable dis-
cussions. Research on this work was sup-
ported by Hong Kong Grants Council Grants
#622307, and China National Basic Research
Program (aka the 973 Program) under project
No.2003CB517106. The work was completed
when the third author was on leave at the
HKUST Fok Ying Tung Graduate School.

References

D. M. Chickering (2002). Learning Equivalence
Classes of Bayesian-Network Structures. JMLR, 2.

D. M. Chickering and D. Heckerman (1997). Efficient
approximations for the marginal likelihood of Bayesian
networks with hidden variables. Machine Learning, 29.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison
(1998) Biological sequence analysis: probabilistic models
of proteins and nucleic acids. Cambridge Univ. Press.

G. Elidan and N. Friedman (2005). Learning hidden
variable networks: the information bottleneck approach.
Journal of Machine Learning Research, 6:81-127.

N. Friedman (1997). Learning belief networks in the
presence of missing values and hidden variables. ICML.

D. Geiger, D. Heckerman and C. Meek (1996).
Asymptotic Model Selection for Directed Networks with
Hidden Variables. UAI-96, 158-168.

S. Guindon and O. Gascuel (2003). A simple, fast,
and accurate algorithm to estimate large phylogenies by
maximum likelihood. Systematic Biology, 52(5):696-704.

P. F. Lazarsfeld and N. W. Henry (1968). Latent
structure analysis. Houghton Mifflin, Boston.

I. Nachman, G. Elidan and N. Friedman (2004).
“Ideal Parent” Structure Learning for Continuous Vari-
able Networks. UAI-04, 400-409.

J. Pearl (1988). Probabilistic reasoning in intelligence
systems. Morgan Kaufmann, San Mateo.

P. van der Putten and M. van Someren. A bias-
variance analysis of a real world learning problem: The
COIL challenge 2000. Machine Learning, 57:177-195.

N. L. Zhang (2004). Hierarchical latent class models
for cluster analysis. JMLR, 5:697-723.

N. L. Zhang (2007). Discovery of Latent Structures:
Experience with the CoIL Challenge 2000 Data Set.
ICCS-2007, 26-34.

N. L. Zhang and T. Kočka (2004). Efficient learning of
hierarchical latent class models. ICTAI-2004, 585-593.

N. L. Zhang, S. H. Yuan, T. Chen and Y. Wang
(2008). Latent tree models and diagnosis in traditional
Chinese medicine. AI in Medicine, 42:229-245.



Measuring Efficiency in Influence Diagram Models

Barry R. Cobb
cobbbr@vmi.edu

Department of Economics and Business
Virginia Military Institute

Lexington, VA, 24450 U.S.A.

Abstract

A measure of efficiency for influence diagram models with continuous decision variables

that considers both the accuracy and complexity of the representation and solution tech-
nique is presented. Accuracy is determined by calculating the mean squared error between

influence diagram decision rules and an analytical solution. Complexity is assessed by cal-
culating the size of the functions in the numerical representation at each stage of the

solution to reflect both storage requirements and potential computational complexity of
downstream mathematical operations. The resulting efficiency score considers the pref-

erences of an individual decision maker for accuracy and complexity. Three influence
diagram models proposed for use with continuous decision variables are compared using

the efficiency measurement. The best model for a given problem may vary based on a
decision maker’s willingness to substitute accuracy and complexity.

1 Introduction

The influence diagram (ID) was introduced by

Howard and Matheson (1984) as a graphical and
numerical representation for a decision prob-

lem under uncertainty. The ID model is com-
posed of a directed acyclic graph that shows the

relationships among chance and decision vari-
ables in the problem, as well as a set of condi-
tional probability distributions for chance vari-

ables and a joint utility function. In addition to
providing a tractable, intuitive view that facil-

itates communication about the decision prob-
lem, the ID solution provides an optimal strat-

egy and maximum expected utility.

Since their invention, most subsequent im-
provements to exact solution procedures for

solving IDs (see, e.g., citations in Cobb (2008))
assume that all chance and decision variables

in the model are discrete. Cobb and Shenoy
(2008) introduce mixtures of truncated expo-

nentials (MTE) influence diagrams (MTEIDs),
which are influence diagrams where probabil-

ity density functions (pdfs) and utility functions
are represented by MTE potentials (Moral et al.

2001). Each piece of an MTE function is com-
posed of a sum of exponential terms where the

exponent contains a linear function of the inde-
pendent variables.

Discrete IDs and MTEIDs can only acco-
modate continuous decision variables if their

state spaces are limited to a countable number
of discrete values. In contrast, Shachter and

Kenley (1989) introduce Gaussian IDs, where
all continuous chance variables are normally
distributed, all decision variables are continu-

ous, and utility functions are quadratic. The
mixture-of-Gaussians ID (Poland and Shachter

1993, Madsen and Jensen 2005) requires contin-
uous chance variables to be modeled as mixtures

of normal distributions and allows continuous
decision variables.

Cobb (2007) introduces an ID model, the
continuous decision MTE influence diagram

(CDMTEID), which allows continuous decision
variables with one continuous parent and con-

tinuous chance variables having any pdf.

The aim of this paper is to define a measure-

ment that can be used to compare the efficiency
of ID models with continuous decision variables.



This measurement captures both the accuracy
and complexity of the ID solution, then weights

these in accordance with the preferences of an
individual decision maker. Using the efficiency
metric, the competency in performance of ID so-

lutions in three models—discrete IDs, MTEIDs,
and CDMTEIDs—are compared. Using the

measurements proposed in this paper, a deci-
sion maker can attempt to answer the question,

“Is a more accurate model worth the additional
computational complexity?”

The remainder of the paper is organized as
follows. Section 2 describes notation and defi-

nitions. Section 3 provides details of the accu-
racy, complexity, and efficiency measurements.

Section 4 provides an example of calculating ac-
curacy and complexity. Section 5 compares effi-
ciency results for the three ID models under con-

sideration. Section 6 concludes the paper. This
contribution is extracted from a longer working

paper (Cobb 2008).

2 Notation and Definitions

2.1 Graphical Representation

Chance and decision variables in IDs are de-

picted as ovals and rectangles, respectively.
Utility nodes appear as diamonds. An arrow

pointing to a chance node indicates that the dis-
tribution for this chance node is conditional on
the variable at the head of the arrow. An ar-

row pointing to a decision node means that the
value of the variable at the head of the arrow

will be known at the time the decision is made.

Example 1. Fig. 1 shows an ID model for a
capacity planning and pricing decision problem

under uncertainty (Göx 2002). Capacity (K)
and price (P ) are decision variables, the random

demand “shock” (Z) is a chance variable, and
u0 is the joint utility function.

2.2 Numerical Representation

In this paper, we assume all decision and chance
variables take values in bounded, continuous

(non-countable) state spaces. All variables are
denoted by capital letters in plain text, e.g., A,

B, C, with sets of variables denoted by capital
letters in boldface, e.g., X. If A and X are

Shock (Z)

u0

Capacity (K)

Price (P)

Figure 1: An influence diagram model.

one- and multi-dimensional variables, respec-

tively, then a and x represent specific values of
those variables.

The finite, continuous state space of X is de-
noted by ΩX. The state space for a single vari-

able B is defined as ΩB = {b : bmin ≤ b ≤
bmax}. At certain points in the ID represen-

tation and solution, a variable B’s continuous
state space, ΩB, may be replaced by a discrete

approximation, Ω
(d)
B .

A probability potential, φ, for a set of vari-

ables X is a function φ : ΩX → [0, 1]. A utility
potential, u, for a set of variables X is a function

ΩX → R.
All piecewise functions are implicitly under-

stood to equal zero in undefined regions.

Example 2. In the ID shown in Fig. 1, product

demand is determined as Q(p, z) = 12 − p + z.
Assume Z ∼ N (0, 1) and that the firm’s utility
(profit) function is

u0(k, p, z) =
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(p − 1) · (12− p + z) − k
if (12 − p + z) ≤ k

(p − 1) · k − k

if (12 − p + z) > k .

(1)

The state spaces of the variables are: ΩK =

{k : 0 ≤ k ≤ 14}; ΩP = {p : 1 ≤ p ≤ 9}; and
ΩZ = {z : −3 ≤ z ≤ 3}.

2.3 Combination

Combination of potentials is pointwise multipli-

cation. Let ψ1 and ψ2 be probability and/or
utility potentials for X1 and X2. The com-

bination of ψ1 and ψ2 is a new potential for
X = X1 ∪ X2 defined as

ψ(x) = (ψ1 ⊗ ψ2) (x) = ψ1(x
↓ΩX1) · ψ2(x

↓ΩX2)



for all x ∈ ΩX. If either ψ1 or ψ2 is a util-
ity potential, the result of the combination will

be a utility potential; otherwise, the result is a
probability potential.

2.4 Marginalization of Chance

Variables

Marginalization of chance variables corresponds
to integrating over the chance variable to be re-

moved. Let ψ be a potential for X = X′ ∪ Z,
where Z is a chance variable. The marginal of

ψ for X′ is a potential computed as

ψ↓X′

(x′) =

∫

ΩZ

ψ(x) dz

for all x′ ∈ ΩX′ , where x = (x′, z).

2.5 Marginalization of Decision

Variables

Marginalization with respect to a decision vari-

able is only defined for utility potentials. Let u
be a utility potential for X ∪ D, where D is a

decision variable. The marginal of u for X is a
utility potential computed as

u↓X(x) = max
d∈ΩD

u(x, d) (2)

for all x ∈ ΩX. The mechanics of performing
the maximization operation in Eq. (2) vary with

each ID model compared in this paper.

2.6 Fusion Algorithm

IDs are solved in this paper by applying the
fusion algorithm of Shenoy (1993). This al-

gorithm involves deleting the variables in an
elimination sequence that respects the informa-

tion constraints in the problem. The sequence
is chosen so that decision variables are elimi-

nated before chance or decision variables that
are immediate predecessors. When a variable is

to be deleted from the model, all probability
and/or utility potentials containing this vari-

able in their domains are combined, then the
variable is marginalized from the result.

3 Measuring Accuracy, Complexity,

and Efficiency

3.1 Analytical Solution

In the problem from Examples 1 and 2, the firm
knows the true value, Z = z, of the demand

shock Z when it chooses capacity, so it would
logically set K = 12−P +z. Göx (2002) finds an

analytical solution to the problem with optimal
values for P and K of

p∗ = Θ∗
1(z) = 2 +

10 + z

2
(3)

and

k∗ = Θ∗
2(z) =

10 + z

2
. (4)

3.2 Accuracy

Since analytical decision rules are available for
K and P , the mean squared error (MSE) (Win-
kler and Hays 1970) can be used as a measure

of the difference between the analytical and ID
decision rules. For instance, define Θ2 as a de-

cision rule for K as a function of Z determined
using an ID method. The MSE of this function

is calculated as

MSE = E
[

(Θ2(z) − Θ∗
2(z))2

]

=

∫

ΩZ

φ(z) · (Θ2(z) − Θ∗
2(z))2 dz ,

(5)

where φ is the pdf shown in Figure 2. The MSE
between the decision rule Θ1 developed in the

ID models for P as a function of K and Z and
the analytical decision rule Θ∗

1 is similarly cal-

culated as

MSE = E
[

(Θ1(Θ2(z), z)− Θ∗
1(z))2

]

=

∫

ΩZ

φ(z) · (Θ1(Θ2(z), z)− Θ∗
1(z))2 dz .

(6)

The accuracy of a given ID model for this
example will be denoted by A and will be de-

fined as the sum of the MSEs calculated using
Eqs. (5) and (6).



3.3 Complexity

The ID models in this paper are solved us-

ing Mathematica software (www.wolfram.com).
This package provides a function called

LeafCount that gives the total “size” of an ex-
pression defined using the Piecewise represen-

tation, based on applying the FullForm func-
tion (Wolfram 2003). LeafCount (denoted by

L) will be used to measure the complexity of
potentials in the ID solution procedures.

Example 3. Consider the expression

f(z) =

{

−84.0 + 81.1 exp{0.0119(z + 3)}
if − 3 ≤ z ≤ 3 .

(7)

Using the Piecewise environment, this function
is defined in Mathematica as

f [z ] :=

Piecewise{{−84.0
+81.1 exp{0.0119(z + 3)}, −3 ≤ z ≤ 3}} .

Applying the FullForm function in Mathemat-
ica to this expression yields

Piecewise[List[List[ Plus[-84, Times[81.1,
Power[E, Times[ 0.0119, Plus[3, z]]]]],

LessEqual[-3, z, 3]]], 0] .

Each word, number, or variable in the FullForm
expression increases the LeafCount of the ex-

pression by one. In this case, L{f} = 19.

LeafCount captures the total size of all pieces
of an MTE approximation or decision rule, in-

cluding both the parameters of the function and
the inequalities required to define the domains

of each piece.

The complexity of the various ID methods
will be determined by measuring the LeafCount

of the potentials stored in memory after each
combination or marginalization operation (or

sub-operation thereof) performed in the solu-
tion technique. This measure of complexity is

used because the size of the potentials at each
step of the solution technique affects both the

storage required and the subsequent number of
calculations needed to solve the ID model.

Suppose the ID solution procedure for a par-
ticular problem requires n operations (or sub-

operations) and denote the probability poten-
tials, utility potentials, and decision rules re-
maining after operation i as φij, j = 1, . . . , mi.

The total complexity, C, of the ID solution is
the sum of the complexity measurements, Ci,

i = 0, . . . , n, taken after each operation in the
procedure. The total complexity of the solution

for a particular ID model is determined as

C =
n

∑

i=0

Ci =
n

∑

i=0

mi
∑

j=1

L{φij} .

The value C0 represents the complexity of the
potentials in the initial ID model.

3.4 Normalized Measurements

Since the MSE accuracy measurement, A, and
the complexity measurement determined by

compiling LeafCount formulas, C, are stated on
different numerical scales, it is advantageous to

normalize these two measurements onto a com-
mon scale to determine the trade-off between
accuracy and complexity.

Select any two positive real numbers, Nmin

and Nmax. Throughout the remainder of the pa-

per, we assume Nmin = 1 and Nmax = 2. When
comparing the accuracy and complexity of ID

solutions for multiple models, we denote by A
and C the measurements for the least accurate

and most complex models, respectively, mea-
sured for all models under consideration. Like-

wise, we denote by A and C the measurements
for the most accurate and least complex models,
respectively. In the case of both accuracy and

complexity, note that smaller measurements are
desirable. The normalized accuracy measure-

ment for a given model is determined as

Â = Nmin +
(Nmax −Nmin) · (A−A)

A−A
. (8)

Similarly, the normalized complexity measure-

ment for a given model is calculated as

Ĉ = Nmin +
(Nmax −Nmin) · (C − C)

C − C
. (9)



3.5 Efficiency

Once the normalized accuracy and complexity
measurements are determined, the efficiency of

the model is calculated as

E = Âα · Ĉ1−α , (10)

The exponent α is a parameter assigned by the
decision maker that conveys an individual pref-

erence for solutions that are either more accu-
rate or less complex. If α > 0.5, the decision

maker values accuracy over complexity, and vice
versa. Two properties of the functional form
in Eq. (10) that make the expression a useful

model for production and consumer utility in
economics (see, e.g., Baye (2006)) also make it

valuable for measuring the efficiency of ID solu-
tions:

1. If two ID models have equivalent accuracy,
the model with a better complexity score

will have greater efficiency, and vice versa.

2. There is a diminishing marginal rate of sub-
stitution between accuracy and complexity.

4 Example

This section describes the calculation of the ac-
curacy and efficiency measurements in the con-

text of the CDMTEID solution to the problem
from Examples 1 and 2. Details of calculations
for the discrete ID and MTEID can be found in

(Cobb 2008).

4.1 Representation

The MTE potential φ with µ = 0 and σ2 = 1

that approximates the normal distribution (as
defined by Cobb and Shenoy (2006)) for the
random demand shock (Z) is shown in Fig. 2,

overlaid on the actual N (0, 1) distribution.

The decision variable K is limited to dis-

crete outcomes. A v-point discrete approxima-
tion to a continuous decision variable K with

ΩK = {k : kmin ≤ k ≤ kmax} has values
kt = kmin + (t − 0.5) · (kmax − kmin) /v for

t = 1, . . . , v. Thus, the discrete state space is

defined as Ω
(k)
K = {k1, k2, . . . , kv}. To illustrate

this example, we assume v = 6.

-3 -2 -1 0 1 2 3

0

0.1

0.2

0.3

0.4

Figure 2: MTE probability density.

The function f1(p) = p on the in-

terval [1, 9] is modeled by the MTE
potential uP (p) = −107.056144 +

108.102960 exp{0.0089234(p− 1)} for all
p ∈ ΩP . Note that uP (1) = 1.047,

uP (5) = 4.975, and uP (9) = 9.046, so the
MTE approximation fits f1(p) reasonably well.

More accurate approximations can be obtained
by dividing the state space of P and defining

separate approximations over each region, at
the expense of increasing the representation’s
complexity measurement (as defined in Sec-

tion 3.3). The function f2(z) = z on [−3, 3]
is modeled with a similar approximation uZ .

With K assigned v discrete values, the MTE
utility function is defined as

u1(kt, p, z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(uP (p)− 1)·
(12− uP (p) + uZ(z))− kt

if (12− p + z) ≤ kt

(uP (p)− 1) · kt − kt

if (12− p + z) > kt ,
(11)

for t = 1, . . . , v. For instance, with v = 6 and

K = k3 = 5.83, the MTE utility function is
defined as

u1(5.83, p, z) =
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−3789.32 + 15328.9 exp{0.00892338p}
−11479.5 exp{0.0178468p}
+9002.5 exp{0.00892338p+ 0.0118978z}
−9079.3 exp{0.0118978z}

if p − z ≥ 6.17

−636.2 + 625.0 exp{0.00892338p}
if p − z < 6.17 .



3 2 1 1 2 3

5

10

15

20

25

30

35

- - -

Z

Utility

P=5.67

P=7

P=8.33

Figure 3: The utility functions u1(k3, pu, z) for
u = 1, . . . , 6.

The CDMTEID solution has initial complex-
ity C0 = L{φ} + L{u1} = 517.

4.2 Solution

The elimination sequence employed in the fu-

sion algorithm is P , K, Z.
Price (P ) is a continuous decision variable;

however, the first step in marginalizing this
variable is accomplished by using the discrete

approximation Ω
(d)
P . The values pu, u =

1, . . . , 6 are inserted in the utility potential u1

to form the utility functions u1(kt, p1, z), . . .,

u1(kt, p6, z) for t = 1, . . . , 6. After this step,
both these new potentials and the existing MTE
utility function u1 remain, so the complexity is

C1 = C0 +
6

∑

t=1

6
∑

u=1

L{u1(kt, pu, z)} = 1313 .

The second step in removing P is to create a
piecewise linear decision rule for P as a function
of Z for each value kt, t = 1, . . . , 6. For K =

k3 = 5.83, the utility functions u1(k3, pu, z)
for u = 1, . . . , 6 are shown in Fig. 3 and we

can conclude that P = 5.67 is optimal over
[−3,−0.45), P = 7 is optimal over [−0.45, 1.15),

and P = 8.33 is optimal over [1.15, 3]. These
values are used to create the piecewise linear

decision rule

P (z) = Θ1,3(z) =
⎧

⎪

⎨

⎪

⎩

6.775100 + 0.642570z if − 3 ≤ z < −0.35

6.729469 + 0.772947z if 0.35 ≤ z < 2.9375
9 if 2.9375 ≤ z ≤ 3 .

Similar decision rules Θ1,1, . . ., Θ1,6 are deter-
mined corresponding to values kt, t = 1, . . . , 6

3 2 1 1 2 3

6

7

8

9

- - -

Z

P=f(Z)

K=1.17

K=3.5

K=5.83

K=8.17, 10.5, or 12.83

Figure 4: The piecewise linear decision rules
Θ1,t corresponding to values kt, t = 1, . . . , 6.

3 2 1 1 2 3

10

15

20

25

30

35

40

- - -
Z

Utility

K=3.5

K=5.83

Figure 5: The utility functions u2(kt, z).

(see Fig. 4). When combined, these func-

tions form the decision rule Θ1 with complexity
L{Θ1} = 259. Since φ and u1 also remain after

this step, the complexity of the model is now
C2 = 517 + 259 = 776.

The last step in removing P from the model
is to substitute the values of the decision rule

Θ1 into the utility function u1 to form the util-
ity functions, u2(kt, z) = u1(kt, Θ1,t(z), z), for
t = 1, . . . , 6. With φ and u2 as the remaining

potentials in the network, the complexity stands
at

C3 = L{φ}+
6

∑

t=1

L{u2(kt, z)} = 61+530 = 591 .

A plot of the functions u2(k1, z), . . ., u2(k6, z)
(Fig. 5) shows that u2(3.5, z) ≈ u2(5.83, z) at

Z = −1.25. The resulting decision rule Θ2

specifies that K = 3.5 if −3 ≤ z < −1.25 and

K = 5.83 if −1.25 ≤ z ≤ 3. After creating this
decision rule, the complexity of the model is

C4 = L{φ} + L{u2} + L{Θ2} = 610 .

To complete the marginalization of K, we cre-
ate a new utility function u3(z) = u2 (Θ2(z), z).



The complexity after this operation is C5 = 278,
which captures the LeafCount of the potentials

φ and u3.

To remove Z, the potentials φ and u3 are

combined, with the resulting complexity C6 =
L{(φ ⊗ u3)} = 569. Integrating the result over

the state space of Z completes the solution. The
total complexity of the ID model is

C =
6

∑

i=0

Ci = 4654 .

The MSE of the CDMTEID solution is cal-

culated according to Eqs. (5) and (6) as A =
0.7760.

5 Results

This section discusses the effects on model effi-
ciency of changing the number of states in the
discrete approximations to continuous decision

variables used in each of the methods

In each of the three ID methods illustrated,

the state space of continuous variables is either
permanently or temporarily discretized. To in-

vestigate the efficiency of models with a varying
number of pieces in the discrete approximation,

we consider the three ID models with approx-
imations of six through twelve pieces. Thus,

the best and worst solutions in terms of accu-
racy and complexity are chosen from among 21

models when calculating the values of A, A, C,
and C.

Figs. 6 and 7 show efficiency scores for accu-
racy parameters of α = 0.1 and α = 0.9. When

accuracy is a low priority, the efficiency of the
models decreases with additional discrete pieces
in the approximations as computational com-

plexity overburdens the solution. In this case,
both the CDMTEID and MTEID models pro-

vide comparable efficiency. When accuracy is a
high priority, the efficiency of the models gener-

ally increases with additional pieces in the dis-
crete approximations and the CDMTEID pro-

vides the best efficiency. In some cases, the
placement of the mid-points of the discrete bins

within the state space of the continuous deci-
sion variable adversely affects accuracy, which

explains the low efficiency of the solutions with
eight-piece approximations.

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

6 7 8 9 10 11 12

E
ff

ic
ie

n
c
y

Pieces

CDMTEID MTEID Discrete ID

Figure 6: Efficiency scores with α = 0.1.

Fig. 8 displays the efficiency scores for the ID
solutions over the entire range of possible accu-

racy values. To make the graph simpler to com-
prehend, only the efficiency scores for models

that gave the optimal efficiency over some range
of the accuracy parameter α are shown. The

un-normalized accuracy (MSE) and complexity
values for these models are also displayed on the
chart. For very low values of α, the MTEID so-

lution with six discrete states is optimal. How-
ever, as the decision maker’s preference for ac-

curacy increases somewhat, a model with seven
discrete states provides the best compromise

between accuracy and complexity. Once de-
sired accuracy increases beyond α ≈ 0.25, the

CDMTEID model with an increasing number of
discrete states in the temporary approximation

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

6 7 8 9 10 11 12

E
ff

ic
ie

n
c
y

Pieces

CDMTEID MTEID Discrete ID

Figure 7: Efficiency scores with α = 0.9.



1.78

1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ff

ic
ie

n
c
y

Accuracy Parameter

Model (States, MSE, Complexity)

        MTEID 

(6,1.0575,3764)

        MTEID 

(7,0.5372,4782)

      CDMTEID

(7,0.3913,5493)

      CDMTEID

(10,0.2512,8706)

      CDMTEID

(12,0.1979,10897)

Figure 8: Efficiency values for ID solutions.

becomes optimal.

6 Conclusions

This paper has defined a measure of efficiency
for ID models with continuous decision variables
that considers both the accuracy and complex-

ity of the representation and solution. Accuracy
is measured by calculating the mean squared er-

ror between the final decision rule determined
using the ID and corresponding analytical deci-

sion rules. Complexity is determined by the size
of the potentials in the initial ID representation,

and after each subsequent operation involved
in solving the ID. The efficiency measurement

combining accuracy and complexity is able to
consider the preferences of an individual deci-
sion maker for both accuracy and complexity.

The details of additional comparisons and dis-
cussion of further results can be found in (Cobb

2008).

Acknowledgments

Support from the Spanish Ministry of Sci-

ence and Innovation through project TIN2007–
67418–C03–02 and from a Virginia Military In-

stitute grant-in-aid is gratefully acknowledged.

References

Baye, M.R. 2006. Managerial Economics and Busi-
ness Strategy. McGraw–Hill/Irwin, New York.

Cobb, B.R., 2007. Influence diagrams with contin-
uous decision variables and non-Gaussian uncer-
tainties. Decision Anal. 4(3) 136–155.

Cobb, B.R., 2008. Efficiency of Influence Dia-
gram Models with Continuous Decision Vari-
ables. Working Paper, Virginia Military Insti-
tute, Lexington, VA. Available for download at:
http://new.vmi.edu/media/ecbu/cobb/WP08b.pdf

Cobb, B.R., P.P. Shenoy. 2006. Inference in hybrid
Bayesian networks using mixtures of truncated
exponentials. Internat. J. Approx. Reason. 41(3)
257–286.

Cobb, B.R., P.P. Shenoy. 2008. Decision making
with hybrid influence diagrams using mixtures of
truncated exponentials. Eur. J. Oper. Res. 186(1)
261–275.

Göx, R.F. 2002. Capacity planning and pricing un-
der uncertainty. J. Management Accounting Res.
14(1) 59–78.

Howard, R.A., J.E. Matheson. 1984. Influence dia-
grams. R.A. Howard, J.E. Matheson, eds. Read-
ings on the Principles and Applications of De-
cision Analysis II. Strategic Decisions Group,
Menlo Park, CA, 719–762.

Madsen, A.L., F. Jensen. 2005. Solving linear-
quadratic conditional Gaussian influence dia-
grams. Internat. J. Approx. Reason. 38(3) 263–
282.

Moral, S., R. Rumı́, A. Salmerón. 2001. Mixtures
of truncated exponentials in hybrid Bayesian net-
works. P. Besnard, S. Benferhart, eds. Symbolic
and Quantitative Approaches to Reasoning un-
der Uncertainty: Lecture Notes in Artificial In-
telligence, Vol. 2143. Springer-Verlag, Heidelberg,
156–167.

Poland, W.B., R.D. Shachter. 1993. Mixtures of
Gaussians and minimum relative entropy tech-
niques for modeling continuous uncertainties.
D. Heckerman, E.H. Mamdani, eds. Uncertainty
in Artificial Intelligence: Proc. Ninth Conf., Mor-
gan Kaufmann, San Francisco, CA, 183–190.

Shachter, R.D., C.R Kenley. 1989. Gaussian influ-
ence diagrams. Management Sci. 35(5) 527–550.

Shenoy, P.P. 1993. A new method for represent-
ing and solving Bayesian decision problems.
D.J. Hand, ed. Artificial Intelligence Frontiers in
Statistics: AI and Statistics III. Chapman and
Hall, London, 119–138.

Winkler, R.L., W.L. Hays. 1970. Statistics: Proba-
bility, Inference, and Decisions. Holt, Rinehart,
and Winston, New York.

Wolfram, S. 2003. The Mathematica Book, 5th ed.
Wolfram Media, Champaign, IL.



Attribute Clustering Based on Heuristic Tree Partition

Jorge Cordero H. and Yifeng Zeng
Department of Computer Science

Aalborg University
9220 Aalborg, Denmark

Abstract

Attribute clustering has been previously employed to detect statistical dependence be-
tween subsets of variables. Clusters of variables can be appropriately used for detecting
highly dependent domain variables and then reducing the complexity of learning Bayesian
networks. We propose a novel attribute clustering algorithm motivated by research of
complex networks, called the Star Discovery algorithm. The algorithm partitions and in-
directly discards inconsistent edges from a maximum spanning tree by starting appropri-
ate initial modes, therefore generating stable clusters. It discovers sound clusters through
simple graph operations and achieves significant computational savings. We compare the
Star Discovery algorithm against earlier attribute clustering algorithms and evaluate the
performance in several domains.

1 Introduction

Probably one of the widest use of clustering
in the past years has been the task of select-
ing genes (variable selection) in Bioinformatics.
The use of attribute clustering can be extended
to any domain in the search for statistical cor-
relation of variables. Several conventional clus-
tering algorithms have been applied to re-group
and reveal subsets of correlated attributes such
as: the k-means algorithm (Smet et al., 2002),
fuzzy clustering (Madeira and Oliveira, 2004)
and hierarchical clustering (Eisen et al., 1998).

Recently, the k-modes algorithm (Au et al.,
2005) has been proved as one of the most effi-
cient approaches for performing attribute clus-
tering. However, it is subject to local optima
due to random selection of initial modes. In
a parallel line, clustering based on tree parti-
tion receives more and more attention since it is
firmly rooted in classical graph partition meth-
ods (detailed methods will be presented soon in
the next section). More precisely, the clustering
methods firstly build a maximum spanning tree
(MAST) and then get the clusters using appro-
priate partition methods. For convenience, we
call the methods as MAST-based clustering al-

gorithms in this paper. Since the standard tree
partition method is not directly oriented toward
attribute clustering it may not produce com-
petitive results. However, it avoids heavy com-
putation in contrast with k-modes algorithm.
Accordingly, the MAST-based clustering algo-
rithms contribute to the growing line of research
on attribute clustering.

For the effect of this investigation we focus
on the MAST-based clustering method. Specif-
ically, we introduce the Star Discovery (SD)
algorithm that is inspired by the research of
complex networks (Cohen and Havlin, 2002).
We adopt the assumption that all variables can
be seen as points in an Euclidean space (close
points have a high correlation) because we have
complete information regarding pairwise prox-
imities. The SD algorithm sections the tree by
detecting nodes which have a strong connectiv-
ity; then, it pulls neighboring nodes into clusters
based in a simple heuristic. We compare our
approach against both earlier tree-based clus-
tering algorithms and the k-modes algorithm in
comprehensive experiments.

The rest of this paper is organized as follows:
In Section 2 we present relevant algorithms for
attribute clustering. Section 3 introduces the



novel SD algorithm. Section 4 exposes exper-
imental findings. Section 5 provides a conclu-
sive view of the work and discusses the use of
attribute clustering for Bayesian networks.

2 Background

Given n domain attributes, X = {x1, · · · , xn},
clustering methods aim to group a set of at-
tributes1 into clusters based on a similarity
measure. In general, attributes in a clus-
ter are more correlated to each other than
to those ones belonging to different clusters.
For this study, the data was statistically mea-
sured in terms of the interdependency redun-

dancy measure R(xi, xj) =
I(xi,xj)
H(xi,xj)

; whereas

I(xi, xj) =
∑

xi,xj∈X p(xi, xj) log
P (xi,xj)

p(xi)p(xj)
is

the mutual information and H(xi, xj) =
∑

xi,xj∈X p(xi, xj) log p(xi, xj) is the joint en-
tropy for the discrete random variables xi and
xj (Au et al., 2005). The R(·, ·) measure dis-
criminates a variable (containing many states)
which has a weak statistical correlation with re-
spect to another variable.

Without loss of generality, given a set of do-
main variables X, the objective of attribute
clustering is to find a disjoint set of clusters
C = {Ci|(i = 1, · · · , k) ∧ (∀i�=jCi ∩ Cj = ∅)}
that maximizes Eq. 1; where woi,xj

denote the
attached weight (measured by R(oi, xj)) from
the center oi to other variables xj in the cluster
Ci.

W C =
∑

Ci

∑

xj∈(Ci−{oi})

woi,xj
(1)

Two paradigms of clustering were taken in
order to find optimal clusters of discrete ran-
dom variables. The first technique is the k-
modes algorithm that optimize Eq. 1 directly
(Au et al., 2005). The k-modes can be seen as
a graph partitioning algorithm. Thus, a set of
discrete random variables are exhibited as nodes
in a complete graph (K = (V,E), where V de-
notes a set of nodes representing variables X,

1Discrete random variables (attributes) are seen as
nodes in a graph (V = X, where V denotes a set of
nodes). We will use any of these terms indifferently
throughout this paper.

and E includes all edges that are associated
with all pair-wise R(·, ·) estimates). Another
clustering method is the MAST-based cluster-
ing algorithm which partitions and clusters a
tree instead of the complete graph. The over-
head of constructing a maximum spanning tree
is in the order of O(n log n) using the Kruskal’s
algorithm.

All of the clustering methods presented in
this investigation input a set of weights W K =
{wxi,xj

= R(xi, xj)|i, j = 1, · · · , n; i �= j} from
the complete graph K.

2.1 The k-modes algorithm

The k-modes algorithm (also known as the k-
medoids algorithm (Kaufman and Rousseeuw,
1990)) is basically an implementation of the k-
means algorithm. It identifies the real points in
the space as centers or modes rather than geo-
metric centers. In fact, the k-modes is optimal
in order to find well-shaped clusters since it has
complete information among all pairwise inter-
actions in the domain.

The k-modes algorithm works as follows:
First, it initializes k random modes as clus-
ter centers O = {o1, · · · , ok}, and assigns ev-
ery mode in a 1 to 1 correspondence to clusters
C. Then, for every variable xj ∈ (X − O), it
adds xj to Ci iff ∀ol∈{O−oi}wxj ,oi

> wxj ,ol
. Once

the clusters C are constructed, a new variable
xj ∈ Ci is selected as mode oi in every cluster Ci

iff
∑

xj∈(Ci−{oi})
woi,xj

is maximal. The process

is repeated (all clusters in C are deleted and
a new set of clusters is created containing only
the new modes) for a given number of iterations
r or when no change in the modes is achieved.
The complexity of this algorithm is polynomial
O(r(((n − k)k) + sk)) where s is the maximal
number of variables inside a cluster.

The k-modes algorithm is prone to falling into
local optima due to the random mode selection
in the initialization phase. A straightforward
improvement could be done by feeding appro-
priate initial modes. We will show that our pro-
posed algorithm may improve k-modes in this
way.



2.2 MAST Partitioning Algorithms

The MAST-based clustering algorithms are
commonly based on heuristics that aim at re-
moving a set of inconsistent edges from a MAST
(Chow and Liu, 1968). An important factor
in this technique is the selection of a heuristic
or process that decides which arcs are relevant
(and will remain) and which edges are incon-
sistent with the topology and shall be removed.
These algorithms do not require many param-
eters to perform bisections over a tree. More-
over, this class of algorithms are faster than the
k-means type of algorithms at the price of qual-
ity of the solution. We contemplated our study
over three previous tree partitioning algorithms
for attribute clustering as follows.

SEMST(The standard Euclidean maximum
spanning tree (Asano et al., 1988)): The
SEMST algorithm applies the principle of sep-
arability which states that two sets of points
which are connected in a MST are separated by
stabbing line. In other words, k sets of points
can be isolated in a MAST if we remove the k−1
inconsistent edges whose weight is minimal.

By dividing the MAST G into k sub-trees,
G = {G1, · · · , Gk}, the SEMST algorithm
aims to maximize the sum of weights W G =
∑k

l=1

∑

xi,xj∈Vl
wxi,xj

where Vl is a set of vari-
ables in each sub-tree Gl. At the end, every set
Vl becomes a cluster Cl.

The complexity of the SEMST algorithm is
trivial since it takes O(n log n) to construct the
Maximum Spanning Tree. If we use Kruskal’s
algorithm to build the initial MAST G then
we already have sorted arcs according to their
weights, in such case it will take constant time
O(k − 1) to remove the inconsistent edges. For
assembling of clusters it takes at most O(kb)
steps whereas b is the highest number of vari-
ables in a sub-tree Gl.

CEMST(The maximum cost spanning
tree (Ye and Chao, 2004)): The algorithm
works exactly as SEMST. However, the search
for the k inconsistent edges is done by substi-
tuting the edge weights by the routing costs and
then removing those edges that have maximal
costs. A routing cost associated with an edge

connecting the endpoints xi and xj is defined
as: Cost = wxi,xj

∗ Deg(xi) ∗ Deg(xj), where
Deg(xi) denotes the degree of xi. Edges that
connect leaf variables with the rest of the tree
have higher probability of being discriminated
since its own cardinality is low. The CEMST
algorithm takes the same objective as that in
the SEMST algorithm. Its complexity behaves
in the same order as in the SEMST algorithm.
Evidently, this algorithm as well as the SEMST
algorithm do not directly optimize a specific
objective function of attribute clustering.
However, they indirectly aim to isolate clusters
of highly related variables.

ZEMST(The Zahn’s maximum spanning
tree (Zahn, 1971)): Both the SEMST and
CEMST algorithms perform a greedy blind
search over the tree G in order to form clus-
ters. In a parallel fashion, the ZEMST algo-
rithm takes into account not only a given edge
(xi, xj) but its relevance neighborhoods Ni, Nj

respectively. A neighborhood Ni = (VNi
, ENi

)
of a variable xi in an edge (xi, xj), is a sub-tree
that includes all reachable nodes VNi

and arcs
ENi

of depth d (excluding paths starting from
(xi, xj)).

In order to decide whether an edge (xi, xj)
is inconsistent two tests are performed.
First an attached weight wxi,xj

is removed
if it is smaller than any of the means
(w̄Ni

= 1
|ENi

|

∑

(xr,xs)∈ENi
wxr ,xs and w̄Nj

=
1

|ENj
|

∑

(xt,xu)∈ENj
wxt,xu) minus their standard

deviations (σNi
= ( 1

|ENi
|

∑

(xr ,xs)∈ENi
(wxr ,xs −

w̄Ni
))

1
2 and σNj

= ( 1
|ENj

|

∑

(xt,xu)∈ENj
(wxt,xu −

w̄Nj
))

1
2 ) respectively. Second, all edges whose

attached weight is higher than the mean in all
the remaining sub-trees are removed.

Finally, the pruning process obtains the set of
sub-trees {G1, · · · , Gk}. Every set of nodes in
each sub-tree is mapped to a single cluster. No-
tice that the ZEMST algorithm automatically
clusters the domain without receiving an initial
number of partitions k. The complexity of this
algorithm has to do with the search of neighbor-
hoods among arcs. It has to perform a search
of at most d − 1 adjacent variables; thus, the



algorithm has a lower boundary in O(nd) and
a worst case scenario in O(n2) whenever d ≈ n.
The gathering of clusters is achieved (as in the
previous algorithms) in a time O(mb).

3 The Star Discovery Algorithm
We can intuitively realize that, as the rules for
partitioning become more elaborated, then the
final clustering has a better quality. Thus, the
search for inconsistent edges is directed to iso-
late good clusters. In this section we introduce
the robust Star Discovery (SD) algorithm. We
iteratively partition a MAST and form clusters
until all nodes xi ∈ X are assigned to clusters.
The SD algorithm (as well as the ZEMST algo-
rithm) clusters the domain in an unsupervised
fashion (no initial number k of clusters is pro-
vided).

Guiding the search for centers by only exam-
ining the topology or single weights is proba-
bly not a good idea since the whole domain is
not taken into account. The ZEMST algorithm
bases the clustering in a simplistic search in-
volving topology and weights in neighborhoods.
We exploit further features in this way. A sound
and clear approach is to look for subgraphs from
the MAST that could reveal information about
the ”nature” of the domain. One abstraction
of our technique is to look for spanning stars
as subgraphs contained in the MAST. A span-
ning star (Gallian, 2007) is a sub-tree over the
MAST, S = (VS , ES), and is composed of q

nodes. It has a center o ∈ VS with a degree q−1
and all other nodes have a degree of one. The
spanning star is our fundamental graph theoret-
ical resource for expressing clusters that reside
in a two dimensional Euclidean space.

Detecting the set of k-stars whose global
weight is maximal(following Eq. 1) from a com-
plete graph K requires expensive computation.
Similar to the previous MAST partitioning al-
gorithms, the SD algorithm aims to detect a set
of spanning stars, SS = {S1, · · · , Sk}, such that
the objective function in Eq. 2 is maximized.

W =
∑

Sl∈SS

(
∑

xi∈Adjl

(wxi,ol
)+

∑

xj∈Adjl,xh∈Leafl

(wxj ,xh
))

(2)

where ol is the star(cluster) center, Adjl is a
set of adjacent nodes to the center node ol, and
Leafl a set of leaf nodes that connect to either
ol or Adjl.

Notice that we extend the notion of a star to
include some leaf nodes (nodes whose degree is 1
in the graph). In the experimentation we found
that leaf nodes have a higher correlation to the
center of its adjacent node than to any other
center in any other star. The SD algorithm op-
timizes the later function by ranking every vari-
able according to its ability to serve as modes.
The search heuristic will only select a star as a
mode if its mode has not been used before in
any other clusters. At the end we will acquire
the set of clusters whose structure (modes, ad-
jacent and leaf nodes) is maximal according to
Eq. 2 and the heuristic presented in Fig. 1 2.

Star Discovery (SD) Algorithm

Input: G = (V, E), W G

Output: C = {C1, C2, . . . , Cl}

1: V aux = V, V cont = ∅, l = 1
2: FOR r = 1 to n
3: or = xr

4: Adjr ⇐ xi iff (xi, or) ∈ E
5: ESr ⇐ (or, xi)
6: Leafr ⇐ xh iff (xi, xh) ∈ E ∧ Deg(xh) = 1
7: ESr ⇐ (xi, xh)
8: VSr = (or ∪ Adjr ∪ Leafr)
9: Sr = (VSr , ESr )

10: W Sr =
∑

(xi,xj)∈ESr

wxi,xj

11: SS ⇐ Sr

12: W SS ⇐ W Sr

13: Sort SS decreasingly according to W SS

14: WHILE V aux �= ∅
15: Cl = VSl

− V cont

16: V aux = (V aux − VSl
)

17: V cont ⇐ VSl

18: C ⇐ Cl

19: l = l + 1

Figure 1: The Star Discovery Algorithm.

The SD algorithm receives a MAST G and
the set of weights W G. At the very beginning
the algorithm initializes an auxiliary set of vari-
ables V aux and the counter l (line 1). After

2Note that X ⇐ x indicates the addition of an ele-
ment x to a given set X.



that, we build n = |V | different stars, Sr ∈ SS,
by specifying each variable xr as the center or

(line 3). For each star Sr, we include the ad-
jacent nodes Adjr to the center and leaf nodes
Leafr (Deg(·) denotes the node degree in the
tree) (lines 4 and 6). Simultaneously, the edges
are added (lines 5 and 7). Hence, the star Sr

is a tuple having two sets: a set of nodes VSr

and a set of edges ESr (line 9). In addition, we
calculate the weight W Sr in each star by adding
all the weights attached to the star edges (line
10). Following, the auxiliary star Sr is kept in
SS (line 11) as well as its corresponding weight
W Sr in W SS (line 12).

Once the set of stars, SS, have been built
from the MAST we proceed to sort them de-
creasingly in terms of the star weights (line 13).
The sorting forms a ranking of potential modes
and those ones with a higher weight W Sr will be
selected to form clusters (this way we form only
one possible arrangement of clusters). We elect
the star as the cluster Cl that has the largest
star weight among the remained stars (line 15).
We use V cont to exclude variables already con-
tained in previous clusters (line 17). This avoids
possible overlapping nodes between any pair of
clusters. A set of clusters C are completed until
no nodes are left.

Assuming that there are n variables and the
highest cardinalities of adjacent Ar and leaf Lr

nodes are t and u respectively; then, the com-
plexity in the first phase is O(ntu) (lines 2-12)
operations to search for all the adjacent nodes
and leaves. The sorting operation takes at most
O(n log n) if we use a merge-sort algorithm (line
13). The construction of clusters takes at most
O(l(t + u)) operations (lines 14-19). There-
fore the algorithm has a polynomial complexity
O((ntu)+(n log n)+(l(t+u))). This polynomial
complexity is better than the one in k-modes
since the number of variables t and u is fairly
low. Moreover, the SD algorithm is executed for
a single time and not for a number of iterations
as in the k-modes algorithm.

The SD algorithm always provides solutions
that are deterministic. On the other hand, SD
might not offer results that are better in qual-
ity than the ones given from the k-modes algo-

rithm. However, k-modes could obtain better
solutions in some cases, but it has the risk of
falling into local optima (the solution depends
of the initial modes).

4 Experimental Results
We discuss the reliability of the k-modes algo-
rithm and then compare the performance of the
SD algorithm against the aforementioned algo-
rithms. A sound estimate to evaluate the good-
ness of a set of clusters uses Eq. 1. In other
words, we are concerned to calculate the local
degree of dependency between the centers or
”modes” oi of each cluster Ci against its other
elements. Then, a global weight adds up ev-
ery local weight in the clusters to obtain a total
weight W C .

For each experiment, we artificially generated
datasets from some well known Bayesian net-
works such as: the Alarm (37 nodes), Barley
(48 nodes), HeparII (70 nodes), Hailfinder (56
nodes) and Pathfinder (109 nodes) 3 (we abbre-
viated them as Al. Bar. Hep. Hai. and Pat. re-
spectively). In this paper, we will only show the
performance of the SD algorithm against earlier
algorithms; a detailed discussion of some spe-
cific application of attribute clustering is sub-
ject to future work.

Reliability of the k-modes algorithm:

Indeed, the k-modes algorithm can detect the
optimal clustering given our objective. How-
ever, there is a drawback by using this approach.
Since the formulation of the k-modes algorithm
is greedy, there is the risk of falling into local op-
tima. In order to test the susceptibility of the
k-modes algorithm to fall into local optima, we
fed initial modes (k = 2) in each domain with
all the possible

(

n
2

)

combinations of variables,
then we ran the experiment until it converges.
For this experiment, we generated a dataset for
each domain with a sample size Ω = 10000. Ta-
ble 1 presents the results.

We found that k-modes does fall in local op-
tima. For example, in the Alarm domain, it was
interesting to see that k-modes converges into
the optimal value of 6.13 with modes VentAlv
and HR. However, it falls into 17 local optima

3http://genie.sis.pitt.edu/networks.html



Table 1: Number of local optima in which the
k-modes algorithm falls.

Domains vs Local Optima

Al. Hep. Hai Path.

17 130 91 117

having modes (VentAlv, LVEDVolume), (Ven-
tAlv, Shunt), etc. In the optimal result, the
size of the clusters is about n

2 . In many lo-
cal optima, one cluster becomes relatively small
(10 variables). Clearly, a small cluster is iso-
lated because of the sub-optimal initial mode.
Whenever LVEDVolume or Shunt are selected
as a mode, then no improvement is made. These
modes dominate their neighborhoods. The pre-
vious analysis is a straightforward example of
techniques based solely on an iterative greedy
search. As shown in Table 1, the k-modes algo-
rithm falls in more local optima values in larger
domains. These findings are a strong motiva-
tion for developing an algorithm that could de-
tect the right initial modes.

Clustering quality and sensitivity: We
ran all of the algorithms SEMST (SE.), CESMT
(CE.), ZEMST (ZE.), k-modes(k-m) and SD
(using k = 8); then, we compared the quality
of the clustering results in terms of its global
weight W C . For the effects of this experiment
and to avoid local optima we fed the k-modes
algorithm with the resulting modes of the SD al-
gorithm (notice that we also fed k-modes with
the final modes which were obtained by the
other methods, but it fell into local optima).
On the other hand, It is interesting to investi-
gate the response of the clustering algorithms
using different sample sizes (k was set to 8).
As the sample size Ω decreases, the lectures of
the R(·, ·) measure become less accurate. De-
pending on the domain (D) in study, there is
a denominated level of sufficient statistics that
determines the true nature of the MAST and re-
veals the true structure of correlated variables.
Table 2 depicts the clustering results.

The SD algorithm performs better than the
other tree-based clustering algorithms. Indeed,
sometimes the SD algorithm is as effective as the

Table 2: Performance( W c) of the algorithms
(Al.) in four domains over different sample sizes
Ω. The k-modes algorithm is optimal when fed
with the right initial modes.

Ω

D Alg. 10000 8000 6000 4000

Al.

SE. 4.13 18.41 21.61 22.99
CE. 5.4 18.78 22.07 23.52
ZE. 6.11 19.10 22.85 24.66
SD 7.85 21.30 23.95 25.38

k-m 8.35 21.30 23.95 25.38

Bar.

SE. 2.33 14.67 19.03 22.23
CE. 2.55 14.85 19.24 22.48
ZE. 3.85 14.91 20.70 24.20
SD 4.88 15.39 21.02 25.41

k-m 5.61 15.39 21.02 25.41

Hep.

SE. 50.97 50.32 51.49 52.32
CE. 51.21 50.55 51.71 52.89
ZE. 51.27 51.43 52.55 53.54
SD 55.57 56.98 58.34 59.56

k-m 55.57 56.98 58.34 59.56

Hai.

SE. 30.26 31.33 32.42 33.65
CE. 31.02 32.00 33.01 34.16
ZE. 32.41 33.28 33.81 34.97
SD 32.48 33.58 34.69 35.96

k-m 32.48 33.58 34.69 35.96

Pat.

SE. 85.98 87.53 88.75 89.82
CE. 88.63 88.22 89.40 90.19
ZE. 88.315 88.75 89.64 90.61
SD 86.61 89.31 89.71 91.03
k-m 90.33 89.41 91.32 92.72

k-modes algorithm. The later is true because
if we consider the whole MAST in the cluster
identification then we easily detect the strong
components in the space. A highly connected
variable in a MAST is very likely to be the best
center in a given region. We can also conclude
that more elaborated algorithms perform a bet-
ter clustering. Clearly, the search spaces of the
ZEMST and SD algorithms are relatively larger
than the ones in the SEMST and CEMST ap-
proaches. Nevertheless, the search space of the
SD algorithm is bigger than the one of ZEMST.

The SEMST, CEMST and ZEMST algo-
rithms perform a local search on the MAST



for clustering. For example, in the SEMST al-
gorithm we completely disregard the inner rel-
evance of an arc given the MAST topology.
Thus, in practice, SEMST normally selects arcs
connecting to leaf nodes as inconsistent (which
in turn produces unbalanced bad clusters). In
the CEMST algorithm, we take into account
both weights and (up to some extent) the struc-
ture of the MAST. In this case, the inconsis-
tent arcs have a maximal cost (which biases
the search towards those arcs that are likely
linked to highly connected nodes). The pre-
vious search technique is not enough since the
search of inconsistent arcs is limited to a path
of length 1. On the other hand, the ZEMST
extends the search space by comparing the im-
pact of removing an arc given some neighbor-
ing arcs and variables. Ultimately, the SD algo-
rithm outperforms all the other tree-based algo-
rithms because it calculates the clusters by con-
sidering both the weight and topology in the
search. From the star formulation we realize
that we could avoid local optima by discrimi-
nating those nodes that have a low connectivity
and weight.

Conclusively, we can learn that the MAST is
in fact a useful dependence graph whenever a
sound clustering method is applied to section
it. The same trend holds if we supply different
sample sizes or change the number k of clusters.

We can see that all algorithms have the same
behavior for different sample sizes. Clearly, the
SD algorithm outperforms any other MAST-
based clustering algorithms and obtains the
same results as k-modes. Thus, the extensive
search procedure of the SD algorithm secures
competitive clustering.

Elapsed times: Finally, we investigated the
running time of SD and other algorithms (Ω =
10000). We used a system Centrino Duo with
2Ghz and 2 Gigabytes of memory. From Table
3 we can confirm that the algorithms calculate
clusters obeying their complexity.

Logically, the SEMST algorithm is the fastest
approach since it discards edges with the sim-
plest rules. Ultimately, the elapsed times grow
as the search space increases. The SD algorithm
has a very competitive elapsed time (similar to

Table 3: Elapsed times (in seconds) for algo-
rithms in all domains.

D

Al. Bar. Hep. Hai. Pat.

SE 0.031 0.04 0.044 0.049 0.047

CE 0.04 0.042 0.056 0.05 0.062

ZE 0.078 0.057 0.065 0.07 0.094

SD 0.047 0.04 0.046 0.061 0.062

k-m 0.109 0.063 0.077 0.078 0.125

the SEMST algorithm). We can see that in
most cases, the SD clustering outperforms the
k-modes algorithm in terms of elapsed times by
a 50 percent ratio.

5 Discussion

In this paper, we illustrated a comprehensive
study between several clustering algorithms.
We found that the SD algorithm is able to ob-
tain clusters having a better quality than us-
ing other MAST-based clustering algorithms.
Hence, the SD algorithm can compete with the
k-modes algorithm in some cases; the advan-
tage of the SD algorithm over k-modes is that
we obtain a single good solution. The SD al-
gorithm can also be used to select the initial
modes to be fed to the k-modes algorithm for
further clustering. We aid the search of clusters
by revealing the nature of the domain through a
MAST structure. Therefore, the SD algorithm
can be either used to perform the sectioning of a
whole domain by itself, or to construct a hybrid
algorithm (merged with the k-modes algorithm)
which can find optimal clusterings. We also
showed that our approach is straightforward to
implement and fast to execute.

Attribute clustering is also relevant to the
field of Bayesian networks. A cluster of at-
tributes can be seen as a local set of vari-
ables in a large Bayesian network. Learning
a large Bayesian network from data is still a
difficult task since a large amount of computa-
tion is involved. Therefore, most learning al-
gorithms adopt the divide and conquer strat-
egy to alleviate the computational problem.
These algorithms learn a large Bayesian net-



work by recovering small clusters of variables.
For example, the Markov blanket is identified
in the sparse candidate algorithm (Friedman et
al., 1999) and the max-min hill climbing algo-
rithm (Tsamardinos et a., 2006), the module
framework in the learning module networks (Se-
gal et al., 2003), and the block in the block
learning algorithm (Zeng and Poh, 2004). The
key feature in those approaches is the identifi-
cation and union of components.

A component also represents reduced knowl-
edge in the domain. For instance, some experts
may be just interested in the specification of
the left ulnaris or right ulnaris in the MUNIN
network (Olensen et al., 1989) which consists of
thousands of nodes. Attribute clustering in this
case is a useful tool for variable selection in a
massive domain. By performing this selection
we may learn the structure of the desired vari-
ables in the domain or we could isolate only
those important variables related to a target
variable for study (this is useful because it helps
us to visualize and focus on those relevant vari-
ables even when we have a tremendous amount
of arcs in the network). Hence, the component
formulation deserves further study.

Future work is in the search for true cluster-
ing applications. We may use the SD algorithm
to discover knowledge in gene expression data.
A more interesting application is to exploit the
clustering algorithm for learning Bayesian net-
works. The key feature of such techniques will
be the learning of large domains (with thou-
sands of variables) by integrating small compo-
nents into a full network.

References

M. K. T. Asano, B. Bhattacharya and F. Yao. 1988.
Clustering algorithms based on minimum and
maximum spanning trees. In Proc. of the fourth
annual symposium on Computational Geometry,
pages 252–257.

W. H. Au, K. Chan, A. Wong and Y. Wang.
2005. Attribute clustering for grouping, selection,
and classification of gene expression data. IEEE
Trans. on Computational Biology and Bioinfor-
matics, 2(2):83–101.

C. Chow, and C. Liu. 1968. Approximating discrete

probability distributions with dependence trees.
In IEEE/ACM Trans. on Information Theory,
14(3):462–467.

D. B. Cohen and S. Havlin. 2004. Structural Proper-
ties of Scale Free Networks. Handbook of graphs
and networks, Berlin GmbH: Wiley-Vch.

M. B. Eisen, P. T. Spellman, P.O. Brown and
D. Botstein. Cluster Analysis and Display of
Genome-Wide Expression Patterns. In Proc. Na-
tional Academy of Sciences of the United States
of America, 95(25):14863–14868.

N. Friedman, I. Nachman and D. Per. 1999. Learn-
ing Bayesian networks structure from massive
dataset: The ”sparse candidate” algorithm. In
UAI, pages 206–215.

J. Gallian. 2007. Dynamic survey of graph labeling.
In Electronic Journal of Combinatorics, 14(6).

L. Kaufman and P.J. Rousseeuw. 1990. Finding
groups in data: An introduction to cluster analy-
sis. John Wiley & Son.

S.C. Madeira and A.L. Oliveira. 2004. Biclustering
Algorithms forn Biological Data Analysis: A Sur-
vey. IEEE/ACM Trans. on Computational Biol-
ogy and Bioinformatics, 1(1):24–45.

K. G. Olesen, U. Kjærulff, F. Jensen, F. V. Jensen,
B. Falck, S. Andreassen and S. Andersen. A
MUNIN network for the median nerve - A case
study in loops. Applied AI 3: 385-404, 1989.

E. Segal, D. Peer, A. Regev, D. Koller, and N. Fried-
man. 2003. Learning module networks. In Proc. of
the 19th Conference on UAI, pages 525–534.

F. De Smet, J. Mathys, K. Marchal, G. Thijs, B.
DeMoor, and Y. Moreau. 2002. Adaptive Quality-
Based Clustering of Gene Expression Profiles.
Bioinformatics, 18(5):735–746.

I. Tsamardinos, L. E. Brown and C. F. Alif-
eris. 2006. The max-min hill-climbing Bayesian
network structure learning algorithm. Machine
Learning, 65(1):31–78.

B. Ye and K. M. Chao. 2004. Spanning Trees and
Optimization Problems. Chapman and Hall.

C. Zahn. 1971. Graph theoretical methods for de-
tecting and describing gestalt clusters. IEEE
Trans. in Computers, 20:68–86.

Y. F. Zeng and K.L. Poh. 2004. Block learning
Bayesian network structures from data. In Proc.
of the Fourth International Conference on Hybrid
Intelligent Systems, pages 14–19.



A novel scalable and correct Markov boundary
learning algorithm under faithfulness condition

Sergio Rodrigues de Morais
INSA-Lyon, LIESP, F-69622 Villeurbanne, France

Alex Aussem
University of Lyon 1, LIESP, F-69622 Villeurbanne, France

Abstract

In this paper, we propose a novel constraint-based Markov boundary discovery algorithm,
called MBOR, that scales up to hundreds of thousands of variables. Its correctness under
faithfulness condition is guaranteed. A thorough empiric evaluation of MBOR’s robust-
ness, efficiency and scalability is provided on synthetic databases involving thousands
of variables. Our experimental results show a clear benefit in several situations: large
Markov boundaries, weak associations and approximate functional dependencies among
the variables.

1 Introduction

In this paper, we aim to identify the minimal
subset of discrete random variables that is rele-
vant for probabilistic classification in data sets
with many variables but few instances (Guyon
and Elisseeff, 2003). A principled solution to
this problem is to determine the Markov bound-
ary of the class variable T , i.e., the minimal
subset of U (the full set), denoted by MBT in
the sequel, that renders the rest of U indepen-
dent of T (Nilsson et al., 2007).

Following (Peña et al., 2007), we present
a novel divide-and-conquer method, called
MBOR, in order to increase the efficiency of
the Markov boundary (MB for short) discov-
ery while still being scalable and correct under
the faithfulness condition. The problem with
constraint-based algorithms is that the condi-
tional independence tests become unreliable as
the size of the conditional set increases. Such er-
rors have usually a cascading effect that causes
many errors in the final graph.

To get around this problem, MBOR com-
bines rough and moderately accurate MB learn-
ers based on IAMB (Tsamardinos et al., 2003)
and keeps the conditional test sizes of the tests
as small as possible. A key difference between

MBOR and all correct divide-and-conquer al-
gorithms is the OR condition: two variables X
and Y are considered as neighbors by MBOR if
Y ∈ PCX OR X ∈ PCY , instead of the more
stringent AND condition. Clearly, the OR con-
dition makes it easier for true positive nodes
to enter the Markov boundary, hence the name
and the practical efficiency of our algorithm. In-
terestingly, some almost-deterministic relation-
ships are also handled by the OR condition. The
only difficulty was to maintain the correctness of
the algorithm under the faithfulness condition.

In (Rodrigues de Morais and Aussem, 2008),
we compared the ability of MBOR to solve real
FSS problems using real data bases from the
UCI Machine Learning Repository (e.g., Car
Evaluation, Chess, Molecular Biology, SPECT
heart, Tic-Tac-Toe, Wine and Waveform). In
this study, we assess the scalability and the
performance of MBOR through several exper-
iments on synthetic databases with very few in-
stances compared to the number of variables.
MBOR is proved by extensive empirical simula-
tions to be an excellent trade-off between run-
ning time and quality of reconstruction.



2 Notations and preliminaries

We denote a variable with an upper-case, X,
and value of that variable by the same lower-
case, x. We denote a set of variables by upper-
case bold-face, Z, and we use the correspond-
ing lower-case bold-face, z, to denote an assign-
ment of value to each variable in the set. In this
paper, we only deal with discrete random vari-
ables. We denote the conditional independence
of the variable X and Y given Z, in some dis-
tribution P by X ⊥P Y |Z. Similarly, we write
X ⊥G Y |Z if X and Y are d-separated by Z in
the DAG G.

A Markov blanket MT of the T is is any set of
variables such that T is conditionally indepen-
dent of all the remaining variables given MT .
A Markov boundary, MBT , of T is any Markov
blanket such that none of its proper subsets is a
Markov blanket of T . In general, in a Baysesian
network < G, P >, we would want an edge to
mean a direct dependency. As we know, the
faithfulness entails this:

Definition 1. Suppose we have a joint proba-
bility distribution P of the random variables in
some set U and a DAG G =< U,E >. We say
that < G, P > satisfies the faithfulness condi-
tion if, based on the Markov condition, G en-
tails all and only conditional independencies in
P .

Theorem 1. Suppose < G, P > satisfies the
faithfulness condition. Then for each variable
X, the set of parents, children of X, and parents
of children of X is the unique Markov boundary.

A proof can be found for instance in (Neapoli-
tan, 2004). A spouse of T is a another parent
of a T ’s child node. We denote by PCT , the
unique set of parents and children of T in G
when < G, P >, satisfies the faithfulness condi-
tion. Otherwise, PCU

X
will denote the unique

set of the variables that remains dependent on
X conditioned on any set Z ∈ U \ {X, Y }.

3 Some problems with

constraint-based methods

Constraint-based (CB for short) procedures sys-
tematically check the data for independence re-

lationships to infer the structure. The associ-
ation between two variables X and Y given a
conditioning set Z is a measure of the strength
of the dependence with respect to the data base
D. It is usually implemented with a statisti-
cal measure of association (e.g. χ2, G2). CB
methods have the advantage of possessing clear
stopping criteria and deterministic search pro-
cedures. On the other hand, they are prone to
several instabilities: namely if a mistake is made
early on in the search, it can lead to incorrect
edges which may in turn lead to bad decisions in
the future, which can lead to even more incor-
rect edges. This instability has the potential to
cascade, creating many errors in the final graph
(Dash and Druzdzel, 2003).

Insufficient data presents a lot of problems
when working with statistical inference tech-
niques like the independence test mentioned
earlier. This occurs typically when the expected
counts in the contingency table are small. The
decision of accepting or rejecting the null hy-
pothesis depends implicitly upon the degree
of freedom which increases exponentially with
the number of variables in the conditional set.
So the larger the size of the conditioning test,
the less accurate are the estimates of condi-
tional probabilities and hence the less reliable
are the independence tests. Another difficulty
arises when true- or almost-deterministic rela-
tionships (ADR) are observed among the vari-
ables. Loosely speaking, a relationship is said to
be almost deterministic when the fraction of tu-
ples that violate the deterministic dependency
is at most equal to some threshold. True DR
are source of unfaithfulness but the existence
of ADR among variables doesn’t invalidate the
faithfulness assumption. Several proposals have
been discussed in the literature in order to re-
duce the cascading effect of early errors that
causes many errors to be present in the final
graph. The general idea is to keep the size of the
conditional sets as small as possible in the curse
of the learning process. Another idea is to re-
duce the degree of freedom of the statistical con-
ditional independence test by some ways. The
aim is twofold: to improve the data efficiency
and to allow an early detection of ADR. Theses



strategies are not discussed here for conciseness,
see (Yilmaz et al., 2002; Luo, 2006; Aussem et
al., 2007; Rodrigues de Morais et al., 2008) for
instance.

4 New method

In this section, we present in detail our learning
algorithm called MBOR. We recall that MBOR
was designed in order to endow the search pro-
cedure with the ability to: 1) handle efficiently
data sets with thousands of variables but very
few instances, 2) be correct under faithfulness
condition, 3) handle implicitly some approxi-
mate deterministic relationships (ADR) with-
out detecting them. We discuss next how we
tackle each problem.

First of all, MBOR scales up to hundreds of
thousands of variables in reasonable time be-
cause it searches the Markov boundary of the
target without having to construct the whole
Bayesian network first. Like PCMB (Peña et
al., 2007) and MMMB (Tsamardinos et al.,
2006), MBOR takes a divide-and-conquer ap-
proach that breaks the problem of identifying
MBT into two subproblems : first, identify-
ing PCT and, second, identifying the parents
of the children (the spouses SPT ) of T . Ac-
cording to Peña et al., this divide-and-conquer
approach is supposed to be more data efficient
than IAMB (Tsamardinos et al., 2003) and its
variants, e.g., Fast-IAMB (Yaramakala, 2004)
and Interleaved-IAMB (Yaramakala and Mar-
garitis, 2005), because MBT can be identified
by conditioning on sets much smaller than those
used by IAMB. Indeed, IAMB and its variants
seek directly the minimal subset of U (the full
set) that renders the rest of U independent of T ,
given MBT . Moreover, MBOR keeps the size
of the conditional sets to the minimum possible
without sacrificing the performance as discussed
next.

The advantage of the divide-and-conquer
strategy in terms of data efficiency does not
come without some cost. MMMB (Tsamardi-
nos et al., 2006) and PCMB (Peña et al., 2007)
apply the ”AND condition” to prove correctness
under faithfulness condition. In other words,

two variables X and Y are considered as neigh-
bors if Y ∈ PCX AND X ∈ PCY . We be-
lieve this condition is far too severe and yields
too many false negatives in the output. In-
stead, MBOR stands for ”Markov Boundary
search using the OR condition”. This ”OR con-
dition” is a major difference between MBOR
and all the above mentioned correct divide-
and-conquer algorithms: two variables X and
Y are considered as neighbors with MBOR if
Y ∈ PCX OR X ∈ PCY . Clearly, the OR
condition makes it easier for true positive nodes
to enter the Markov boundary, hence the name
and the practical efficiency of our algorithm.
Moreover, the OR condition is a simple way to
handle some ADR. For illustration, consider the
sub-graph X ⇒ T → Y , since X ⇒ T is an
ADR, T ⊥ Y |X so Y will not be considered as
a neighbor of T . As Y still sees T in its neigh-
borhood, Y and T will be considered as adja-
cent by application of the OR condition. The
main difficulty was to demonstrate the correct-
ness under the faithfulness condition despite the
OR condition.

MBOR (Algorithm 1) works in three steps
and it is based on four subroutines called PCSu-
perset, SPSuperset and MBtoPC (Algorithms
2-4). Before we describe the algorithm step by
step, we recall that the general idea underly-
ing MBOR is to use a weak MB learner to cre-
ate a stronger MB learner. By weak learner,
we mean a simple and fast method that may
produce many mistakes due to its data ineffi-
ciency. In other words, the proposed method
aims at producing an accurate MB discovery
algorithm by combining fast and moderately in-
accurate (but correct) MB learners. The weak
MB learner is used in MBtoPC (Algorithm 4) to
implement a correct Parents and Children learn-
ing procedure. It works in two steps. First, the
weak MB learner called CorrectMB is used at
line 1 to output a candidate MB. CorrectMB
may be implemented by any algorithm of the
IAMB family because they don’t implement the
AND condition. In our implementation, we use
Inter-IAMB for its simplicity and performance
(Tsamardinos et al., 2003). The key differ-
ence between IAMB and Inter-IAMB is that the



shrinking phase is interleaved into the growing
phase in Inter-IAMB. The second step (lines 3-
6) of MBtoPC removes the spouses of the tar-
get.

In phase I, MBOR calls PCSuperset to ex-
tract PCS, a superset for the parents and chil-
dren, and then calls SPSuperset to extract SPS,
a superset for the target spouses (parents of chil-
dren). Filtering reduces as much as possible the
number of variables before proceeding to the
MB discovery. In PCSuperset and SPSuperset,
the size of the conditioning set Z in the tests is
severely restricted: card(Z) ≤ 1 in PCSuperset
(lines 3 and 10) and card(Z) ≤ 2 in SPSuperset
(lines 5 and 11). As discussed before, condition-
ing on larger sets of variables would increase the
risk of missing variables that are weakly associ-
ated to the target. It would also lessen the re-
liability of the independence tests. So the MB
superset, MBS (line 3), is computed based on
a scalable and highly data-efficient procedure.
Moreover, the filtering phase is also a way to
handle some ADR. For illustration, consider the
sub-graph Z ⇒ Y → T ⇐ X, since X ⇒ T and
Z ⇒ Y are ADRs, T ⊥ Y |X and Y ⊥ T |Z, Y
would not be considered as a neighbor of T and
vice-versa. The OR-condition in Phase II would
not help in this particular case. Fortunately, as
Phase I filters out variable Z, Y and T will be
considered as adjacent

Phase II finds the parents and children in the
restricted set of variables using the OR condi-
tion. Therefore, all variables that have T in
their vicinity are included in PCT (lines 7-8).

Phase III identifies the target’s spouses in
MBS in exactly the same way PCMB does
(Peña et al., 2007). Note however that the OR
condition is not applied in this last phase be-
cause it would not be possible to prove its cor-
rectness anymore.

The theorem below establishes MBOR’s cor-
rectness under faithfulness condition:

Theorem 1. Under the assumptions that the
independence tests are reliable and that the
database is an independent and identically dis-
tributed sample from a probability distribu-
tion P faithful to a DAG G, MBOR(T ) returns

MBU

T
.

The proof may be found in (Rodrigues de
Morais and Aussem, 2008). It is omitted here
for conciseness. Note that the demonstration is
not completely straightforward because a dif-
ficulty arises: as MBS is a subset of U, a
marginal distribution PV of V ⊂ U may not
satisfy the faithfulness condition with any DAG
even if PU does. This is an example of embed-
ded faithfulness (Neapolitan, 2004) and every
distribution doesn’t admit an embedded faith-
ful representation.

Algorithm 1 MBOR
Require: T : target; D : data set (U is the set of vari-

ables)
Ensure: [PC,SP]: Markov boundary of T

Phase I: Find MB superset (MBS)
1: [PCS,dSep] = PCSuperSet(T, D)
2: SPS = SPSuperSet(T, D,PCS,dSep)
3: MBS = PCS ∪ SPS
4: D = D(MBS ∪ T ) i.e., remove from data set all

variables in U/{MBS ∪ T}

Phase II: Find parents and children of the target
5: PC = MBtoPC(T,D)
6: for all X ∈ PCS \ PC do
7: if T ∈ MBtoPC(X,D) then
8: PC = PC ∪ X
9: end if

10: end for

Phase III: Find spouses of the target
11: SP = ∅
12: for all X ∈ PC do
13: for all Y ∈ MBtoPC(X, D) \ {PC ∪ T} do
14: Find minimal Z ⊂ MBS\{T ∪ Y } such that

T ⊥ Y |Z
15: if (T 6⊥ Y |Z ∪ X) then
16: SP = SP ∪ Y
17: end if
18: end for
19: end for

5 Experimental validation

In this section, we assess the scalability and the
accuracy of MBOR through several experiments
on synthetic databases with very few instances
compared to the number of variables. We eval-
uate first the accuracy, the data-efficiency and
running time of MBOR as the number of vari-
ables increases. Then, we compare the accu-
racy of MBOR against InterIAMB and PCMB



Algorithm 2 PCSuperSet
Require: T : target; D : data set (U is the set of vari-

ables)
Ensure: PCS: PC superset of T ; dSep: d-separation

set;

Phase I: Remove X if T ⊥ X
1: PCS = U \ T
2: for all X ∈ PCS do
3: if (T ⊥ X) then
4: PCS = PCS \ X
5: dSep(X) = ∅
6: end if
7: end for

Phase II:Remove X if T ⊥ X|Y
8: for all X ∈ PCS do
9: for all Y ∈ PCS \ X do

10: if (T ⊥ X | Y ) then
11: PCS = PCS \ X
12: dSep(X) = Y ; go to 15
13: end if
14: end for
15: end for

Algorithm 3 SPSuperSet
Require: T : target; D : data set (U is the set of vari-

ables); PCS: PC superset of T ; dSep: d-separation
set;

Ensure: SPS: SP superset of T ;

1: SPS = ∅
2: for all X ∈ PCS do
3: SPSX = ∅
4: for all Y ∈ U \ {T ∪ PCS} do
5: if (T 6⊥ Y |dSep(Y ) ∪ X) then
6: SPSX = SPSX ∪ Y
7: end if
8: end for
9: for all Y ∈ SPSX do

10: for all Z ∈ SPSX \ Y do
11: if (T ⊥ Y |X ∪ Z) then
12: SPSX = SPSX \ Y ; go to 15
13: end if
14: end for
15: end for
16: SPS = SPS ∪ SPSX

17: end for

Algorithm 4 MBtoPC
Require: T : target; D : data set
Ensure: PC: Parents and children of T ;

1: MB = CorrectMB(T, D)
2: PC = MB
3: for all X ∈ MB do
4: if ∃Z ⊂ (MB \ X) such that T ⊥ X | Z then
5: PC = PC \ X
6: end if
7: end for

on six well-know BN benchmarks. To evalu-
ate the accuracy, we combine precision (i.e., the
number of true positives divided in the out-
put by the number of nodes in the output)
and recall (i.e., the number of true positives di-
vided by the true size of the Markov Boundary)
as

√

(1 − precision)2 + (1 − recall)2, to mea-
sure the Euclidean distance from perfect pre-
cision and recall, as proposed in (Peña et al.,
2005). To implement the conditional indepen-
dence test, we calculate the G2 statistic as in
(Spirtes et al., 2000), under the null hypothesis
of the conditional independence. The signifi-
cance level of the test is fixed to 0.05 for all
algorithms. It might very well happen that sev-
eral variables have the same association value
with the target in data sets with very few in-
stances. In this particular case, somewhat arbi-
trary (in)dependence decisions are taken. This
can be seen as a source of randomness inherent
to all CB procedures. To handle this problem,
our implementation breaks ties at random: a
random permutation of the variables is carried
out before each algorithm is run.

5.1 Scalability

We compare first the accuracy of PCMB and
MBOR through experiments on the INSUR-
ANCE (27 nodes/52 arcs) benchmark replicated
several times (up to 1000 times) to increase the
number of variables. We run MBOR and PCMB
with the variable ’RiskAversion’ as the target.
The latter has 10 variables in its MB. Each net-
work is obtained by tiling several copies of the
initial INSURANCE network. The tiling is per-
formed in a way that maintains the structural
and probabilistic properties of the original net-
work in the tiled network. We focus here on the
accuracy and efficiency of the algorithms as a
function of the number of variable in the tiled
network (up to 27,000 variables). Clearly, the
additional variables are all independent on the
target. We report the number of conditional
independence tests that were conducted (in log-
log scale), the distribution of the conditioning
test sizes and the Euclidean distance from per-
fect precision and recall, as a function of the
number of variables in the tiled network. The



average and standard deviation values are es-
timated over 50 databases. As may be seen,
MBOR requires fewer independence conditional
tests than PCMB. The number of tests directly
influences the execution time. It grows linearly
with the number of nodes for both algorithms.
The number of conditional tests of MBOR is
48% that of PCMB. As can be seen from Fig.1
(middle), while PCMB conducts (proportion-
ally) fewer conditional tests which indicates im-
proved test reliability, MBOR yields a signifi-
cantly shorter distance in all cases Fig.1 (bot-
tom).

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

Number of Variables

Ca
lls

 to
 th

e I
nd

. T
es

t

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Conditional Set Size

Pr
op

ort
ion

 of
 C

all
s

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Variables

Eu
cli

de
an

 D
ist

an
ce

Figure 1: Insurance BN tiled several times. From top
to bottom: number of conditional independence tests,
distribution of the conditioning test sizes, Euclidean dis-
tance, as a function of the number of variables in the
tiled BN. MBOR in plain line, PCMB in dotted line.

5.2 Accuracy

We report now the results of our experi-
ments on six common benchmarks : BREAST-
CANCER or ASIA (8 nodes/8 arcs), INSUR-
ANCE (27/52), INSULINE (35/52), ALARM
(37/46), HAILFINDER (56/66) and CARPO
(61/74). For each benchmark, we sampled 100
databases containing 100, 500 and 1000 in-
stances respectively. The three algorithms were
run, first, with each node in the BN as the tar-
get, and second, with the node with the largest
MB in the BN as target. Figure 2 summarizes
the empirical distribution of the Euclidean dis-
tance over 100 databases in the form of triplets
of boxplots, one for each algorithm (PCMB,
Inter-IAMB and MBOR respectively). Boxplots
are convenient ways of graphically depicting the
distributions of the Euclidean distances through
their five-number summaries (the smallest ob-
servation, lower quartile, median, upper quar-
tile, and largest observation). The boxplots also
indicate (by the symbol ’+’) which observations,
if any, might be considered outliers. In the left
column of Fig.2, the distance is averaged over
all nodes in the BN. In the right column, the
distance for the node with the largest MB in
the BN (i.e., ASIA : ’OR’ (MB = 5 variables)
ALARM : ’Intubation’ & ’HR’ (8 variables) IN-
SULINE : ’IPA’ & ’GPA’ (18 variables) INSUR-
ANCE : ’RiskAversion’ & ’Accident’ (10 vari-
ables) HAILFINDER : ’CldShadeOth’ (8 vari-
ables), CARPO : ’N69’ (18 variables).

Several observations can be made from the
results in Fig.2. First, it is rather surprising to
observe that PCMB performs often worse than
interIAMB even if PCMB is meant to conduct
more reliable tests by conditioning on fewer
variables. Despite the more reliable tests, the
AND condition used in PCMB makes it hard
for true positives to enter candidate MB. Sec-
ond, the overall performance of MBOR and In-
terIAMB, when averaged over all nodes, is very
similar (left column). For larger MBs, however,
the advantages of MBOR against the other two
algorithms are far more noticeable (right col-
umn). For instance, MBOR consistently out-
performs the other algorithms, especially for



databases with 500 and 1000 instances. The
larger the MB size, and the greater the gain in
performance. As expected, the gain in accu-
racy is very significant on target variables ’IPA’
& ’GPA’ in INSULINE and on variable ’N69’
in CARPO which contain 18 variables in their
MB. The reason is that MBOR reduces drasti-
cally the average number of false negatives com-
pared to PCMB and InterIAMB and this bene-
fit comes at very little expense in terms of false
positives. Moreover, the gain in accuracy seems
to increase with the size of the database.

6 Conclusion

We discussed simple solutions to improve the
efficiency of current constraint-based Markov
boundary discovery algorithms. We proposed a
novel approach called MBOR. Our experimen-
tal results on well-known benchmarks show a
clear benefit in several situations: densely con-
nected DAGs, weak associations or approximate
functional dependencies among the variables.

References

A. Aussem, S. Rodrigues de Morais, and M. Cor-
bex. 2007. Nasopharyngeal carcinoma data anal-
ysis with a novel bayesian network skeleton learn-
ing. In 11th Conference on Artificial Intelligence
in Medicine AIME 07, pages 326–330.

Denver Dash and Marek J. Druzdzel. 2003. Robust
independence testing for constraint-based learn-
ing of causal structure. In UAI, pages 167–174.

Isabelle Guyon and André Elisseeff. 2003. An intro-
duction to variable and feature selection. Journal
of Machine Learning Research, 3:1157–1182.

Wei Luo. 2006. Learning bayesian networks in semi-
deterministic systems. In Canadian Conference
on AI, pages 230–241.

R. E. Neapolitan. 2004. Learning Bayesian Net-
works. Prentice Hall.

R. Nilsson, J.M. Peña, J. Bjrkegren, and J. Tegnr.
2007. Consistent feature selection for pattern
recognition in polynomial time. Journal of Ma-
chine Learning Research, 8:589–612.

J.M. Peña, J. Bjrkegren, and J. Tegnér. 2005.
Scalable, efficient and correct learning of markov
boundaries under the faithfulness assumption. In

8th European Conference on Symbolic and Quan-
titative Approaches to Reasoning under Uncer-
tainty (ECSQARU 2005), volume 21, pages 136–
147. Lecture Notes in Artificial Intelligence 3571.

J.M. Peña, R. Nilsson, J. Bjrkegren, and J. Tegnr.
2007. Towards scalable and data efficient learning
of markov boundaries. International Journal of
Approximate Reasoning, 45(2):211–232.

S. Rodrigues de Morais and A. Aussem. 2008.
A novel scalable and data efficient feature sub-
set selection algorithm. In European Conference
on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases, ECML
PKDD, Antwerp, Belgium.

S. Rodrigues de Morais, A. Aussem, and M. Cor-
bex. 2008. Handling almost-deterministic re-
lationships in constraint-based bayesian network
discovery : Application to cancer risk factor iden-
tification. In 16th European Symposium on Artifi-
cial Neural Networks ESANN’08, pages 101–106.

Peter Spirtes, Clark Glymour, and Richard Scheines.
2000. Causation, Prediction, and Search. The
MIT Press, 2 edition.

Ioannis Tsamardinos, Constantin F. Aliferis, and
Alexander R. Statnikov. 2003. Algorithms for
large scale markov blanket discovery. In FLAIRS
Conference, pages 376–381.

Ioannis Tsamardinos, Laura E. Brown, and Con-
stantin F. Aliferis. 2006. The max-min hill-
climbing bayesian network structure learning al-
gorithm. Machine Learning, 65(1):31–78.

Sandeep Yaramakala and Dimitris Margaritis. 2005.
Speculative markov blanket discovery for optimal
feature selection. In ICDM, pages 809–812.

Sandeep Yaramakala. 2004. Fast markov blanket
discovery. In MS-Thesis, Iowa State University.

Yusuf Kenan Yilmaz, Ethem Alpaydin, H. Levent
Akin, and Taner Bilgiç. 2002. Handling of deter-
ministic relationships in constraint-based causal
discovery. In Probabilistic Graphical Models.



100 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances
100 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances

100 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances
100 500 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances

100 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances
100 500 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Instances

Eu
clid

ean
 Di

sta
nce

100 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances
100 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances

100 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances
100 500 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances

100 500 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances
100 500 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu
clid

ean
 Di

sta
nce

Number of Instances

Figure 2: Empirical distribution of the Euclidean distance from perfect precision and recall over 100 databases.
Results are shown for 100, 500 and 1000 instances in the form of triplets of boxplots for PCMB (left), InterIAMB
(middle) and PCMB (right). From top to bottom: BREAST-CANCER, INSURANCE,, INSULINE, ALARM, HAIL-
FINDER and CARPO. Left column: distance is averaged over all nodes in the BN. Right plot: distance for the node
with the largest MB in the BN.



Marginals of DAG-Isomorphic Independence Models

Peter R. de Waal
Department of Information and Computing Sciences

Faculty of Sciences, Universiteit Utrecht

Abstract

Probabilistic and graphical independence models both satisfy the semi-graphoid axioms,
but their respective modelling powers are not equal. For every graphical independence
model that is represented by d-separation in a directed acyclic graph, there exists an
isomorphic probabilistic independence model, i.e. it has exactly the same independence
statements. The reverse does not hold, as there exists probability distributions for which
there is no perfect map. We investigate if a given probabilistic independence model can
be augmented with latent variables to a new independence model that is isomorphic with
a graphical independence model of a directed acyclic graph. The original independence
model can then be viewed as the marginal of the model with latent variables. We show
that for some independence models we need infinitely many latent variables to accomplish
this.

1 Introduction

Probabilistic models in artificial intelligence are
typically built on the semi-graphoids axioms of
independence. These axioms in fact are ex-
ploited explicitly in probabilistic graphical mod-
els, where independence is captured by topo-
logical properties, such as separation of vertices
in an undirected graph or d-separation in a di-
rected graph. A graphical representation with
directed graphs for use in a decision support
system has the advantage that it allows an intu-
itive interpretation by domain experts in terms
of influences between the variables.

Ideally a probabilistic model is represented as
a graphical model in a one-to-one way, that is,
independence in the one representation implies
independence in the other representation. The
probabilistic model then is said to be isomorphic
with the graphical model, and vice versa. Pearl
and Paz (1987) established a set of sufficient
and necessary conditions under which a proba-
bilistic model is isomorphic with an undirected
graph. In this paper we shall not consider rep-
resentations of independence with undirected
graphs, but focus on directed representations.
Contrary to undirected graphs directed graphs

allow the representation of induced dependen-
cies: if a specific independence has been estab-
lished given some evidence, it is possible that
this independence becomes invalid if more ev-
idence is obtained. Pearl (1988) gave a set of
necessary conditions for directed graph isomor-
phism. To the best of our knowledge there is no
known set of sufficient conditions.

Pearl (1988) also shows how a particular in-
dependence model that is not isomorphic with a
directed graphical model, can be made isomor-
phic by the introduction of an auxiliary vari-
able. In Pearl the isomorphism is then estab-
lished by conditioning on the auxiliary variable.
In this paper we choose a different approach.
We extend the model with auxiliary variables
to a directed graph isomorph and we then take
the marginal over the original variables of this
extended model. For this we introduce the con-
cept of the marginal of a formal independence
model. The model with auxiliary variables can
then be considered as a latent perfect map. We
show that it is possible to establish isomorphism
in this manner, but that we may need an infi-
nite number of auxiliary variables to accomplish
this. We also show that there exists a proba-
bilistic independence model that needs infinitely



many latent variables.

This paper is organised as follows. In
Section 2 we briefly review probabilistic and
graphical independence models, and the semi-
graphoid properties of these models. In Sec-
tion 3 we introduce the concept of marginals of
an independence model and latent perfect maps.
In Section 4 we discuss the existence of latent
perfect maps, and in Section 5 we wrap up with
conclusions and recommendations.

2 Preliminaries

In this section, we provide some preliminaries on
probabilistic independence models as defined by
conditional independence for probability distri-
butions, graphical independence models as de-
fined by d-separation in directed acyclic graphs,
and formal independence models that capture
the properties that probabilistic and graphical
model have in common.

2.1 Conditional independence models

We consider a finite set of distinct symbols
V = {V1, . . . , VN}, called the attributes or vari-

able names. With each variable Vi we associate
a finite domain set Vi, which is the set of possi-
ble values the variable can take. We define the
domain of V as V = V1 × · · · × VN , the Carte-
sian product of the domains of the individual
variables.

A probability measure over V is defined by
the domains Vi, i = 1, . . . , N , and a probabil-
ity mapping P : V → [0, 1] that satisfies the
three basic axioms of probability theory (Kol-
mogorov, 1950).

For any subset X = {Vi1 , . . . , Vik
} ⊂ V , for

some k ≥ 1, we define the domain X of X as
X = Vi1 × · · · Vik

. For a probability mapping P

on V we define its marginal mapping over X,
denoted by PX , as

PX(x) =
∑

{

P (x, y)
∣

∣

∣
y ∈ ×

{i |Vi 6∈X}
Vi

}

for x ∈ X . By definition P V ≡ P and P ∅ ≡ 1.

We denote the set of ordered triplets (X, Y |Z)
for disjoint subsets X, Y and Z of V as T (V ).
We shall use the notation I(X, Y |Z) to indicate

(X, Y |Z) ∈ I, for any ternary relation I on V .
For simplicity of notation we will often write
XY to denote the union X ∪ Y , for X, Y ⊂ V .
To avoid complicated notation we also allow Xy

to denote X ∪ {y}, for X ⊂ V and y ∈ V .

Definition 1 (Conditional independence). Let
X, Y and Z be disjoint subsets of V , with do-
mains X , Y, and Z, respectively. The sets X

and Y are defined to be conditionally indepen-

dent under P given Z, if for every x ∈ X , y ∈ Y
and z ∈ Z, we have

PXY Z(x, y, z) · PZ(z) = PXZ(x, z) · P Y Z(y, z)

Definition 2. Let V be a set of variables and P

a distribution on V . The probabilistic indepen-

dence model IP of P is defined as the ternary
relation IP on V for which IP (X, Y |Z) if and
only if X and Y are conditionally independent
under P given Z.

If no ambiguity can arise we may omit the
reference to the probability measure and just
refer to the probabilistic independence model.

2.2 Graphical independence models in

directed acyclic graphs

We first introduce the standard concepts of
blocking and d-separation in directed graphs.

We consider a directed acyclic graph (DAG)
G = (V, A), with V the set of vertices and
A the set of arcs. A path s in G of length
k − 1 from a vertex Vi1 to Vi2 is a k-tuple
s = (W1, W2, . . . , Wk) with Wi ∈ V for i =
1, . . . , k, W1 = Vi1 , Wk = Vi2 and for each
i = 1, . . . , k − 1 either (Wi, Wi+1) ∈ A or
(Wi+1, Wi) ∈ A. Without loss of generality we
assume that a path has no loops, so there are no
duplicates in {W1, . . . , Wk}. We define a path s

to be unidirectional if all the arcs in s point in
the same direction. More specifically, we define
s = (W1, W2, . . . , Wk) to be a descending path
if (Wi, Wi+1) ∈ A, for all i = 1, . . . , k − 1. A
descending path is unidirectional.

Definition 3. Let Z be a subset of V . We say
that a path s is blocked in G by Z, if s contains
three consecutive vertices Wi−1, Wi, and Wi+1

for which one of the following conditions hold:



• Wi−1 ←Wi →Wi+1, and Wi∈Z,

• Wi−1 →Wi →Wi+1, and Wi∈Z,

• Wi−1 ←Wi ←Wi+1, and Wi∈Z,

• Wi−1 → Wi ← Wi+1, and σ(Wi) ∩ Z =
∅, where σ(Wi) consists of Wi and all its
descendants.

We refer to the first three conditions as blocking

by presence, and the last condition as blocking

by absence. We refer to node Wi in the last
condition as a converging or colliding node on
the path.

While the concept of blocking is defined for
a single path, the d-separation criterion applies
to the set of all paths in G.

Definition 4. Let G = (V, A) be a DAG, and
let X, Y and Z be disjoint subsets of V . The
set Z is said to d-separate X and Y in G, if
every path s between any variable x ∈ X to
any variable y ∈ Y is blocked in G by Z.

Based on the d-separation criterion we can
define the notion of a graphical independence
model.

Definition 5. Let G = (V, A) be a DAG. The
graphical independence model IG defined by G

is a ternary relation on V such that IG(X, Y |Z)
if and only if Z d-separates X and Y in G.

2.3 Formal independence models

Both a probabilistic independence model on a
set of variables V and a graphical independence
model on a DAG G = (V, A) define a ternary
relation on V . In fact we can capture this in a
formal construct of an independence model.

Definition 6. A formal independence model on
a set V is a ternary relation on V .

Both probabilistic and graphical indepen-
dence models satisfy a set of axioms of indepen-
dence. A special class within the set of formal
independence models is defined based on these
axioms.

Definition 7. A ternary relation I on V is
a semi-graphoid independence model, or semi-
graphoid for short, if it satisfies the following
four axioms:

A1: I(X, Y |Z)⇒ I(Y, X|Z),

A2: I(X, Y W |Z)⇒ I(X, Y |Z) ∧ I(X, W |Z),

A3: I(X, Y W |Z)⇒ I(X, Y |ZW ),

A4: I(X, Y |Z)∧I(X, W |ZY )⇒ I(X, Y W |Z).

for all disjoint sets of variables W, X, Y, Z ⊂ V .

The axioms convey the idea that learning
irrelevant information does not alter the rele-
vance relationships among the other variables
discerned. The four axioms are termed the sym-

metry (A1), decomposition (A2), weak union

(A3) and the contraction axiom (A4), respec-
tively.

The axioms were first introduced by
Dawid (1979) for probabilistic conditional
independence. These properties were later in-
troduced in artificial intelligence as properties
of separation in graphs by Pearl and Paz (1987)
and Pearl (1988), and are since known as the
semi-graphoid properties.

In the formulation that we have used so far
we can allow X and Y to be empty, which leads
to the so-called trivial independence axiom:

A0: IP (X, ∅|Z),

This axiom trivially holds for both probabilistic
independence and graphical independence.

An axiomatic representation allows us to de-
rive qualitative statements about conditional in-
dependence, which may not be immediate from
a numerical representation of probabilities. It
also enables a parsimonious specification of an
independence model, since it is sufficient to enu-
merate the so-called dominating independence
statements, from which all other statements can
be derived by application of the axioms (Stu-
dený, 1998).

2.4 Graph-isomorph

Since both probabilistic independence models
and graphical independence models satisfy the
semi-graphoid axioms, it is interesting to in-
vestigate whether they have equal modelling
power. Can any probabilistic independence
model also be represented by a graphical model,
and vice versa? For this we introduce the no-
tions of I-maps and P-maps.



Definition 8. Let I be an formal independence
model on V, and G = (V, A) a DAG that defines
through d-separation a graphical independence
model IG on V .

1. The graph G is called an independence

map, or I-map for short, for I, if for all dis-
joint X, Y , Z ⊂ V we have: IG(X, Y |Z)⇒
I(X, Y |Z). If G is an I-map for I, and
deleting any arc makes G cease to be an
I-map for I, then G is called a minimal I-

map for I.

2. The graph G is called a perfect map, or P-

map for short, for I, if for all disjoint X, Y ,
Z ⊂ V we have: I(X, Y |Z)⇔ IG(X, Y |Z),

Definition 9 (DAG-isomorph). An indepen-
dence model I on V is said to be a DAG-

isomorph, if there exists a graph G = (V, A)
that is a perfect map for I.

Since a graphical independence model satis-
fies the semi-graphoid axioms, a DAG-isomorph
has to be a semi-graphoid itself. Being a semi-
graphoid is not a sufficient condition for DAG-
isomorphism, however. To the best of our
knowledge there does not exists a sufficient set
of conditions, although Pearl (1988) presents a
set of necessary conditions.

Some results from literature describe the
modelling power of the independence models of
the previous sections. Concerning the relation-
ship between probabilistic and graphical mod-
els Geiger and Pearl (1990) show that for every
DAG graphical model there exists a probabil-
ity model for which that particular DAG is a
perfect map. The reverse does not hold, there
exists probability models for which there is no
DAG perfect map (Pearl, 1988).

In (Studený, 1989) it is shown that the semi-
graphoid axioms are not complete for proba-
bilistic independence models. Studený derives a
new axiom for probabilistic independence mod-
els that is not implied by the semi-graphoid ax-
ioms. He also shows in (Studený, 1992) that
probabilistic independence models cannot be
characterized by a finite set of inference rules.

3 Marginal of an isomorph

Pearl (1988) presents a set of necessary condi-
tions for a formal independence model to be a
DAG-isomorph. The conditions are based on
properties of d-separation in DAG’s. One of
the conditions that is not already implied by the
semi-graphoid axioms is the so-called chordality

condition:

I(x, y|zw) ∧ I(z, w|xy)⇒ I(x, y|z) ∨ I(x, y, w)

for all x, y, z, w ∈ V . Pearl shows in (Pearl,
1988, Section 3.3.3) by example how condition-
ing on an auxiliary variable can be used to dis-
pose of this chordality condition. In his example
the independence model is not DAG-isomorph,
but there exists a DAG with one extra vari-
able, that, when conditioned on the auxiliary
variable, is isomorphic with the independence
model.

In this paper we choose a different approach
where we introduce an auxiliary variable with-
out conditioning to create a DAG that is a P-
map for an independence model. We formulate
this in the following definition.

Definition 10. Let I be an independence
model on a set of variables V , and let A be a
subset of V . We define the marginal of I on A,
denoted by IA, as IA = I ∩ T (A).

We can now define a marginal version of
DAG-isomorphism.

Definition 11 (DAG-isomorph marginal). Let
V be a set of variables, and I an independence
model on V . We say that I is a DAG-isomorph

marginal, if there exists a finite set of variables
V ⊇ V , an independence model I on V and a
DAG G = (V , A), such that G is a P-map for

I and I
V

= I. We then say that G is a latent

P-map of I.

As an example we present the variable set
V = {V1, V2, V3, V4} and the formal indepen-
denence model I on V defined by the following
non-trivial independence statements (and their



V1

V3 V4

V2

Figure 1: G1, a minimal I-map for I

symmetric equivalents):

(S1) : I(V1, V2|∅) (S2) : I(V1, V2|V3)
(S3) : I(V2, V3|∅) (S4) : I(V1, V4|∅)
(S5) : I(V1, V2|V4) (S6) : I(V2, V3|V1)
(S7) : I(V1, V4|V2)

The DAG G1 = (V, A) defined on the variables
V as depicted in Figure 1, is a minimal I-map
for I, since the non-trivial graphical indepen-
dence statement that can be derived from the
DAG correspond to the statements (S1), (S2),
(S3), and (S6). It is not a P-map for I, since
the statements (S4), (S5), and (S7) are not re-
flected as graphical independence statements in
G1. An alternative minimal I-map is G2, as de-
picted in Figure 2. According to Dawid and
Studený (1999, Lemma 5.1) there does not ex-
ist a P-map for I on V , although I satisfies
the necessary conditions for DAG-isomorphism
of Pearl (1988).

We can, however, construct a DAG G on a
superset V of V for which the corresponding
graphical independence model I

G
satisfies all

the independence statements (S1)–(S7). This
DAG is depicted in Figure 3. It has an ex-
tra, latent, variable V0. The graphical inde-
pendence model I

G
satisfies more independence

statements than (S1)–(S7), like for instance
I

G
(V1, V2|V0). There are, however, no new inde-

pendence statements I
G
(X, Y |Z) in I

G
for sub-

sets X, Y , Z ⊂ V , other than (S1)–(S7). All
new independence statements involve the latent
variable V0 in one of the arguments. By Defini-
tion 10 I in the example above is the marginal
of I

G
on V , and G is a latent P-map of I.

For the example we have from Geiger and
Pearl (1990) that there exists a probability dis-
tribution P on V that has G of Figure 3 as a
perfect map. The structure of G implies that P

V1

V3 V4

V2

Figure 2: G2, a minimal I-map for I

V1

V3 V4

V2V0

Figure 3: G, a latent P-map for I

factorises as:

P (v0, v1, v2, v3, v4) =
p0(v0) p1(v1) p2(v2) p3(v3|v0v1)p4(v4|v0v2)

for some functions p1, . . . , p4. It can be shown
that the DAG’s G1 and G2 are minimal I-maps
for the marginal distribution of P on V . G1

corresponds to a factorisation of P as:

P (v1, v2, v3, v4) =
p1(v1) p2(v2) p′3(v3|v1) p′4(v4|v1v2v3)

(1)

and G2 corresponds to a factorisation of P as:

P (v1, v2, v3, v4) =
p1(v1) p2(v2) p′′3(v3|v1v2v4) p′′4(v4|v2)

(2)

In the example we thus have a probability distri-
bution P and the corresponding independence
model IP on V that is not DAG-isomorphic,
but it is the marginal of a distribution P that
corresponds to a DAG-isomorphic probabilistic
independence model.

For a probability measure we can now present
a refined definition of DAG-isomorph marginal
based on the probabilistic notion of a marginal.

Definition 12 (P-DAG-isomorph marginal).
Let V be a set of variables, P a probability
measure on V . We say that P is a P-DAG-

isomorph marginal, if there exists a finite set of
variables V = {V 1, . . . , V N

} ⊇ V with domains
V i, i = 1, . . . , N , a DAG G = (V , A), and a
probability measure P on V , such that



• The domains of the variables Vi in V for P

are the same as for P ,

• The marginal distribution P
V

of P over V

is equal to P ,

• G is a perfect map for P .

The following lemma shows the relationship
between Definitions 11 and 12.

Lemma 1. Let V be a set of variables, P a

probability measure with probabilistic indepen-

dence model IP , and P a probability measure as

in Definition 12. If we let I
P

denote the proba-

bilistic independence model of P , then IV

P
= IP .

Proof. Let X, Y and Z be disjoint subsets of V ,
then the following holds:

IP (X, Y |Z)

⇔ P (X, Y, Z)P (Z) = P (X, Z)P (Y, Z)

⇔ P
V

(X, Y, Z)P
V

(Z) = P
V

(X, Z)P
V

(Y, Z)

⇔ P (X, Y, Z)P (Z) = P (X, Z)P (Y, Z)

⇔ I
P
(X, Y |Z)

4 Existence of a latent perfect map

Weak transitivity and chordality are necessary
conditions for DAG-isomorphism and therefore
they must also be valid properties for DAG-
isomorph marginals. This implies that any in-
dependence model that does not satisfy any of
these two properties, is not a DAG-isomorph
marginal. In the example of the previous
section, which satisfies weak transitivity and
chordality, we were able to construct a latent
perfect map for the given independence model.
In this section we show that a latent perfect map
does not always exists, even if the independence
model satisfies all Pearl’s necessary conditions
for a DAG-isomorph. The main result is cap-
tured in the following theorem.

Theorem 1. There exists an independence

model that satisfies the necessary conditions for

DAG-isomorphism and has no latent P-map.

We shall prove Theorem 1 by showing that
there is no latent perfect map for the following
independence model.

Definition 13. Let V = {B, C, D, E} and let
I∗ be the independence model on V , that con-
sists of the following three non-trivial indepen-
dent statements (and their symmetric equiva-
lents):

(T1) : I∗(B, E|CD)
(T2) : I∗(C, E|∅)
(T3) : I∗(C, D|B)

It is a straight-forward exercise to verify that
I∗ is indeed a semi-graphoid. Application of the
semi-graphoid axioms on (T1)–(T3) does not
yield any new non-trivial independence state-
ments. Moreover, I∗ satisfies Pearl’s necessary
conditions for DAG-isomorphism.

We prove by contradiction that I∗ is not a
DAG-isomorph marginal. The steps in the proof
are summarized in the following four lemmas.

Lemma 2. Assume that I∗, as defined in Def-

inition 13, is a DAG-isomorph marginal and G

is a latent P-map for I∗, then there exists at

least one path in G from C to E that is neither

blocked by B nor by D.

Proof. By contradiction: assume that there are
no paths in G between C and E. C and E

are then d-separated by any subset of V , which
contradicts, for instance, ¬I∗(C, E|BD).

Assume that all paths in G between C and
E are blocked by B or D. Since there is at
least one path in G from C to E, this again
contradicts ¬I∗(C, E|BD).

Lemma 3. Assume that I∗, as defined in Defi-

nition 13, is a DAG-isomorph marginal, G is a

latent P-map for I∗, and s is a path in G from

C to E, then s has at least one converging node.

Proof. Let s be a path from C to E. Due to
I∗(C, E|∅) s must be blocked by ∅, which im-
plies that s has a converging node.

Lemma 4. Assume that I∗, as defined in Def-

inition 13, is a DAG-isomorph marginal, G is

a latent P-map of I∗, s a path in G from C to

E that is neither blocked by B nor by D, and

let F be a converging node on s, then D ∈ σ(F )
and B ∈ σ(F ). Moreover every descending path

from F to D is blocked by B.



Proof. If there exists a converging node F on
s for which B 6∈ σ(F ) or D 6∈ σ(F ), then the
path s would be blocked by B or D , which is
in contradiction with the definition of s.

Let F be a converging node on s. Since D ∈
σ(F ), there exists a descending path s1 from F

to D. We now construct a new path s2 from C

to D by concatenating the subpath of s between
C and F with s1. Due to I∗(C, D|B) this path
must be blocked by B. It cannot be blocked
by B on the segment between C and F , since
then also the original path s would be blocked
by B. Therefore s2 must be blocked by B on
the subpath s1. Since s1 is descending, it is
unidirectional. Therefore B must lie on s1 and
s1 is blocked by B.

Lemma 5. Assume that I∗, as defined in Def-

inition 13, is a DAG-isomorph marginal, G is

a latent P-map of I∗, s is a path in G from C

to E that is neither blocked by B nor by D. For

any converging node F on s there is also a sec-

ond converging node on the subpath of s between

F and E.

Proof. Let F be a converging node on s, which
exists due to Lemma 3. From Lemma 4 we have
that any descending path from F to D has B

on it. At least one such path, say s1, must ex-
ist, since B 6= D, so D cannot be equal to the
converging node F . We now construct a path
s3 from B to E by concatenating the reverse of
the part of subpath s1 between B and F with
the subpath of s between F and E (see also
Figure 4).

Now s3 is a path from B to E via F . Due
to I∗(B, E|CD), this path s3 must be blocked
by CD. Since s1 is descending and thus unidi-
rectional, the first part of s3 between B and F

is unidirectional. D is not on this subpath, so
it cannot be blocked by D. The second part of
s3 between F and E cannot be blocked by D,
since it is part of the original path s and s is not
blocked by D. In path s3 the node F , where the
two subpaths join, is not a converging node, so
we conclude that s3 cannot be blocked by D.
This implies that s3 must be blocked by C.

There are two possibilities for C to block s3.
The first possibility is that C blocks s3 by pres-

C

B

D

EF

s

s
1

s
3

s
2

Figure 4: The paths used in the proofs of Lem-
mas 4 and 5

ence on the (unidirectional) subpath s1 between
B and F . If this is the case, then we can con-
struct a new path s4 from C to E, by dropping
from s3 the first part between B and C. This
new path s4 consists of a unidirectional path
between C and F , that has neither B nor D on
it. The second part of the path, between F and
E, is the segment of the original path s. Since
F is not a converging node on s4 and s is not
blocked by B nor D, we conclude that s4 is also
not blocked by B nor by D. From Lemma 3 we
conclude that s4 must have a converging node,
which can lie only between F and E. There-
fore this converging node must also lie on the
original path s.

The second possibility for C to block s3 is
through absence, if there is a converging node
on s3 that does not have C as a descendant.
Since the first part of s3 between B and F is
unidirectional, and F is not a converging node
on s3, this converging node must lie on the seg-
ment of s3 strictly between F and E and there-
fore also on s.

Proof of Theorem 1. Let I∗ be as defined in
Definition 13. Due to Lemma 2 we know that
there is at least one path s between C and E

that is not blocked by B nor by D. According to
Lemma 3 this path s must have at least one con-
verging node (Lemma 3) and due to Lemma 5
we can conclude that s must have an infinite
number of converging nodes. Therefore V can-
not be finite, and I∗ is not a DAG-isomorph
marginal.



The next theorem shows that there is also
a probabilistic independence model without a
latent perfect map.

Theorem 2. There exists a set of variables V

and a probability distribution on V that is not a

P-DAG-isomorph marginal.

Proof. Consider the set of binary variables V =
{B, C, D, E}. Define the probability measure
P ∗ on V as follows:

B C D E P ∗(B, C, D, E)

0 0 0 0 48/1357
0 0 0 1 48/1357
0 0 1 0 144/1357
0 0 1 1 48/1357

0 1 0 0 48/1357
0 1 0 1 96/1357
0 1 1 0 240/1357
0 1 1 1 48/1357

1 0 0 0 96/1357
1 0 0 1 96/1357
1 0 1 0 192/1357
1 0 1 1 64/1357

1 1 0 0 27/1357
1 1 0 1 54/1357
1 1 1 0 90/1357
1 1 1 1 18/1357

It can be verified that the probabilistic indepen-
dence model IP ∗ of P ∗ has exactly the same in-
dependence statements as I∗ as defined in Def-
inition 13.

5 Conclusions

In this paper we have introduced the concept of
the marginal of an formal independence model.
We have shown that some independence mod-
els are in fact the marginals of models that
are DAG-isomorphs, while the marginals them-
selves are not DAG-isomorphs. We have also
proved that there exists some independence
models for which we need to introduce an in-
finite number of auxiliary variables to obtain a
latent perfect map. In examples for both cases
the marginal independence models satisfy the
sufficient conditions of Pearl (1988) for DAG-
isomorphism. It is an interesting topic for future
research to investigate if necessary and sufficient

conditions can be established to guarantee the
existence of a latent perfect map.

6 Acknowledgements

We would like to thank Richard D. Gill for sug-
gesting this problem in the context of proba-
bilistic graphical models, and an anonymous ref-
eree for valuable comments that helped to im-
prove Sections 3 and 4.

References

A.P. Dawid. 1979. Conditional Independence in Sta-
tistical Theory, Journal of the Royal Statistical
Society B, 41(1): 1–31.

A.P. Dawid and M. Studený. Conditional Products:
An Alternative Approach to Conditional Indepen-
dence, in Artificial Intelligence and Statistics 99,
Proceedings of the 7th workshop, J. Whittaker and
D. Heckerman (eds), Morgan Kaufmann, pp. 32-
40.

D. Geiger and J. Pearl. 1990. On the Logic of Causal
Models, in Uncertainty in Artificial Intelligence 4,
R.D. Shachter, T.S. Levitt, L.N. Kanal, J.F. Lem-
mer (eds), Elsevier Science Publishers, 3–14.

A.N. Kolmogorov. 1950. Foundation of the Theory
of Probability, New York, Chelsea Publishing.

J. Pearl, A. Paz. 1987. Graphoids, Graph-based
Logic for Reasoning About Relevance Relations,
in Advances in Artificial Intelligence II, B. du
Boulay, D. Hogg, L. Steele (eds), 357–363.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems - Networks of Plausible Inference, Mor-
gan Kaufman.

M. Studený. 1989. Multi-information and the Prob-
lem of Characterization of Conditional Indepen-
dence Relations, Problems of Control and Infor-
mation Theory, 18 (1), 3–16.

M. Studený. 1992. Conditional Independence Rela-
tions Have No Finite Complete Characterization,
in Proc. of the 11th Prague conf. on Information
Theory, Statistical Decision Functions and Ran-
dom Processes, S. Kubik, J.A. Visek (eds), 377–
396.

M. Studený. (1998). Complexity of structural mod-
els. In: Proceedings of the Joint Session of the 6th
Prague Conference on Asymptotic Statistics and
the 13th Prague Conference on Information The-
ory, Statistical Decision Functions and Random
Processes, vol. II, Prague, pp. 521–528.



Policy Explanation in Factored Markov Decision Processes

Francisco Elizalde
Tec de Monterrey, Cuernavaca, Mexico

fef@iie.org.mx

L. Enrique Sucar
INAOE, Puebla, Mexico

esucar@inaoep.mx

Manuel Luque and Francisco Javier Dı́ez
UNED, Madrid, Spain

{mluque;fjdiez}@dia.uned.es

Alberto Reyes
IIE, Cuernavaca, Mexico

areyes@iie.org.mx

Abstract

In this paper we address the problem of explaining the recommendations returned by
a Markov decision process (MDP) that is part of an intelligent assistant for operator
training. When analyzing the explanations provided by human experts, we observed that
they concentrated on the “most relevant variable”, i.e., the variable that in the current
state of the system has the highest influence on the choice of the optimal action. We
propose two heuristic rules for determining the most relevant variable based on a factored
representation of an MDP. In the first one, we estimate the impact of each variable in the
expected utility. The second rule evaluates the potential changes in the optimal action for
each variable. We evaluated and compared each rule in the power plant domain, where
we have a set of explanations, including the most relevant variable, given by a domain
expert. Our experiments show a strong agreement between the variable selected by human
experts and that selected by our method for a representative sample of states.

1 Introduction

Intelligent systems should be capable of explain-
ing their decisions and reasoning process to the
user. This is particularly important in the case
of tutors and intelligent assistants. An im-
portant requirement for intelligent assistants is
to have an explanation generation mechanism,
so that the trainee has a better understanding
of the recommended actions and can general-
ize them to similar situations (Herrmann et al.,
1998).

Although there has been a lot of work in ex-
planation generation for rule-based systems and
other representations, there is very little work

on explanations using probabilistic representa-
tions, in particular for decision–theoretic mod-
els such as influence diagrams and Markov de-
cision processes (MDPs). We are particularly
interested in explaining the recommendations
obtained from an MDP that is part of an intel-
ligent assistant for operator training. The assis-
tant has a set of recommended actions (optimal
policy) which compares to the ones performed
by a person in a training session, and based
on this gives advice to the user. In previous
work (Elizalde et al., 2005) we used a set of pre-
defined explanations produced by a domain ex-
pert, and these were given to the user according



to the current situation. A controlled user study
showed that operators trained with the expla-
nation mechanism have a better performance in
similar situations (Elizalde et al., 2005). But
obtaining the explanations from an expert is a
complex and time-consuming process, so it is
desirable that the assistant can generate the ex-
planations automatically from the MDP and its
solution.

When analyzing the explanations provided by
human experts, we observed that they concen-
trated on the most relevant variable, i.e., the
variable that in the current state of the system
has the highest influence on the choice of the op-
timal action. That is, the expert’s explanations
start from certain aspect of the process that is
the most important in the current situation and
this aspect is the core of the explanation. So a
first step towards automatic explanation based
on MDPs is to determine the most relevant vari-
able according to the current state and the op-
timal policy. The recommended action is also
important for the explanation; however, this is
directly obtained from the optimal policy that
gives the solution of the MDP.

We have developed a novel technique for se-
lecting the relevant variable for certain state-
action based on a factored representation of an
MDP. We propose two heuristic rules for ob-
taining the relevant variable, one based on util-
ity and other based on policy. The utility–based
rule evaluates how much the utility function will
change if we vary the value of one of the vari-
ables for the current state, keeping the other
variables fixed. The policy–based rule estimates
the potential changes in optimal action for each
of the variables. We compared the relevant vari-
ables obtained with these rules with the one
given by the expert for a representative sam-
ple of states of an MDP in the domain of power
plant operation. In general there was a strong
agreement, which contributes evidence to the
validity of the proposed approach.

The rest of the paper is organized as fol-
lows. Next we summarize related work on ex-
planations based on probabilistic and decision-
theoretic models. Then we present a brief re-
view of MDPs. In section 4 we describe the

proposed method for relevant variable selec-
tion. Experimental results are given in section
5, where we describe the test domain and the
intelligent assistant. We conclude with a sum-
mary and directions for future work.

2 Related Work

The work on explanations based on probabilis-
tic graphical models (PGMs) can be divided ac-
cording to the classes of models considered, ba-
sically Bayesian networks (BN’s) and decision
networks. BN’s (Pearl, 1988) graphically repre-
sent the dependencies of a set of random vari-
ables, and are usually used for estimating the
posterior probability of some variables given an-
other. So the main goal of explanations is to
try to understand this inference process, and
how it propagates through the network. Two
main strategies have been proposed for expla-
nation with BN’s. One strategy is based on
transforming the network to a qualitative repre-
sentation, and using this more abstract model
to explain the relations between variables and
the inference process (Druzdzel, 1991), (Renooij
and van der Gaag, 1998). The other strategy
is based on the graphical representation of the
model, using visual attributes (such as colors,
line widths, etc.) to explain relations between
nodes (variables) as well as the the inference
process (Lacave et al., 2000). The explanation
of links represents qualitative influences (Well-
man, 1990) by coloring the links depending on
the kind of influence transmitted from its tail to
its head. Another possibility for static explana-
tion consists of explaining the whole network.

Influence diagrams extend BNs by incorpo-
rating decision nodes and utility nodes. The
main objective of these models is to help in the
decision making process, by obtaining the de-
cisions that maximize the expected utility. So
explanation in this case has to do with under-
standing why some decision (or sequence of de-
cisions) is optimal given the current evidence.
There is very little work on explanations for de-
cision networks. Bielza et al. (2003) propose
an explanation method for medical expert sys-
tems based on influence diagrams. It is based



on reducing the table of optimal decisions ob-
tained from an influence diagram, building a list
that clusters sets of variable instances with the
same decision. They propose to use this com-
pact representation of the decision table as a
form of explanation, showing the variables that
are fixed as a rule for certain case. It seems
like a very limited form of explanation, difficult
to apply to other domains. The explanation fa-
cilities for Bayesian networks proposed by La-
cave et al. (2000) were extended to influence
diagrams and integrated in the Elvira software
(Lacave et al., 2007). The extension is based in
a transformation of the influence diagram into
a Bayesian network by using a strategy for the
decisions in the model. Lacave et al. (2007) de-
scribe several facilities: incorporating evidence
into the model, the conversion of the influence
diagram into a decision tree, the possibility of
analyzing non-optimal policies imposed by the
user, and sensitivity analysis with respect to the
parameters.

Markov decision processes can be seen as an
extension of decision networks, that consider a
series of decisions in time (dynamic decision net-
work). Some factored recommendation systems
use algorithms to reduce the size of the state
space (Givan et al., 2003) and perform symbolic
manipulations required to group similarly be-
having states as a preprocessing step. (Dean
and Givan, 1997) also consider top-down ap-
proaches for choosing which states to split in
order to generate improved policies (Munos and
Moore, 1999). Recently (Khan et al., 2008) pro-
posed an approach for the explanation of recom-
mendations based on MDPs. They define a set
of preferred scenarios that correspond to set of
states with high expected utility, and generate
explanations in terms of actions that will pro-
duce a preferred scenario based on predefined
templates. They demonstrate their approach
in the domain of course selection for students,
modeled as a finite horizon MDP with three
time steps. Thus, their is very limited previ-
ous work on explanation generation for decision-
theoretic systems based on MDPs. In particu-
lar, there is no previous work on determining
the relevant variable, which is the focus of this

paper.

3 Factored Markov decision

processes

A Markov decision process (MDP) (Puterman,
1994) models a sequential decision problem, in
which a system evolves in time and is controlled
by an agent. The system dynamics is governed
by a probabilistic transition function Φ that
maps states S and actions A to new states S’.
At each time, an agent receives a reward R that
depends on the current state s and the applied
action a. Thus, the main problem is to find a
control strategy or policy π that maximizes the
expected reward V over time.

For the discounted infinite-horizon case with
any given discount factor γ, there is a policy π∗

that is optimal regardless of the starting state
and that satisfies the Bellman equation (Bell-
man, 1957):

V π(s) = maxa{R(s, a)+γ
∑

s′∈S

P (s′|s, a)V π(s′)}

(1)

Two methods for solving this equation and
finding an optimal policy for an MDP are: (a)
dynamic programming and (b) linear program-
ming (Puterman, 1994).

In a factored MDP, the set of states is de-
scribed via a set of random variables S =
{X1, ..., Xn}, where each Xi takes on values in
some finite domain Dom(Xi). A state x de-
fines a value xi ∈ Dom(Xi) for each variable
Xi. Thus, when the set of states S = Dom(Xi)
is exponentially large, it results impractical to
represent the transition model explicitly as ma-
trices. Fortunately, the framework of dynamic
Bayesian networks (DBN) (Dean and Kana-
sawa, 1989) gives us the tools to describe the
transition model concisely. In these representa-
tions, the post-action nodes (at the time t+1)
contain smaller matrices with the probabilities
of their values given their parents’ values under
the effects of an action. For a more detailed de-
scription of factored MDPs see (Boutilier et al.,
1999).



4 Relevant Variable Selection

As mentioned before, our strategy for automatic
explanation generation based on MDPs consid-
ers as a first step to find the most relevant vari-
able VR for certain state s and action a. All
the explanations we obtained from the experts
are based on a variable which they consider
the most important under the current situa-
tion (state) and according to the optimal pol-
icy. Examples of some of these explanations in
the power plant domain are given later on the
paper. We expect that something similar may
happen in other domains, so discovering the rel-
evant variable is an important first step for pol-
icy explanation based on MDPs.

Intuitively we can think that the relevant
variable is the one with greater effect on the
expected utility, given the current state and the
optimal policy. So as an approximation to esti-
mating the impact of each factor Xi in the util-
ity, we estimate how much the utility, V , will
change if we vary the value for each variable,
compared to the utility of the current state.
This is done by maintaining all the other vari-
ables, Xj , j 6= i, fixed. The process is repeated
for all the variables, and the variable with the
highest difference in value is selected as the rel-
evant variable. An alternative criteria is to con-
sider the action changes. That is, if the optimal
action, a∗, in the current state, s, will change if
a variable, Xi, has a different value. The vari-
able that implies more changes will be in this
case the relevant variable.

Thus, we propose two heuristic rules to de-
termine the most relevant variable for an MDP,
one rule based on utility and other rule based
on policy. Next we describe in detail each rule.

4.1 Rule 1: Impact on utility

The policy of an MDP is guided by the util-
ity function, so the impact of a variable in the
utility is an important aspect regarding its rel-
evance for certain state. The idea is to evaluate
how much will the utility function will change if
we vary the value of one of the variables for the
current state, keeping the other variables fixed.
We analyze this potential change in utility for

all the variables, and the one with the highest
difference will be considered the most relevant
variable.

Let us assume that the process is in state
s, then we measure the relevance of a variable
Xi for the state s based on utility, denoted by
relVs (Xi), as:

relVs (Xi) = max
s′∈neighXi

(s)
V (s′)− min

s′∈neighXi
(s)

V (s′)

(2)
where neighXi

(s) is the set of states that take
the same the values as s for all other variables
Xj , j 6= i; and a different value for the variable
of interest, Xi. That is, the maximum change
in utility when varying the value of Xi with re-
spect to its value under the current state s. This
expression is evaluated for all the variables, and
the one with the highest value is considered the
most relevant for state s, according to the value
criteria:

XV
R = argmaxi(rel

V
s (Xi)),∀(i) (3)

4.2 Rule 2: Impact on the optimal

action

The second heuristic rule for determining the
most relevant variable consists in exploring the
optimal policy to detect changes in the optimal
action for the state. That is, for each variable
we verify if the optimal action will change if we
vary its current value, keeping the other vari-
ables fixed. The variable that has more poten-
tial changes in policy will be considered more
relevant.

Let us assume that the MDP is in state s,
then we measure the relevance of a variable Xi

for the state s according to its impact on policy,
denoted by relAs (Xi), as:

relAs (Xi) = #s′ : s′ ∈ neighXi
(s)∧π∗(s) 6= π∗(s′)

(4)
where neighXi

(s) is the set of states that take
the same values as s in all the variables except in
variable Xi, π∗(s) is the optimal action under
the current state, s, and π∗(s′) is the action
that will be taken in the other states such that



s′ ∈ neighXi
(s). In other words, this function

measures how much the actions change when
varying the value of Xi with respect to its value
under the current state s. This expression is
evaluated for all the variables, and the one with
the highest value is considered the most relevant
for state s, according to the policy criteria:

XA
R = argmaxi(rel

A
s (Xi)),∀(i) (5)

We evaluated and compared both rules in a
real scenario for training power plant operators,
as described in the next section.

5 Experimental Results

First we describe the intelligent assistant in
which we tested our method for explanation
generation, and then the experiments compar-
ing the automatic relevant variable selection
against a domain expert.

5.1 Intelligent assistant for operator

training

We have developed an intelligent assistant for
operator training (IAOT) (Figure 1).

Figure 1: The intelligent assistant (IAOT) con-
sists of 3 main parts: process side, operator side
and central module. Based on the optimal pol-
icy obtained from the MDP a temporal plan is
generated. The operator actions are compared
to the plan and according to this the Adviser
generates explanations

The input to the IAOT is a policy generated
by a decision-theoretic planner (MDP), which

establishes the sequence of actions that will al-
low to reach the optimal operation of a steam
generator (Reyes et al., 2006). Operator actions
are monitored and discrepancies are detected re-
garding the operator’s expected behavior.

The process starts with an initial state of the
plant, usually under an abnormal condition; so
the operator should return the plant to its op-
timum operating condition using some controls.
If the action performed by the operator devi-
ates from the optimal plan, either in the type
of action or its timing, an advice message is
generated. Depending on the operator’s perfor-
mance, the adviser presents a new case through
the case generator module.

We considered a training scenario based on
a simulator of a combined cycle power plant,
centered in the drum (a water tank) and the re-
lated control valves. Under certain conditions,
the drum level becomes unstable and the oper-
ator has to return it to a safe state using the
control valves. The variables in this domain
are: (i) drum pressure (Pd), (ii) main steam
flow (Fms), (iii) feed water flow (Ffw), (iv) gen-
eration (G), and (v) disturbance (this variable
is not relevant for the explanations so is not in-
cluded in the experiments). There are 5 possible
actions: a0–do nothing, a1–increase feed water
flow, a2–decrease feed water flow, a3–increase
steam flow, and a4–decrease steam flow.

We started by defining a set of explanation
units with the aid of a domain expert, to test
their impact on operator training. These expla-
nation units are stored in a data base, and the
assistant selects the appropriate one to show to
the user, according to the current state and op-
timal action given by the MDP. An example of
an explanation unit is given in Figure 2. Each
explanation unit has three main components:
(i) the recommended action (upper left side),
(ii) a verbal explanation of why this is the best
action (lower left), and (iii) the relevant vari-
able (VR) highlighted in a schematic diagram
of the process (right side). In this example the
relevant variable is generation, VR = G, as the
absence of generation is the main reason to close
the feed–water valve. Something similar occurs
in all the explanation units.



Figure 2: An example of an explanation unit.

To evaluate the effect of the explanations on
learning, we performed a controlled experiment
with 10 potential users with different levels of
experience in power plant operation. The users
were divided into two groups: G1, with expla-
nations; G2, without explanations. Each par-
ticipant has to control the plant to reach the
optimal state under an emergency condition us-
ing a simulator and with the aid of the IAOT.
During each session, the suggested actions and
detected errors are given to the user, and for
G1, also an explanation.

After some training sessions with the aid of
the IAOT, the users were presented similar sit-
uations without the aid of the assistant. An
analysis of the results (Elizalde et al., 2005)
shows a significant difference in favor of the
group with explanations. These results give ev-
idence that explanations help in the learning of
skills such as those required to operate an in-
dustrial plant.

As mentioned before, the explanations pro-
vided by the domain experts focus on the most

relevant variable. In the next section we com-
pare the relevant variables obtained by our
method against those established by the human
experts.

5.2 Results

Our main objective is to generate explanations
that are similar to those given by a human
expert, and in particular the identification of
the most relevant variable. So to evaluate our

methodology, we take as a reference the expla-
nations given by the domain experts.

In the power plant domain there are 5 state
variables (three binary variables, one with 6 val-
ues and other with 8 values), which makes a
total of 384 states. We analyzed a random sam-
ple of 30 states, nearly 10% of the total number
of states 1. For the 30 cases we obtained the
most relevant variable(s) based on both rules,
according to their impact on utility and on pol-
icy; and compared these with the relevant vari-
ables given in the explanation units provided by
the expert.

Figure 3 summarizes the results of the evalu-
ation of the 30 cases. For each case we show: (i)
the current state, (ii) the value, (iii) the optimal
action, (iv) the variable selected according to
the change in utility, including this change, (v)
the number of changes in action for each vari-
able (the highest are highlighted), and (vi) the
relevant variable(s) given by the expert. Note
that for some cases the expert gives two relevant
variables.

From the table we observe that the rule based
on the utility impact selects in 100% the most
relevant variable according to the expert. The
other rule, based on changes in policy, detects
more than one variable in several cases. If we
consider the subset of variables with highest
number of changes in policy, at least one of the
relevant variables given by the expert is con-
tained in this subset for 80% of the cases. Both
rules give a good match with the experts’ selec-
tions, although the one based on utility is more
specific and also more accurate. These are very
promising results, as the method is giving, in
general, the expected relevant variable, which is
an important first step for producing automatic
explanations based on MDPs.

1In our current implementation of the method its
takes about half an hour to evaluate the impact on utility
and policy per state, as we are transforming the MDP
to an influence diagram and doing the calculations in
Elvira (Elvira-Consortium, 2002); so it is not practical
to consider all the states. In the future we plan to imple-
ment the method directly on the MDP to make it more
efficient.



Figure 3: This table summarizes the 30 cases in which we compared the relevant variable selected
be each rule against those given by the expert.

6 Conclusions and Future Work

In this paper we have developed a method for
determining the most relevant variable for gen-
erating explanations based on a factored MDP.
The explanations provided by human experts
are based on what they consider the most rel-
evant variable in the current state, so obtain-
ing this variable is an important first stage for
automatic explanation generation. For deter-
mining the most relevant variable we proposed
and compared two heuristic rules, one based on
the impact on utility of each variable, and other
based on their impact on the policy. We devel-
oped a method for finding the relevant variable
based on these rules, and apply it to a realistic
scenario for training power plant operators.

The experimental evaluation in the power
plant domain shows that the methodology is
promising, as the relevant variables selected
agreed, in general, with those chosen by the ex-
pert. The rule based on utility impact seems
more appropriate, at least in this domain, as

it gives more specific results with a very high
accuracy.

As future work we plan to integrate domain
knowledge with the relevant variable obtained
from the MDP to construct explanations; and
test our method in other domains.

Acknowledgements

We thank the rest of the members of the Re-
search Centre on Intelligent Decision-Support
Systems (CISIAD) at UNED, in Madrid, Spain,
and the power plant experts at the Instrumenta-
tion and Control Department of the Electrical
Research Institute, Mexico. This project was
supported in part by CONACYT under project
No. 47968, and Francisco Elizalde by the Elec-
trical Research Institute. The Spanish authors
were supported by the Ministry of Education
and Science (grant TIN-2006-11152). Manuel
Luque was also partially supported by a pre-
doctoral grant of the regional Government of
Madrid.



References

R.E. Bellman. 1957. Dynamic Programming.
Princeton U. Press, Princeton, N.J.

C. Bielza, J.A. Fernández del Pozo, and P. Lucas.
2003. Optimal decision explanation by extracting
regularity patterns. In F. Coenen, A. Preece, and
A.L. Macintosh, editors, Research and Develop-
ment in Intelligent Systems XX, pages 283–294.
Springer-Verlag.

C. Boutilier, T. Dean, and S. Hanks. 1999. Decision-
theoretic planning: structural assumptions and
computational leverage. Journal of AI Research,
11:1–94.

T. Dean and R. Givan. 1997. Model minimization
in markov decision processes. In AAAI, editor, In
Proceedings AAAI-97, pages 106–111, Cambridge,
Massachusetts. MIT Press.

T. Dean and K. Kanasawa. 1989. A model for rea-
soning about persistence and causation. Compu-
tational Intelligence, 5:142–150.

M.J. Druzdzel. 1991. Explanation in probabilistic
systems: Is it feasible? Will it work? In Intel-
ligent information systems V, Proceedings of the
workshop, pages 12–24, Poland.

F. Elizalde, E. Sucar, and P. deBuen. 2005. A proto-
type of an intelligent assistant for operator’s train-
ing. In International Colloquium for the Power
Industry, México. CIGRE-D2.

Elvira-Consortium. 2002. Elvira: An environ-
ment for creating and using probabilistic graph-
ical models. In José A. Gómez and Antonio
Salmerón, editors, First European Workshop on
Probabilistic Graphical Models, PGM’02, pages
222–230, Cuenca, Spain.

R. Givan, T. Dean, and M. Greig. 2003. Equivalence
notions and model minimization in markov deci-
sion processes. Artif. Intell., 147(1-2):163–223.

J. Herrmann, M. Kloth, and F. Feldkamp. 1998.
The role of explanation in an intelligent assistant
system. In Artificial Intelligence in Engineering,
volume 12, pages 107–126. Elsevier Science Lim-
ited.

O. Zia Khan, P. Poupart, and J. Black. 2008. Ex-
plaining recommendations generated by MDPs.
In T. Roth-Berghofer et al., editor, 3rd Interna-
tional Workshop on Explanation-aware Comput-
ing ExaCt 2008, Patras, Greece. Proceedings of
the 3rd International ExaCt Workshop.

C. Lacave, R. Atienza, and F.J. Dı́ez. 2000. Graphi-
cal explanations in Bayesian networks. In Lecture
Notes in Computer Science, volume 1933, pages
122–129. Springer-Verlag.

C. Lacave, M. Luque, and F. J. Dı́ez. 2007. Ex-
planation of Bayesian networks and influence di-
agrams in Elvira. IEEE Transactions on Sys-
tems, Man and Cybernetics—Part B: Cybernetics,
37:952–965.

R. Munos and A.W. Moore. 1999. Variable resolu-
tion discretization for high-accuracy solutions of
optimal control problems. In IJCAI ’99: Proceed-
ings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence, pages 1348–1355,
San Francisco, CA, USA. Morgan Kaufmann Pub-
lishers Inc.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Mateo, CA.

M. Puterman. 1994. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. Wi-
ley, New York.

S. Renooij and L. van der Gaag. 1998. Decision
making in qualitative influence diagrams. In Pro-
ceedings of the Eleventh International FLAIRS
Conference, pages 410–414, Menlo Park, Califor-
nia. AAAI Press.

A. Reyes, L. E. Sucar, E. Morales, and P. H. Ibar-
guengoytia. 2006. Solving hybrid Markov de-
cision proceses. In MICAI 2006: Advances in
Artificial Intelligence, Apizaco, Mexico. Springer-
Verlag.

M. Wellman. 1990. Graphical inference in quali-
tative probabilistic networks. Networks, 20:687–
701.



Learning näıve Bayes regression models with missing data using
mixtures of truncated exponentials

Antonio Fernández
Department of Statistics & Applied Mathematics

University of Almeŕıa
04120 Almeŕıa, Spain
afalvarez@ual.es

Jens D. Nielsen
Computer Science Department

University of Castilla-La Mancha
02071 Albacete, Spain
dalgaard@dsi.uclm.es

Antonio Salmerón
Department of Statistics & Applied Mathematics

University of Almeŕıa
04120 Almeŕıa, Spain

antonio.salmeron@ual.es

Abstract

In the last years, mixtures of truncated exponentials (MTEs) have received much attention
within the context of probabilistic graphical models, as they provide a framework for
hybrid Bayesian networks which is compatible with standard inference algorithms and no
restriction on the structure of the network is considered. Recently, MTEs have also been
successfully applied to regression problems in which the underlying network structure is a
näıve Bayes or a TAN. However, the algorithms described so far in the literature operate
over complete databases. In this paper we propose an iterative algorithm for constructing
näıve Bayes regression models from incomplete databases. It is based on a variation of
the data augmentation method in which the missing values of the explanatory variables
are filled by simulating from their posterior distributions, while the missing values of the
response variable are generated from its conditional expectation given the explanatory
variables. We illustrate through a set of experiments with various databases that the
proposed algorithm behaves reasonably well.

1 Introduction

In the last years, mixtures of truncated expo-
nentials (MTEs) (Moral et al., 2001) have re-
ceived much attention within the context of
probabilistic graphical models, as they pro-
vide a framework for hybrid Bayesian networks
which is compatible with standard inference al-
gorithms and no restriction on the structure
of the network is imposed (Cobb and Shenoy,
2006; Rumı́ and Salmerón, 2007). Recently,
MTEs have also been successfully applied to re-
gression problems in which the underlying net-
work structure is a näıve Bayes (Morales et al.,
2007) or a tree augmented näıve Bayes (TAN)
(Fernández et al., 2007). However, the algo-

rithms described so far in the literature oper-
ate over complete databases. In this paper we
propose an iterative algorithm for constructing
näıve Bayes regression models from incomplete
databases. It is based on a variation of the
data augmentation method (Tanner and Wong,
1987) in which the missing values of the ex-
planatory variables are filled by simulating from
their posterior distributions, while the missing
values of the response variable are generated
from its conditional expectation given the ex-
planatory variables.

The rest of the paper is organised as follows.
The MTE model, which is the basis of our work,
is described in Sec. 2. We analyse the back-
ground behind existing regression models using



MTEs in Sec. 3, and out of that analysis, we
describe our new algorithm that operates over
missing values. The behaviour of the algorithm
is tested through two experiments in Sec. 4.
The paper ends with the concluding remarks in
Sec. 5.

2 The MTE model

We denote random variables by capital letters,
and their values by lowercase letters. We use
boldfaced characters to represent random vec-
tors and their values. The support of the vari-
able X is denoted by ΩX. A potential of class
MTE (Moral et al., 2001) is defined as follows:

Definition 1. (MTE potential) Let X be a
mixed n-dimensional random vector. Let W =
(W1, . . . ,Wd) and Z = (Z1, . . . , Zc) be the dis-
crete and continuous parts of X, respectively,
with c + d = n. We say that a function
f : ΩX 7→ R

+
0 is a Mixture of Truncated Ex-

ponentials potential (MTE potential) if for each
fixed value w ∈ ΩW of the discrete variables
W, the potential over the continuous variables
Z is defined as:

f(z) = a0 +
m

∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(1)

for all z ∈ ΩZ, where ai, i = 0, . . . ,m and b
(j)
i ,

i = 1, . . . ,m, j = 1, . . . , c are real numbers. We
also say that f is an MTE potential if there is a
partition D1, . . . ,Dk of ΩZ into hypercubes and
in each Di, f is defined as in Eq. (1).

Definition 2. (MTE density) An MTE poten-
tial f is an MTE density if

∑

w∈ΩW

∫

ΩZ

f(w, z)dz = 1 .

A conditional MTE density can be specified
by dividing the domain of the conditioning vari-
ables and specifying an MTE density for the
conditioned variable for each configuration of
splits of the conditioning variables (Moral et al.,
2001; Moral et al., 2003).

Example 1. Consider two continuous variables
X and Y . A possible conditional MTE density
for Y given X is the following:

f(y|x) =































































1.26 − 1.15e0.006y

if 0.4 ≤ x < 5, 0 ≤ y < 13 ,

1.18 − 1.16e0.0002y

if 0.4 ≤ x < 5, 13 ≤ y < 43 ,

0.07 − 0.03e−0.4y + 0.0001e0.0004y

if 5 ≤ x < 19, 0 ≤ y < 5 ,

−0.99 + 1.03e0.001y

if 5 ≤ x < 19, 5 ≤ y < 43 .

(2)

3 Regression using MTEs

Assume we have a set of variables Y,X1, . . . ,Xn,
where Y is continuous and the rest are either
discrete or continuous. Regression analysis con-
sists of finding a model g that explains the re-
sponse variable Y in terms of the explanatory
variables X1, . . . ,Xn, so that given a configu-
ration of the explanatory variables, x1, . . . , xn,
a prediction about Y can be obtained as ŷ =
g(x1, . . . , xn). Previous work on regression us-
ing MTEs (Morales et al., 2007; Fernández et
al., 2007) proceeds by representing the joint dis-
tribution of Y,X1, . . . ,Xn as a Bayesian net-
work (näıve Bayes or TAN), and then using
the posterior distribution of Y given X1, . . . ,Xn

(more precisely, its expectation or its median)
to obtain a prediction for Y .

3.1 Constructing a regression model

from incomplete data

In this paper we will concentrate on the use of
the expectation to analyse the regression prob-
lem with missing data. Therefore, our regres-
sion model will be

ŷ = g(x1, . . . , xn) =

E[Y |x1, . . . , xn] =

∫

ΩY

yf(y|x1, . . . , xn)dy ,

where f(y|x1, . . . , xn) is the conditional density
of Y given x1, . . . , xn, which we assume to be of
class MTE.



A conditional distribution of class MTE can
be represented as in Eq. (2), where actually a
marginal density is given for each element of
the partition of the support of the variables in-
volved. Within the context of regression, the
distribution for the response variable Y given an
element in a partition of the domain of the ex-
planatory variables X1, . . . ,Xn, can be regarded
as an approximation of the true distribution of
the actual values of Y for each possible con-
figuration of the explanatory variables in that
region of the partition. This fact justifies the se-
lection of E[Y |x1, . . . , xn] as the predicted value
for the regression problem, because that value
is the one that best represents all the possible
values of Y for that region, in the sense that it
minimises the mean squared error between the
actual value of Y and its predictions ŷ, namely

mse =

∫

ΩY

(y − ŷ)2f(y|x1, . . . , xn)dy , (3)

which is known to be minimised for ŷ =
E[Y |x1, . . . , xn]. Therefore, the key point to
find a regression model of this kind is to ob-
tain a good estimation of the distribution of Y

for each region of values of the explanatory vari-
ables. For the complete data case, the problem
was studied in (Morales et al., 2007; Fernández
et al., 2007), but the estimation of MTE distri-
butions in the presence of missing data has not
yet been addressed, but in the more restricted
setting of unsupervised data clustering (Gámez
et al., 2006). In that case, the only missing val-
ues are on the class variable, which is hidden,
while the data about the features are complete.

Here we are interested in problems where the
missing values can appear in the response vari-
able as well as in the explanatory variables.
A first approach to solve this problem could
be to apply the EM algorithm (Dempster et
al., 1977). However, the application of the
methodology is problematic because the likeli-
hood function for the MTE model cannot be
optimised in an exact way (Rumı́ et al., 2006).
Also, the aim of the EM algorithm is to find
maximum likelihood estimates, which is not our
main goal. From the point of view of regression,

it is more important that the obtained models
provide low values for the mean squared error
rather than high likelihood.

Another way of approaching problems with
missing values is the so-called data augmenta-
tion (DA) algorithm (Tanner and Wong, 1987).
The advantage with respect to the EM algo-
rithm is that DA does not require to directly
optimise the likelihood function. Instead, it is
based on imputing the missing values by sim-
ulating from the posterior distribution of the
missing variables, which is iteratively improved
from an initial estimation based on a random
imputation. The DA algorithm leads to an
approximation of the maximum likelihood es-
timates of the parameters of the model, as long
as the parameters are estimated by maximum
likelihood from the complete database in each
iteration.

However, as we mentioned before, we are not
so interested in the maximum likelihood es-
timates of the parameters of the model, but
rather in reducing the mean squared error for
the estimates of Y . With this aim, we show in
the next proposition that using the conditional
expectation of Y to impute the missing values
instead of simulating values for Y (denoted as
YS in the proposition), reduces the mse even if
we simulate from the exact distribution of Y

conditional on any configuration on a region of
the values of the explanatory variables.

Proposition 1. Let Y and YS be two continu-
ous independent and identically distributed ran-
dom variables. Then,

E[(Y − YS)2] ≥ E[(Y − E[Y ])2] . (4)

Proof.

E[(Y − YS)2] = E[Y 2 + Y 2
S − 2Y YS ]

= E[Y 2] + E[Y 2
S ]− 2E[Y YS ]

= E[Y 2] + E[Y 2
S ]− 2E[Y ]E[YS ]

= 2E[Y 2]− 2E[Y ]2

= 2(E[Y 2]− E[Y ]2) = 2Var(Y )

≥ Var(Y ) = E[(Y − E[Y ])2] .



In the proof we have used that both variables
are independent and identically distributed, and
therefore the expectation of the product is the
product of the expectations, and the expected
value of both variables is the same.

3.2 The algorithm for learning a NB

regression model from incomplete

data

Our proposal consists of an algorithm which it-
eratively learns a näıve Bayes regression model
by imputing the missing values in each iteration
according to the following criterion:

• If the missing value corresponds to the re-
sponse variable, it is imputed with the con-
ditional expectation of Y given the values
of the explanatory variables in the same
record of the database, computed from the
current NB model.

• Otherwise, the missing cell is imputed by
simulating the corresponding variable from
its conditional distribution given the values
of the other variables in the same record,
computed from the current NB model.

As the imputation requires the existence of a
model, more precisely a NB in our context, for
the construction of the initial model we propose
to impute the missing values by simulating from
the marginal distribution of each variable com-
puted from the observed values. In preliminary
experiments we achieved better results using
this alternative rather than pure random initial-
isation, which is the standard way of proceed-
ing in data augmentation (Tanner and Wong,
1987). Another possibility is to simulate from
the conditional distribution of each explanatory
variable given the response, but the drawback is
that the estimation of the conditional distribu-
tions requires more data than the estimation of
the marginals, which can be problematic if the
amount of missing values is high.

Therefore, the algorithm proceeds by im-
puting the initial database, learning an initial
model and re-imputing the missing cells. Then,
a new model is constructed and, if the mean
squared error is reduced, the current model is

Algorithm 1: NB regression model from
incomplete data

Input: An incomplete database D for
variables Y,X1, . . . ,Xn.

Output: A näıve Bayes regression model
for response variable Y and
explanatory variables X1, . . . ,Xn.

for each variable X ∈ {Y,X1, . . . ,Xn} do1

Learn a univariate distribution fX(x)2

from its observed values in D.
end3

Create a database D′ from D by imputing4

the missing values for each
X ∈ {Y,X1, . . . ,Xn} sampling from fX(x).
Create a database Dt from D by discarding5

the records where Y is missing.
Learn a NB regression model M ′ from D′.6

Let srmse′ be the sample root mean7

squared error of M ′ computed using Dt

according to Eq. (5).
srmse←∞.8

while srmse′ < srmse do9

M ←M ′.10

srmse← srmse′.11

Create a new database D′ from D12

filling the missing values as follows:
for each variable X ∈ {X1, . . . ,Xn} do13

for each record z in D with missing14

value for X do

Obtain fX(x|z) by probability15

propagation in model M .
Impute the missing value for X16

by simulating from fX(x|z).
end17

end18

for each record z in D with missing19

value for Y do

Obtain fY (x|z) by probability20

propagation in model M .
Impute the missing value for Y with21

EfY
[Y |z].

end22

Re-estimate model M ′ from D′.23

Let srmse′ be the sample root mean24

squared error of M ′ computed using Dt.
end25

return M26



replaced and the process repeated until conver-
gence. As the mse in Eq. (3) requires the knowl-
edge of the exact distribution of Y conditional
on each configuration of the explanatory vari-
ables, we use as error measure the sample root
mean squared error, computed as

srmse =

√

√

√

√

1

m

m
∑

i=1

(yi − ŷi)2 , (5)

where m is the sample size, yi is the true value
of Y for record i and ŷi is its corresponding pre-
diction through the regression model.

The details are given in Alg. 1. Notice that,
in steps 6 and 23 the näıve Bayes model is learnt
from a complete database, and therefore the ex-
isting estimation methods for MTEs can be used
(Rumı́ et al., 2006; Morales et al., 2007).

4 Experimental evaluation

In order to test the performance of the proposed
method, we have carried out two experiments
over four databases. One database (mte50)
is synthetic, sampled from an MTE distribu-
tion, taken from (Morales et al., 2007). The
other three databases are available in the UCI
(Blake and Merz, 1998) and StatLib (StatLib,
1999) repositories. A description of the used
databases can be found in Tab. 1.

Database Size # Cont. # Disc.
bodyfat 251 15 0
boston 452 11 2
cloud 107 6 2
mte50 50 3 1

Table 1: A description of the databases used in
the experiments, with their size and number of
continuous and discrete variables.

The first experiment was oriented to test
whether the model behaves reasonably, in the
sense that the error is directly related to the
percentage of missing values. With that aim,
each database was divided at random into two
parts, one for training with a 70% of the records,
and one for test, with the remaining records.
Then, we randomly inserted missing values in
the training databases, ranging from a per-
centage of 10% to 50%. Previously, for each

database, we repeated 100 times the same oper-
ation, obtaining the curves displayed in Fig. 1.
The points correspond to the average srmse over
the same test data by the 100 models learnt, and
over each point there is a 95% confidence inter-
val for the mean. The shape of the curves shows
the expected behaviour, with the error increas-
ing, in general, as the rate of missing grows.

The graphs in Fig. 2 show the log-likelihood
corresponding to the learnt models as a func-
tion of the rate of missing values. Even though
the goal of our algorithm is not to find highly
likely models, the behaviour of the curves is still
coherent. As in Fig. 1, the points indicate the
average log-likelihood over the test database for
the 100 runs of the experiment, and the inter-
vals are 95% confidence intervals computed us-
ing the 100 measurements.

The second experiment was oriented to com-
pare the proposed model with the M5’ algo-
rithm. The M5’ algorithm (Wang and Witten,
1997) is an improved version of the model tree
introduced by Quinlan (Quinlan, 1992). The
model tree is basically a decision tree where the
leaves contain a regression model rather than
a single value, and the splitting criterion uses
the variance of the values in the database corre-
sponding to each node rather than the informa-
tion gain. We chose the M5’ algorithm because
it was the state-of-the-art in graphical models
for regression, before the introduction of MTEs
for regression in (Morales et al., 2007). We
have used the implementation of that method
provided by Weka 3.4.11 (Witten and Frank,
2005). Regarding the implementation of the NB
model, we have included it in the Elvira soft-
ware (Elvira Consortium, 2002), which can be
downloaded from http://leo.ugr.es/elvira.

In this experiment we have used 10-fold cross
validation to estimate the srmse. The miss-
ing cells in the databases where selected before
running the cross validation, therefore, in this
case both the training and test databases con-
tain missing cells in each iteration of the cross
validation. We discarded from the test set the
records for which the value of Y was missing.
If the missing cells in the test set correspond to
explanatory variables, algorithm M5’ imputes



 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0  0.1  0.2  0.3  0.4  0.5

rm
se

% of missing values

Database ’mte50’

mean
confidence interval

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 0  0.1  0.2  0.3  0.4  0.5

rm
se

% of missing values

Database ’bodyfat’

mean
confidence interval

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0  0.1  0.2  0.3  0.4  0.5

rm
se

% of missing values

Database ’cloud’

mean
confidence interval

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0  0.1  0.2  0.3  0.4  0.5

rm
se

% of missing values

Database ’boston’

mean
confidence interval

Figure 1: Sample root mean squared error as a function of the percentage of missing values.

them as the column average if the variable is
continuous, or the column mode if it is qualita-
tive (Witten and Frank, 2005). The NB model
does not require the imputation of the missing
explanatory variables in the test set, as the pos-
terior distribution for Y is computed by prob-
ability propagation and therefore, the variables
which are not observed are marginalised out.
The results of the second experiment can be
read in Tab. 2. The values displayed correspond
to the average srmse computed by 10-fold cross
validation. The result of the comparison is a
draw, with NB winning for databases bodyfat

and mte50 and M5’ winning in the other two
cases. Friedman’s test (Demsar, 2006) reports
no statistically significant differences between
both methods, with a p-value of 0.6831. This
result was to be expected, as it is consistent
with the comparison between models when they
are learnt from complete datasets. It is surpris-
ing the error obtained by M5’ for the database
bodyfat with 50% of missing, which is much

better than for lower rates of missing values.
We think that this can be due to randomness.

4.1 Results discussion

The experiments carried out suggest that the
proposed method behaves in a reasonable way.
The graphs corresponding to the first experi-
ment show a tendency of the error to increase
along with the rate of missing values, except in
some cases where it decreases around the 40%
of missing, probably due to overfitting, as men-
tioned in (Friedman, 1997) for the general case
of learning Bayesian networks. Also, we have
similar graphs showing how the likelihood of the
learnt models decrease as the rate of missing val-
ues increases.

Regarding the second experiment, the results
are coherent with the ones obtained for the com-
plete data case. However, we believe that our
proposal should be superior to M5’ in the case
of learning from missing data. The reason is
that we impute taking into account the condi-



-150

-145

-140

-135

-130

-125

-120

-115

-110

-105

 0  0.1  0.2  0.3  0.4  0.5

lo
g(

Li
ke

lih
oo

d)

% of missing values

Database ’mte50’

mean
confidence interval

-4000

-3900

-3800

-3700

-3600

-3500

-3400

-3300

-3200

-3100

 0  0.1  0.2  0.3  0.4  0.5

lo
g(

Li
ke

lih
oo

d)

% of missing values

Database ’bodyfat’

mean
confidence interval

-640

-620

-600

-580

-560

-540

-520

-500

-480

-460

 0  0.1  0.2  0.3  0.4  0.5

lo
g(

Li
ke

lih
oo

d)

% of missing values

Database ’cloud’

mean
confidence interval

-7800

-7600

-7400

-7200

-7000

-6800

-6600

-6400

-6200

-6000

-5800

 0  0.1  0.2  0.3  0.4  0.5

lo
g(

Li
ke

lih
oo

d)

% of missing values

Database ’boston’

mean
confidence interval

Figure 2: Loglikelihood of the learnt models as a function of the percentage of missing values.

tional distribution of the variable for which the
missing value is going to be imputed, whilst M5’
uses the marginal distribution. Our impression
is that the reason why the results in these ex-
periments are not even better for NB is the lim-
ited size of the used databases. Nevertheless,
the independence assumptions in the NB model
can be a limitation, and therefore more complex
structures, like the TAN, might lead to more
significant differences.

5 Concluding remarks

In this paper we have described a method
for learning regression models from incomplete
data based on the MTE distribution over a
näıve Bayes network structure. The algorithm
is supported by a result on how to minimise
the prediction error and the experiments carried
out, though somehow limited, show a reasonable
performance of the new algorithm, compared to
the robust M5’ scheme, which is not surpris-
ing, as M5’ is mainly designed for continuous

explanatory variables. The behaviour of the al-
gorithm is also good in terms of likelihood, even
though that aspect is not really relevant to the
aim of the method, which is to provide low pre-
diction error.

The algorithm presented here can be im-
proved in various ways, as for instance, by con-
sidering different manners of imputing the ex-
planatory variables.

We think that the ideas contained in this
work can be applied to other regression mod-
els like the TAN. However, the application to a
broader problem like learning a Bayesian net-
work of general purpose, is not straightforward,
since in this case the goal would be to maximise
a score based on the likelihood function, which
requires maximum likelihood estimates of the
parameters of the MTE model.

Acknowledgements

Work supported by the Spanish Ministry of Sci-
ence and Innovation, projects TIN2007-67418-



% of missing values
Model Database 0 0.1 0.2 0.3 0.4 0.5
NB bodyfat 6.7095 6.3496 6.4602 6.6235 6.1287 6.9734
M5’ bodyfat 25.21 24.4519 29.0318 28.7724 28.6139 6.0929
NB boston 6.2088 6.8668 6.4182 6.9748 7.0931 7.3654
M5’ boston 4.1475 5.1185 5.2011 5.6909 5.9646 6.6753
NB cloud 0.5572 0.4897 0.6282 0.5350 0.7925 0.7137
M5’ cloud 0.3764 0.3237 0.6493 0.4421 0.4925 0.5919
NB mte50 1.8695 2.0980 2.6392 2.7415 2.8957 3.0541
M5’ mte50 2.4718 2.7489 3.1566 2.6619 3.3681 3.4407

Table 2: Average srmse obtained in the experiment comparing NB vs. M5’.

C03-01 and TIN2007-67418-C03-02, and by
Junta de Andalućıa, project P05-TIC-00276.

References

C.L. Blake and C.J. Merz. 1998. UCI
repository of machine learning databases.
www.ics.uci.edu/∼mlearn/MLRepository.html.
University of California, Irvine, Dept. of Infor-
mation and Computer Sciences.

B. Cobb and P.P. Shenoy. 2006. Inference in hybrid
Bayesian networks with mixtures of truncated ex-
ponentials. International Journal of Approximate
Reasoning, 41:257–286.

A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical
Society B, 39:1 – 38.

J. Demsar. 2006. Statistical comparisons of classi-
fiers over multiple data sets. Journal of Machine
Learning Research, 7:1 – 30.

Elvira Consortium. 2002. Elvira: An environ-
ment for creating and using probabilistic graphi-
cal models. In J.A. Gámez and A. Salmerón, edi-
tors, Proceedings of the First European Workshop
on Probabilistic Graphical Models, pages 222–230.

A. Fernández, M. Morales, and A. Salmerón. 2007.
Tree augmented naive Bayes for regression using
mixtures of truncated exponentials: Applications
to higher education management. IDA’07. Lec-
ture Notes in Computer Science, 4723:59–69.

Nir Friedman. 1997. Learning belief networks in the
presence of missing values and hidden variables.
In Proceedings of the ICML-97.

J.A. Gámez, Rafael Rumı́, and A. Salmerón. 2006.
Unsupervised naive Bayes for data clustering with
mixtures of truncated exponentials. In Proceed-
ings of the 3rd European Workshop on Probabilis-
tic Graphical Models (PGM’06), pages 123–132.

S. Moral, R. Rumı́, and A. Salmerón. 2001. Mix-
tures of truncated exponentials in hybrid Bayesian
networks. ECSQARU’01. Lecture Notes in Arti-
ficial Intelligence, 2143:135–143.

S. Moral, R. Rumı́, and A. Salmerón. 2003. Approx-
imating conditional MTE distributions by means
of mixed trees. ECSQARU’03. Lecture Notes in
Artificial Intelligence, 2711:173–183.

M. Morales, C. Rodŕıguez, and A. Salmerón. 2007.
Selective naive Bayes for regression using mix-
tures of truncated exponentials. International
Journal of Uncertainty, Fuzziness and Knowledge
Based Systems, 15:697–716.

J.R. Quinlan. 1992. Learning with continuous
classes. In Procs. of the 5th Australian Joint Con-
ference on Artificial Intelligence, pages 343–348,
Singapore. World Scientific.

R. Rumı́ and A. Salmerón. 2007. Approximate
probability propagation with mixtures of trun-
cated exponentials. International Journal of Ap-
proximate Reasoning, 45:191–210.

R. Rumı́, A. Salmerón, and S. Moral. 2006. Esti-
mating mixtures of truncated exponentials in hy-
brid Bayesian networks. Test, 15:397–421.

StatLib. 1999. www.statlib.org. Department of
Statistics. Carnegie Mellon University.

M.A. Tanner and W.H Wong. 1987. The calcula-
tion of posterior distributions by data augmenta-
tion (with discussion). Journal of the American
Statistical Association, 82:528–550.

Y. Wang and I.H. Witten. 1997. Induction of model
trees for predicting continuous cases. In Procs.
of the Poster Papers of the European Conf. on
Machine Learning, pages 128–137.

I.H. Witten and E. Frank. 2005. Data Mining:
Practical Machine Learning Tools and Techniques
(Second Edition). Morgan Kaufmann.



The Probabilistic Interpretation of Model-based Diagnosis

Ildikó Flesch
MICC, Maastricht University,
Maastricht, the Netherlands

Email: ildiko@cs.ru.nl

Peter J.F. Lucas
Institute for Computing and Information Sciences,

Radboud University Nijmegen,
Nijmegen, the Netherlands

Email: peterl@cs.ru.nl

Abstract

Model-based diagnosis is the field of research concerned with the problem of finding faults
in systems by reasoning with abstract models of the systems. Typically, such models
offer a description of the structure of the system in terms of a collection of interacting
components. For each of these components it is described how they are expected to behave
when functioning normally or abnormally. The model can then be used to determine which
combination of components is possibly faulty in the face of observations derived from the
actual system. There have been various proposals in literature to incorporate uncertainty
into the diagnostic reasoning process about the structure and behaviour of systems, since
much of what goes on in a system cannot be observed. This paper proposes a method to
decompose the probability distribution in probabilistic model-based diagnosis, partly in
terms of the Poisson-binomial probability distribution.

1 Introduction

Almost from the inception of the field of prob-
abilistic graphical models, Bayesian networks
have been popular as formalisms to built model-
based, diagnostic systems (Pearl, 1988). An al-
ternative theory of model-based diagnosis was
developed at approximately the same time,
founded on techniques from logical reasoning
(Reiter, 1987; de Kleer et al., 1992). The Gen-
eral Diagnostic Engine, GDE for short, is a
well-known implementation of the logical the-
ory; however, it also includes a restricted form
of uncertainty reasoning to focus the diagnos-
tic reasoning process (de Kleer and Williams,
1987). Previous research by Geffner and Pearl
proved that the GDE approach to model-based
diagnosis can be equally well dealt with by
Bayesian networks (Geffner and Pearl, 1987;
Pearl, 1988). Geffner and Pearl’s results is basi-
cally a mapping from the logical representation
as traditionally used within the logical diagnosis
community to a specific Bayesian-network rep-
resentation. The theory of model-based diag-
nosis supports multiple-fault diagnoses, which

are similar to maximum a posteriori hypothe-
ses, MAP hypotheses for short, in Bayesian net-
works (Gámez, 2004). Thus, although the logi-
cal and the probabilistic theory of model-based
diagnosis have different origins, they are closely
related.

Any theory of model-based diagnosis should
consist of two parts: (i) a theory of how to con-
struct models that can be used for diagnosing
problems; (ii) a theory of how to use models
to compute diagnoses. Whereas in both logic-
based and probabilistic diagnosis issues con-
cerning representation are clear—basically, logi-
cal expressions versus Bayesian networks—there
is less clarity with regard to computing diag-
noses. In logical model-based diagnosis there is
a huge amount of literature investigating logi-
cal properties of diagnoses. In contrast, in lit-
erature on probabilistic diagnosis the emphasis
is mostly on algorithmic properties of comput-
ing MAP diagnoses, rather then on probabilistic
properties.

This paper proposes a new way to look at
model-based diagnosis, taking the Bayesian-
network representation by Geffner and Pearl as



the point of departure (Geffner and Pearl, 1987;
Pearl, 1988). It is shown that by adding proba-
bilistic information to a model of a system, the
predictions that can be made by the model can
be decomposed into a logical and a probabilistic
part. The logical specifications are determined
by the system components that are assumed to
behave normally, constituting part of the sys-
tem behaviour. This is complemented by uncer-
tainty about behaviour for components that are
assumed to behave abnormally. In addition, it
is shown that the Poisson-binomial distribution
plays a central role in determining model-based
diagnoses. The results of this paper establish
new links between traditional logic-based diag-
nosis, Bayesian networks and probability the-
ory.

2 Poisson-binomial Distribution

First, we begin by summarising some of the rele-
vant theory of discrete probability distributions
(cf. (Cam, 1960; Darroch, 1964)).

Let s = (s1, . . . , sn) be a Boolean vector with
elements sk ∈ {0, 1}, k = 1, . . . , n, where sk is a
Bernoulli discrete random variable and is equal
to the outcome of trial k being either success
(1) or failure (0). Let the probability of success
of trial k be indicated by pk ∈ [0, 1] and the
probability of failure be set to 1−pk. Then, the
probability of obtaining vector s as outcome is
equal to

P (s) =

n
∏

k=1

p
sk

k (1 − pk)
1−sk . (1)

This probability distribution acts as the ba-
sis for the Poisson-binomial distribution. The
Poisson binomial distribution is employed to de-
scribe the outcomes of n independent Bernoulli
distributed random variables, where only the
number of success and failure are counted. The
probability that there are m, m ≤ n, success-
ful outcomes amongst the n trials performed is
then defined as:

f(m;n) =
∑

s1+···+sn=m

n
∏

k=1

p
sk

k (1 − pk)
1−sk , (2)

where f is a probability function. Here, the
summation means that we sum over all the pos-
sible values of elements of the vector s, where
the sum of the values of the elements must be
equal to m.

It is easy to check that when all probabilities
pk are equal, i.e. p1 = · · · = pn = p, where p de-
notes this identical probability, then the proba-
bility function f(m;n) becomes that of the well-
known binomial distribution:

g(m;n) =

(

n

m

)

pm(1 − p)n−m. (3)

Finally, suppose that we model interactions
between the outcomes of the trials by means of a
Boolean function b. This means that we have an
oracle that is able to observe the outcomes, and
then gives a verdict whether the overall outcome
is successful. The expectation or mean of this
Boolean function is then equal to:

EP (b(S)) =
∑

s

b(s)P (s). (4)

with P defined according to Equation (1). This
expectation also acts as the basis for the the-
ory of causal independence, where a causal pro-
cess is modelled in terms of interacting indepen-
dent processes (cf. (Lucas, 2005)). Note that
for b(s) = bm(s) ≡ s1 + · · · + sn = m (i.e., the
Boolean function that checks whether the num-
ber of successful trials is equal to m), we have
that EP (bm(S)) = f(m;n). Thus, Equation (4)
can be looked on as a generic way to combine
the outcome of independent trials.

In the theory of model-based diagnosis, it
is common to represent models of systems by
means of logical specifications, which are equiv-
alent to Boolean functions. Below, it will be-
come clear that if we interpret the success prob-
abilities pk as the probability of observing the
expected output of a system’s component under
the assumption that the component is faulty,
then the theory of Poisson-binomial distribu-
tions can be used to describe part of probabilis-
tic model-based diagnosis. However, first the
necessary background to model-based diagnosis
research is reviewed.



3 Uncertainty in Model-based

Diagnosis

3.1 Model-based Diagnosis

In the theory of model-based diagnosis (Reiter,
1987), the structure and behaviour of a sys-
tem is represented by a logical diagnostic system
SL = (SD,COMPS), where

• SD denotes the system description, which
is a finite set of logical formulae, specifying
structure and behaviour;

• COMPS is a finite set of constants, corre-
sponding to the components of the system;
these components can be faulty.

The system description consists of behaviour de-
scriptions and connections. A behavioural de-
scription is a formula specifying normal and ab-
normal (faulty) functionalities of the compo-
nents. A connection is a formula of the form
ic = oc′ , where ic and oc′ denote the input
and output of components c and c′, respectively.
This way an equivalence relation on the inputs
and outputs is defined, denoted by IO\≡. The
class representatives from this set are denoted
by [r].

A logical diagnostic problem is defined as a
pair PL = (SL,OBS), where SL is a logical di-
agnostic system and OBS is a finite set of logical
formulae, representing observations.

Adopting the definition from (de Kleer et al.,
1992), a diagnosis in the theory of consistency-
based diagnosis is defined as follows. Let ∆
be the assignment of either a normal or an ab-
normal behavioural assumption to each compo-
nent. Then, ∆ is a consistency-based diagnosis
of the logical diagnostic problem PL iff the ob-
servations are consistent with both the system
description and the diagnosis:

SD ∪ ∆ ∪ OBS 2 ⊥. (5)

Here, 2 stands for the negation of the logical
entailment relation, and ⊥ represents a contra-
diction.

EXAMPLE 1 Consider the logical circuit de-
picted in Figure 1, which represents a full adder,

X1

A1
A2

X2

R1

1
0

1

0 predicted
[1] observed

1 predicted
[0] observed

Figure 1: Full adder with inputs {i1, ı̄2, i3} and
observed and predicted outputs.

i.e. a circuit that can be used for the addition
of two bits with carry-in and carry-out bits. It
is an example frequently used to illustrate con-
cepts from model-based diagnosis. This circuit
consists of two AND gates (A1 andA2), one OR
gate (R1) and two exclusive-or (XOR) gates
(X1 and X2). These are the components that
can be either faulty (abnormal) or normal. 2

3.2 Probabilistic Model-based

Diagnosis

In this section, we will map logical diagnos-
tic problems onto probabilistic representations,
called Bayesian diagnostic problems, using the
Bayesian-network representation proposed by
Geffner and Pearl (Geffner and Pearl, 1987;
Pearl, 1988). As will become clear, a Bayesian
diagnostic problem is defined as (i) a Bayesian
diagnostic system representing the components,
including their behaviour and interaction, based
on information from the logical diagnostic sys-
tem of concern, and (ii) a set of observations.

3.2.1 Graphical Representation

First the graphical structure used to repre-
sent the structural information from a logical
diagnostic system is defined. It has the form of
an acyclic directed graph G = (V,E), where V
is the set of vertices and E ⊆ (V × V ) the set
of directed edges, or arcs as we shall say.

Definition 1 (diagnostic mapping) Let
SL = (SD,COMPS) be a logical diagnostic
system. The diagnostic mapping md maps SL

onto an acyclic directed graph G = md(SL), as
follows (see Figure 2):

• The vertices V of graph G are created ac-
cording to the following rules:



– Each component c ∈ COMPS yields a
vertex Ac used to represent its normal
and abnormal behaviour;

– Each class representative of an input
or output [r] ∈ IO\≡ yields an associ-
ated vertex [r].

The set of all abnormality vertices Ac is
denoted by ∆, i.e. ∆ = {Ac | c ∈ COMPS}.
The vertices of graph G are, thus, obtained
as follows:

V = ∆ ∪ IO\≡,

where IO\≡ = I ∪O, with disjoint sets I of
input vertices and O of output vertices.

• The arcs E of G are constructed as follows:

– There is an arc from each each input
of a component c to each output of the
component;

– There is an arc for each component c
from Ac ∈ V to the corresponding out-
put of the component.

An example of this diagnostic mapping is shown
in the following example.

EXAMPLE 2 Figure 3 shows the graphical
representation of the full-adder circuit from Fig-
ure 1. The set V of vertices is:

V = ∆ ∪O ∪ I

= {AX1, AX2, AA1, AA2, AR1}

∪ {OX1, OX2, OA1, OA2, OR1}

∪ {I1, I2, I3}.

The arcs from E connect (i) outputs of two
components such as OX1 → OX2, (ii) an ab-
normality vertex with an output vertex such as
AA2 → OA2 and (iii) an input vertex with an
output vertex such as I3 → OX2. 2

3.2.2 Bayesian Diagnostic Problems

Recall that Bayesian networks that act as the
basis for diagnostic Bayesian networks consist of
two parts: a joint probability distribution and a
graphical representation of the relations among
the random variables defined by the joint prob-
ability distribution. Based on the definition of

K

D

i
1

K i
2

K

oK = i
1

D i
2

D

oD

I
1

K I
2

K AK

OK I
2

D AD

OD

=⇒

Figure 2: The diagnostic mapping.

Bayesian networks, particular parts of a logical
diagnostic system will be related to the graphi-
cal structure of a diagnostic Bayesian network,
whereas other parts will have a bearing on the
content of the probability table of the Bayesian
network.

Having introduced the mapping of a logical
diagnostic system to its associated graph struc-
ture, we next introduce the full concept of a
Bayesian diagnostic system.

Definition 2 (Bayesian diagnostic sys-

tem) Let SL = (SD,COMPS) be a logical di-
agnostic system, and G = md(SL) be obtained
by applying the diagnostic mapping. Let P be
a joint probability distribution of the vertices
of G, interpreted as random variables. Then,
SB = (G,P ) is the associated Bayesian diag-
nostic system.

Recall that by the definition of a Bayesian net-
work, the joint probability distribution P of a
Bayesian diagnostic system can be factorised as
follows:

P (I,O,∆) =
∏

c

P (Oc | π(Oc))P (I)P (∆), (6)

where Oc is an output variable associated to
component c ∈ COMPS, and π(Oc) are the ran-
dom variables corresponding to the parents of
Oc. The parents will normally consist of inputs
Ic and an abnormality variable Ac.

To simplify notation, in the following, (sets
of) random variables of a Bayesian diagnos-



I1 I2

I3 OX1

OX2

OA1

OA2

OR1

AX1

AX2

AA1

AA2

AR1

Figure 3: A Bayesian diagnostic system corre-
sponding to the circuit in Figure 1.

tic problem have the same names as the cor-
responding vertices. By ac is indicated that
abnormality variable Ac takes the value ‘true’,
whereas by āc it is indicated that Ac takes the
value ‘false’. A similar notation will be used
for the other random variables. Finally, a spe-
cific abnormality assumption concerning all ab-
normality variables is denoted by δC , which is
defined as follows:

δC = {ac | c ∈ C} ∪ {āc | c ∈ COMPS − C},

with C ⊆ COMPS. There are some sensible
constraints on the joint probability distribution
P of a Bayesian diagnosis system that can be
derived from the specification of the logical di-
agnostic system. These will be discussed later.

As with logical diagnostic problems, we need
to add observations to Bayesian diagnostic sys-
tems in order to be able to solve diagnostic prob-
lems. In logical diagnostic systems, observa-
tions are the inputs and outputs of a system.
It is generally not the case that the entire set
of inputs and outputs of a system is observed.
The set of input and output variables that have
been observed, are referred to by Iω and Oω,
respectively. The unobserved input and output
variables will be referred to as Iu and Ou, re-
spectively. We will use the notation iω to denote
the values of the observed inputs, and oω for the

observed output values. The set of observations
is then denoted as ω = iω ∪ oω.

Now, we are ready to define the notion
of Bayesian diagnostic problem, which is a
Bayesian diagnostic system augmented by a set
of observations.

Definition 3 (Bayesian diagnostic prob-

lem) A Bayesian diagnostic problem, denoted
by PB, is defined as the pair PB = (SB , ω),
where SB is a Bayesian diagnostic system and
ω the set of observations of this system.

Determining the diagnoses of a Bayesian diag-
nostic problem amounts to computing P (δC |
ω), and then finding the δC which maximises
P (δC | ω), i.e.

δ∗C = argmax
δC

P (δC | ω).

This problem is NP-hard (Gámez, 2004). The
probability P (δC | ω) can be computed by
Bayes’ rule, using the probabilities from the
specification of a Bayesian diagnostic system:

P (δC | ω) =
P (ω | δC)P (δC )

P (ω)
. (7)

As a consequence of the independences that
hold for a Bayesian diagnostic system, it is pos-
sible to simplify the computation of the condi-
tional probability distribution P (ω | δC). Ac-
cording to the definition of a Bayesian diagnos-
tic system it holds that

P (i | δC) = P (i) ,

for each i ⊆ (iω ∪ iu), as the input variables
and abnormality variables are independent. In
addition, it is assumed that the input variables
are independent.

Using these results, basic probability theory
and the definition of a Bayesian diagnostic prob-
lem yields the following derivation:

P (ω | δC) = P (iω, oω | δC)

=
∑

iu

P (iu)P (iω, oω | iu, δC)

= P (iω)
∑

iu

P (iu)

×
∑

ou

∏

c

P (Oc | π(Oc)), (8)



since it holds by the axioms of probability the-
ory that

P (iω, oω | iu, δC) =
∑

ou

P (iω)
∏

c

P (Oc | π(Oc)) .

To emphasise that the set of parents π(Oc) in-
cludes an abnormality variable that is assumed
to be true, i.e. the component is assumed to be-
have abnormally, the following notation is used
P (Oc | π(Oc) : ac); similar, for the situation
where the component c is assumed to behave
normally the notation P (Oc | π(Oc) : āc) is
employed. Finally, the following assumptions,
which will be used in the remainder of this pa-
per, are made:

• P (Oc | π(Oc) : ac) = P (Oc | ac), i.e.
the probabilistic behaviour of a component
that is faulty is independent of its inputs;

• P (Oc | π(Oc) : āc) ∈ {0, 1}, i.e. normal
components behave deterministically.

The probability P (oc | ac) will be abbreviated
in the following section as pc; thus P (ōc | ac) =
1−pc These are realistic assumptions, as it is un-
likely that detailed functional behaviour will be
known for a component that is faulty, whereas
when the component is not faulty, it is certain
it will behave as intended.

4 Decomposition of Probability

Distribution

To establish that probabilistic model-based di-
agnosis can be partly interpreted in terms of a
Poisson-binomial distribution, it is necessary to
decompose Equation (8) into various parts. The
first part will represent the probabilities that
components c produce the right, oc, or wrong,
ōc, output, which correspond to the success and
failure probabilities, respectively, of a Poisson-
binomial distribution. The second part repre-
sents a normally functioning system fragment,
which will be represented by a Boolean func-
tion. There is also a third part, which concerns
the observed and unobserved inputs. We start
by distinguishing between various types of com-
ponents, inputs and outputs, in order to make
the necessary distinction:

• The sets of components assumed to func-
tion normally and abnormally will be de-
noted by C ā and Ca, respectively, with
C ā, Ca ⊆ COMPS;

• The sets C ā and Ca are partitioned into
sets of components, for observed and unob-
served outputs, indicated by the sets C ā

ω,
C ā

u, Ca
ω and Ca

u, respectively.

Thus, C ā = C ā
ω ∪ C ā

u and Ca = Ca
ω ∪ Ca

u. In
addition, we will sometimes make a distinction
between components c for which oc has been
observed, and components c for which ōc has
been observed. These sets will be denoted by
Co

ω and C ō
ω, respectively. It holds that Co

ω and
C ō

ω constitute a partition of Cω. The nota-
tions can also be combined, e.g., as Ca,o

ω and
C

a,ō
ω . Furthermore, we will sometimes use a sim-

ilar notation for sets of output variables, e.g.,
Oā

u = {Oc | c ∈ C ā
u} and Oā

ω = {Oc | c ∈ C ā
ω},

and input variables, e.g., I ā
u =

⋃

c∈Cā
u
Ic indi-

cates unobserved inputs of components that are
assumed to behave normally and I ā

ω =
⋃

c∈Cā
ω
Ic

are observed inputs of components that are as-
sumed to behave normally, with Ic the set of
input variables of component c ∈ COMPS and
I ā = I ā

ω ∪ I ā
u .

The following lemma shows that it is possible
to decompose part of the joint probability dis-
tribution of Equation (6) using the component
sets defined above.

Lemma 1 The following statements hold:

• The joint probability distribution of the out-
puts of the set of assumed normally func-
tioning components C ā, can be decomposed
into two products as follows:

∏

c∈Cā

P (Oc | π(Oc) : āc)

=
∏

c∈Cā
u

P (Oc | π(Oc) : āc)

×
∏

c∈Cā
ω

P (Oc | π(Oc) : āc).

• Similarly, the joint probability distribution
of the outputs of the set of assumed abnor-
mally functioning components Ca, can be



decomposed into two products as follows:
∏

c∈Ca

P (Oc | π(Oc) : ac)

=
∏

c∈Ca
u

P (Oc | ac)
∏

c∈Ca
ω

P (Oc | ac).

Proof : The decompositions follows from the
definitions of the sets Ca, Ca

ω, Ca
u, C ā

u and C ā
ω,

and the independence assumptions underlying
the distribution P . 2

Now, based on Lemma 1, we can also decompose
the product of the entire set of components, as
follows:
∏

c

P (Oc | π(Oc))

=
∏

c∈Cā
u

P (Oc | π(Oc) : āc)
∏

c∈Cā
ω

P (Oc | π(Oc) : āc)

×
∏

c∈Ca
u

P (Oc | ac)
∏

c∈Ca
ω

P (Oc | ac).

Next, we show that the outputs of the set of
observed abnormal components Ca

ω only depend
on probabilities pc = P (oc | ac), c ∈ Ca

ω.

Lemma 2 The joint probability of observed
outputs of the abnormally assumed components
can be written as:
∏

c∈Ca
ω

P (Oc | π(Oc) : ac)=
∏

c∈C
a,o
ω

pc

∏

c∈C
a,ō
ω

(1 − pc).

Proof : This follows straight from the defini-
tions of Ca

ω, Ca,o
ω and Ca,ō

ω . 2

Recall that the probability of an output of a nor-
mally functioning component was assumed to
be either 0 or 1, i.e. P (Oc | π(Oc) : āc) ∈ {0, 1}.
Clearly, these probabilities yield, when multi-
plied, Boolean functions. One of these Boolean
functions, denoted by ϕ, is defined as follows:
ϕ(oā

u, o
a
u, i

ā) =
∏

c∈Cā
u
P (Oc | π(Oc) : āc), where

the set of parents π(Oc) may, but need not, con-
tain variables from the sets of variables Oa

u and
I ā. However, π(Oc) does not contain variables
from the set Ia, as these only condition variables
that are assumed to behave abnormally and are
then ignored, as mentioned at the end of the
previous section. Similarly, we define Boolean
functions ψ(ou, o

ā
ω, i

ā) =
∏

c∈Cā
ω
P (Oc | π(Oc) :

āc).

Lemma 3 For each value oa
u and iā, there ex-

ists exactly one value oā
u of the set of variables

Oā
u = {Oc | c ∈ C ā

u} for which it holds that
ϕ(oa

u, o
ā
u, i

ā) = 1; similarly, for each value ou

and iā there exists one value oā
ω of the set of

variables Oā
ω = {Oc | c ∈ C

ā
ω} for which it holds

that ψ(ou, o
ā
ω, i

ā) = 1.

Proof : As both the functions ϕ and ψ are
defined as products of conditional probability
distributions P (Oc | π(Oc) : āc), for which
we have that P (oc | π(Oc) : āc) ∈ {0, 1},
there is, due to the axioms of probability the-
ory, for any value of the variables corresponding
to the parents of the variables Oc at most one
value for each Oc for which the joint probability
∏

c P (Oc | π(Oc) : āc) = 1. 2

The following lemma, which is used later, is
a consequence of the definition of these Boolean
functions.

Lemma 4 Let the Boolean functions ϕ and ψ

be as defined above, then:

∑

ou

ϕ(oa
u, o

ā
u, i

ā)ψ(ou, o
ā
ω, i

ā)
∏

c∈Ca

P (Oc | ac) =

∑

oa
u

b(oa
u, i

ā)
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc),

with Boolean function b and pc = P (oc | ac).

Proof : For a fixed set of observed outputs oω

let b(ou, i
ā) = ϕ(oa

u, o
ā
u, i

ā)ψ(ou, o
ā
ω, i

ā), then,

∑

ou

ϕ(oa
u, o

ā
u, i

ā)ψ(ou, o
ā
ω, i

ā)
∏

c∈Ca

P (Oc | ac) =

∑

ou

b(ou, i
ā)

∏

c∈Ca

P (Oc | ac).

Furthermore, due to Lemma 3, it suffices to only
consider the restriction of the function b to the
variables Oa

u and I ā, as for given values oa
u and

iā, b(oa
u, o

ā
u, i

ā) = 0 for all but one value of Oā
u.

This function is denoted by b(oa
u, i

ā). The prod-
uct term results from application of a slight gen-
eralisation of Lemma 2. 2

We are now ready to establish that P (ω | δC)
can be written as the sum of weighted products
of the form

∏

c pc

∏

c′(1 − pc′).



Theorem 1 Let PB = (SB , ω) be a Bayesian
diagnostic problem. Then, P (ω | δC) can be
expressed as follows:

P (ω | δC) = P (iω)
∑

iāu

P (iāu)
∑

oa
u

b(oa
u, i

ā)

×
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc)

where b(oa
u, i

ā) ∈ {0, 1} and pc = P (oc | ac).

Proof : The result follows from the above lem-
mas and the fact that we sum over (part of) the
input variables I. Note that only the variables
I ā are used as conditioning variables, which fol-
lows from the assumption that P (Oc | π(Oc) :
ac) = P (Oc | ac). As only the input vari-
ables iāu are assumed to be dependent of out-
put variables, we obtain:

∑

iu,oa
u
P (iu) · · · =

∑

iāu,oa
u
P (iāu) · · ·. The Boolean function b(oa

u, i
ā)

is as above. 2

An alternative version of the theorem can be ob-
tained in terms of expectations using Equation
(4) for the Poisson-binomial distribution:

P (iω)
∑

iāu

P (iāu)
∑

oa
u

b(oa
u, i

ā)
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc)

= P (iω)
∏

c∈Ca
ω

P (Oc | ac)
∑

iāu

P (iāu)EP (biā(Oa
u)),

i.e. the sum of the mean of the Boolean func-
tions biā , which are functions of the unobserved
inputs iāu, in terms of the probability function
P (Equation (4)), weighed by the prior proba-
bility of unobserved inputs iāu. Combining this
with Equation (7) yields P (δC | ω). Thus, to
probabilistically rank diagnoses δC it is neces-
sary to compute: (i) EP (biā(Oa

u)), the Poisson-
binomial distribution mean of the behaviour of
the normally assumed components, (ii) P (iāu),
(iii)

∏

c∈Ca
ω
P (Oc | ac), the observed abnormal

components, and (iv) the prior P (δc). Note that
both P (iω) and P (ω) can be ignored.

5 Conclusions

We have shown that probabilistic model-based
diagnosis, which is an extension of traditional
GDE-like model-based diagnosis, can be decom-
posed into computation of various probabilities,

in which a central role is played by the Poisson-
binomial distribution. When all probabilities
pc = P (oc | ac) are assumed to be equal, a com-
mon simplifying assumption in model-based di-
agnosis, the analysis reduces to the use of the
standard binomial distribution.

So far, most other research on integrating
probabilistic reasoning with logic-based model-
based diagnosis took probabilistic reasoning as
adding some sort of uncertain, abductive rea-
soning to logical reasoning. No attempts were
made in related research to look inside what
happens in the diagnostic process, as was done
in this paper. We expect that it becomes
thus possible to investigate further variations
in probabilistic model-based diagnosis, for ex-
ample, by adopting assumptions different from
those in this paper with regard to fault be-
haviour in systems.

References

L. Le Cam. 1960. An approximation theorem for the
poisson binomial distribution. Pacific Journal of
Mathematics, 10:1181–1197.

J. Darroch. 1964. On the distribution of the number
of successes in independent trials. The Annals of
Mathematical Statistics, 35:1317–1321.

J. de Kleer and B. C. Williams. 1987. Diagnosing
multiple faults. Artificial Intelligence, 32:97–130.

J. de Kleer, A. K. Mackworth, and R. Reiter. 1992.
Characterizing diagnoses and systems. Artificial
Intelligence, 52:197–222.

J.A. Gámez, 2004. Abductive inference in Bayesian
Networks: a review, pages 101–120. Springer,
Berlin.

H. Geffner and J. Pearl. 1987. Distributed diagnosis
of systems with multiple faults. In Proc. of the
3rd IEEE Conference on AI Applications, pages
156–162. IEEE.

P.J.F. Lucas. 2005. Bayesian network modelling
through qualitative patterns. Artificial Intelli-
gence, 163:233–263.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kauffman, San Francisco, CA.

R. Reiter. 1987. A theory of diagnosis from first
principles. Artificial Intelligence, 32:57–95.



Efficient Bayesian Network Learning Using EM or Pairwise Deletion

Olivier C. H. François

University of Reading, Sustainable Urban Environments Research Division,
URS building, 3n38, Whiteknights, PO Box 219, RG6 6AW, Reading, United Kingdom.

http://ofrancois.tuxfamily.org

Abstract

In previous work, we have seen how to learn a TAN classifier from incomplete dataset
using the Expectation Maximisation algorithm (François and Leray, 2006). In this paper,
we study differences for Bayesian network structure learning between estimating prob-
abilities using the EM algorithm or using Pairwise Deletion. We have implemented these
two estimation techniques with greedy search learning methods in several spaces: Trees,
Directed Acyclic Graphs, Completed Partially Directed Acyclic Graphs or Tree Augmented
Naive Bayes structures. An experimental study shows strengths and weaknesses of using
the EM algorithm or Pairwise Deletion on classification tasks.

1 Introduction

Bayesian networks introduced by (Kim and
Pearl, 1987) are a formalism of probabilistic
reasoning used increasingly in decision aid, di-
agnosis and complex systems control (Jensen,
1996; Pearl, 1998; Naïm et al., 2004).

Let X = {X1, . . . , Xn} be a set of discrete
random variables. A Discrete Bayesian network
B =< G , Θ > is defined by a directed acyclic
graph (DAG) G =< N, U > where N repre-
sents the set of nodes (one node for each vari-
able) and U the set of edges,AND parameters
Θ =

{

θi jk

}

16i6n,16 j6qi ,16k6ri
the set of condi-

tional probability tables of each node Xi know-
ing its parents’ state Pa(Xi) (with ri and qi as
respective cardinalities of Xi and Pa(Xi)).

Determination of Θ (when G is given) is
often based on expert knowledge, but sev-
eral learning methods based on data have ap-
peared. However, most of these methods only
deal with complete data cases.

We will therefore first recall the issues re-
lating to structural learning and review the var-
ious ways of dealing with incomplete data for
structure determination.

Because of the super-exponential size of
the search space (Gillispie and Lemieux, 2001),

exhaustive search for the best Bayesian net-
work structure is impossible. Many heuristic
methods have been proposed to determine the
structure of a Bayesian network. Some of them
rely on human expert knowledge, others use
real data which are -most of the time- com-
pletely observed.

We are here more specifically interested
in score-based methods, primarily MWST pro-
posed by (Chow and Liu, 1968) and applied to
Bayesian networks in (Heckerman et al., 1995),
then GS algorithm (Chickering et al., 1995), and
finally GES algorithm proposed by (Chickering
and Meek, 2002). GS is a greedy search carried
out in DAG spaces where the interest of each
structure located near the current structure is
assessed by means of a Bayesian score like
BDe (Heckerman et al., 1994) or a BIC/MDL
type measurement (equation 1). As (Friedman,
1997), we consider that the BIC/MDL score is
a function of the graph G and the parameters
Θ, generalising the classical definition of the
BIC score which is defined with our notation
by BIC(G , Θ∗) where Θ

∗ is obtained by max-
imising the likelihood or BIC(G , Θ) score for a
given G which is given by

BIC(G , Θ) = log P(D|G , Θ) −
log N

2
Dim(G)

(1)

http://ofrancois.tuxfamily.org


where Dim(G) is the number of parameters
used for the Bayesian network representation
and N is the size of the dataset D.

The BIC score is decomposable. It can be
written as the sum of local score computed for
each node of the graph:

BIC(G , Θ) = ∑
i

bic(Xi, Pi, ΘXi|Pi
) (2)

where bic(Xi, Pi, ΘXi|Pi
) =

∑
Xi=xk

∑
Pi=pa j

Ni jk logθi jk −
log N

2
Dim(ΘXi|Pi

)

with Ni jk the occurrence number of {Xi = xk

and Pi = pa j} in D.

An improvement of the greedy search in
DAG space over CPDAG space have also been
proposed by (Chickering, 2002b). The MWST
principle is rather different. This algorithm de-
termines the best tree that links all the vari-
ables, using a mutual information measure-
ment (Chow and Liu, 1968) or the BIC score
variation when two variables become linked
(Heckerman et al., 1994).

The aim is to compare improvement of
learning algorithms in these different spaces
when the dataset is incomplete and when using
two different methods for estimating probabil-
ity: pairwise deletion (ACA, for available cases
analysis) and the Expectation-Maximisation al-
gorithm.

2 Dealing with incomplete data

2.1 Nature of missing data.

Let D = {Xl
i}16i6n,16l6N our dataset, with Do

the observed part of D, Dm the missing part
and Dco the set of completely observed cases

in Do. Let also M = {Mil} with Mil = 1 if Xl
i

is missing, 0 if it is not.

Dm = {Xl
i /Mil = 1} 16i6n,16l6N

Do = {Xl
i /Mil = 0} 16i6n,16l6N

Dco = {[Xl
1 . . . Xl

n]/[M1l . . . Mnl ] = [0 . . . 0]} 16l6N

Dealing with missing data depends on
their nature. (Rubin, 1976) identified several
types of missing data:

• MCAR (Missing Completely At Random):
P(M|D) = P(M), the probability for
data to be missing does not depend on D,

• MAR (Missing At Random):
P(M|D) = P(M|Do), the probability to
be missing depends on observed data,

• NMAR (Not Missing At Random): the
probability for data to be missing depends
on both observed and missing data.

MCAR and MAR cases are the easiest to solve
as observed data include all necessary informa-
tion to estimate missing data distribution. The
case of NMAR is trickier as outside informa-
tion has to be used to model missing data dis-
tribution. Many methods try to rely more on all
the observed data. Among them are sequential
updating (Spiegelhalter and Lauritzen, 1990),
Gibbs sampling (Geman and Geman, 1984), and
the EM algorithm. More recently, bound and
collapse (Ramoni and Sebastiani, 1998) and ro-
bust Bayesian estimator (Ramoni and Sebastiani,
2000) try to resolve this task whatever the na-
ture of missing data.

EM has been first proposed by (Demp-
ster et al., 1977) and adapted by (Lauritzen,
1995) to the learning of the parameters of a
Bayesian network whose structure is known.
Let log P(D|Θ) = log P(Do,Dm|Θ) be the data
log-likelihood. Dm being an unmeasured ran-
dom variable, this log-likelihood is also a ran-
dom variable function of Dm. By establish-
ing a reference model Θ

∗, it is possible to es-
timate the probability density of the missing
data P(Dm|Θ∗) and therefore to calculate Q(Θ :
Θ

∗) expectation of the previous log-likelihood:

Q(Θ : Θ
∗) = EΘ∗ [log P(Do,Dm|Θ)] (3)

So Q(Θ : Θ
∗) is the likelihood expectation of

any set of parameters Θ calculated using a dis-
tribution of the missing data P(Dm|Θ∗). Equa-
tion 3 can be re-written as follows:

Q(Θ : Θ
∗) =

n

∑
i=1

∑
Xi=xk

∑
Pi=pa j

N∗
i jk logθi jk (4)

where N∗
i jk =EΘ∗

[

Ni jk

]

= N×P(Xi=xk,Pi=pa j|Θ
∗)

is obtained by inference in the network
< G , Θ∗ > if the {Xi,Pi} are not completely mea-
sured, or else only by mere counting.



We are also interested in pairwise deletion
which is a method that uses all available data.
Cases are removed when they have missing
data on the variables involved in that particu-
lar computation. This method is very efficient
computationally but it assumes that the data
are missing completely at random (MCAR). If
not, it introduces a bias.

We are interested in studying the results
quality that could be expected using these two
methods named EM and ACA.

2.2 Determining structure Θ when data are

incomplete.

The main methods for structural learning with
incomplete data use the EM principle : Al-
ternative Model Selection EM (AMS-EM) (Fried-
man, 1997) and Bayesian Structural EM (BS-EM)
(Friedman, 1998). We can also cite the Hy-
brid Independence Test proposed in (Dash and
Druzdzel, 2003) that can use EM to estimate the
essential sufficient statistics that are then used
for an independence test in a constraint-based
method. (Myers et al., 1999) proposes a struc-
tural learning method based on genetic algo-
rithm and MCMC.

2.3 General principle and scoring metric

In practice, to perform a maximisation in the
joint space {G , Θ}, we must distinguish these
two steps1 :

G i = argmax
G

Q(G , • : G i−1, Θi−1) (5)

Θ
i = argmax

Θ

Q(G i, Θ : G i−1, Θi−1) (6)

where Q(G , Θ : G∗, Θ∗) is the expectation of the
likelihood of any Bayesian network < G , Θ >
calculated using a distribution of the missing
data P(Dm|G∗, Θ∗).

Note that the first search (equation 5) in the
space of possible graphs takes us back to the
initial problem, i.e. the search for the best struc-
ture in a super-exponential space. However,
with Generalised EM it is possible to look for a
better solution to function Q, rather than the

1the notation Q(G , • : . . . ) used in equation 5 stands
for EΘ[Q(G , Θ : . . . )] for Bayesian scores or Q(G , Θo :
. . . ) where Θ

o is obtained by likelihood maximisation

best possible one, without affecting the algo-
rithm convergence properties. This search for
a better solution can then be done in a limited
space, like for example VG , the set of the neigh-
bours of graph G that have been generated by
removal, addition or inversion of an arc inter-
preted either in the DAG space or in the CPDAG

space.
We now have to choose the function Q that

will be used for structural learning. The likeli-
hood used for parameter learning is not a good
indicator to determine the best graph since it
gives more importance to strongly connected
structures. Moreover, it is impossible to calcu-
late marginal likelihood when data are incom-
plete, so that it is necessary to rely on an ef-
ficient approximation like those reviewed by
(Chickering and Heckerman, 1996). In com-
plete data cases, the most frequently used mea-
surements are the BIC/MDL score and the
Bayesian BDe score. These two scoring metrics
are locally consistent but the BIC/MDL score
includes a penalty term and we have chosen it
for this study.

QBIC(G , Θ : G∗ , Θ∗) = EG∗ ,Θ∗ [log P(Do ,Dm|G , Θ)]

− 1
2 Dim(G) log N (7)

As the BIC score is decomposable, so is QBIC:

QBIC(G , Θ : G∗ , Θ∗)=∑
i

Qbic(Xi , Pi , ΘXi|Pi
: G∗ , Θ∗) (8)

where Qbic(Xi , Pi , ΘXi|Pi
: G∗ , Θ∗) =

∑
Xi=xk

∑
Pi=pa j

N∗
i jk logθi jk −

log N

2
Dim(ΘXi|Pi

) (9)

3 Tested structural learning algorithms

3.1 Greedy Search

3.1.1 SEM

Friedman has proposed two versions of
his Bayesian network greedy search algorithm
based on suggestions of (Heckerman et al.,
1995) but adapted for incomplete datasets :
AMS-EM (Friedman, 1997) and BS-EM (Fried-
man, 1998). We have chosen to use the method
AMS-EM that we simply recall SEM as many
people do as it could be used with the BIC cri-
terion as explain above.



3.1.2 GS-ACA

A new implementation a the greedy search
inspired by (Cooper and Hersovits, 1992;
Heckerman et al., 1994) using pairwise deletion
to deal with incomplete dataset is also tested.

3.2 Greedy Equivalent Search

3.2.1 GES-EM

Recent work by (Chickering, 2002a;
Castelo and Kocka, 2002; Auvray and We-
henkel, 2002) show that we could take
advantage of using the CPDAGs space. Such
a space has less equal scoring models than
the DAGs space, as many DAGs have the same
representation in a unique CPDAG.

A search algorithm in the Markov equiv-
alent space named GES for Greedy Equivalent
Search has been proposed by (Meek, 1997). It
consists in two iterative steps. First one builds
iteratively a graph by adding dependence links
to the current essential graph (i.e. CPDAG)
while the second step consists in removing it-
eratively arcs that are no more needed in the
model. The optimality of this method (conjec-
ture of Meek) has been proved by (Koc̆ka et al.,
2001; Chickering, 2002b).

The GES-EM algorithm keep the principles
of the SEM method using the Markov equiva-
lent space to build neighbourhood of the cur-
rent graph at each steps.

3.2.2 GES-ACA

A version of this method using the avail-
able cases analysis (i.e. pairwise deletion) is
also implemented using the BIC criterion.

3.3 Maximum Weight Spanning Tree

3.3.1 General principle of MWST-EM

(François and Leray, 2004) have shown
that, in complete data cases, the MWST algo-
rithm was able to find a simple structure very
rapidly (the best tree connecting all the nodes
in the space), which could be used as judicious
initialisation by the GS algorithm. (Hecker-
man et al., 1995) suggests using the variation
of any decomposable score instead of the mu-
tual information originally used in MWST. Us-

ing this remark, we could therefore implement
the MWST algorithm using the EM algorithm
to manage incomplete datasets.

MWST-EM deals with the choice of the ini-
tial structure. The choice of an oriented chain
graph linking all the variables proposed by
(Friedman, 1997) seems judicious here, since
this chain graph also belongs to the tree space.
The MWST algorithm used a similarity func-
tion between two nodes which is based on the
BIC score variation whether X j is linked to Xi

or not. This function can be summed up in the
following symmetrical matrix :
[

MQ
i j

]

=
[

Qbic(Xi, Pi = X j, ΘXi|X j
: T ∗, Θ∗)

−Qbic(Xi, Pi = ∅, ΘXi : T ∗, Θ∗)
]

(10)

Running maximum (weight) spanning algo-
rithms like Kruskal’s or Prim’s on matrix M en-
ables us to obtain the best tree that maximises
the sum of the local scores on all the nodes, i.e.
function QBIC of equation 8.

This method looks for the best tree-DAG

among the neighbours of the current graph.
With MWST-EM, we can directly get the best
tree that maximises function Q at each step and
then this method converge in few steps.

3.3.2 Trees as an initialisation of DAGs

greedy search : SEM+T and GS+T-ACA

MWST-EM will serve as initialisation of
the SEM algorithms proposed by Friedman.
This variant of the structural EM algorithm will
be called SEM+T (François, 2006). MWST-ACA
will serve as initialisation of the GS-ACA, the
resulting method is called GS+T-ACA.

3.3.3 MWST-ACA

We could adapt this algorithm using pair-
wise deletion. For evaluating the probability
pi jk = P(Xi = xi,k and Pa(Xi) = pai, j), we no
longer need an iterative method as the EM al-
gorithm. To deduce Ni jk = pi jk × N, we need
to evaluate pi jk on a new sub-dataset that con-
tain only the complete cases of the variables
Xi ∪ Pa(Xi).

This method is the only direct method
to learn a Bayesian network from incomplete
dataset in our knowledge.



3.3.4 Extension to classification problems :

TAN-EM and TAN-ACA

For classification tasks (where data are in-
complete), many studies like those of (Keogh
and Pazzani, 1999; Leray and François, 2004b)
use a structure based on an augmented naive
Bayesian network, where observations (i.e. all
the variables except class) are linked to the very
best tree (TAN, Tree Augmented Naive Bayes).
(Geiger, 1992) showed it was the tree obtained
by running MWST on the observations. It
is therefore possible to extend this specific
structure to classification problems when data
are incomplete by running a specific version
MWST-EM where the class node is considered
as a parent of each other nodes. This algorithm
will be called TAN-EM.

A version of this method using pairwise
deletion named TAN-ACA is also tested.

3.4 Experimental tests

3.4.1 Datasets and evaluation techniques

The experiment stage aims at evaluating
all these structure learning methods on incom-
plete datasets: Hepatitis, Horse, House, Mush-
rooms and Thyroid (Blake and Merz, 1998).

We indicate classification rates obtained by
the best run on three of the different methods
as well as the likelihood and the learning time
of the best model on these 3 runs. We also give
an 95%-confidence interval based on equation
11 for each classification rate based on (Ben-
nani and Bossaert, 1996).

I(α, N) =
T + Z2

α

2N ± Zα

√

T(1−T)
N + Z2

α

4N2

1 + Z2
α

N

(11)

where N is the sample size, T is the classifier
good classification percentage and Zα = 1.96
for α = 95%.

All implementation were done with the
Structure Learning Package (Leray and François,
2004a) for the Bayes Net Toolbox (Murphy, 2001).

3.4.2 Results and interpretations

The results are summed up in table 1. First,
we could see that even if the Naive Bayes clas-
sifier often gives good results, the other tested

methods allow to obtain better classification
rates. Whilst all runs of Naive Bayes classi-
fier and ACA methods give same results, EM
methods do not always give same results be-
cause of the first parameters estimation ran-
dom initialisation. We have also noticed (not
reported here) that TAN methods seem the sta-
bler methods concerning the evaluated classi-
fication rate while MWST methods seem to be
the less ones.

The method GS-EM could obtain very
good structures. Then, initialising it with the
results of MWST-EM gives stabler results (see
(Leray and François, 2005) for a more specific
study of this point).

In our tests, except for Hepatitis dataset
that have only 90 learning samples, TAN meth-
ods always obtain structures that lead to bet-
ter classification rates in comparison with the
other structure learning methods.

Remark that MWST methods could occa-
sionally give good classification rates even if
the class node is connected to a maximum of
two other attributes. In that case, it could be
a good hint of most relevant attributes to the
class node.

Regarding the log-likelihood reported in
table 1, we see that GS-ACA give best results
while TAN methods finds structures that can
also lead to a good approximation of the under-
lying probability distribution of the data, even
with a strong constraint on the graph structure.

In these experiments, we could confirm
that ACA methods could outperform EM
methods on classification for GS and GES
learning methods but not systematically. Re-
sults are similar for MWST and TAN methods
for classification but ACA leads to better log-
likelihoods. Classification rates are different
but ACA methods could beat EM methods as
often as EM methods could beat ACA methods
for these two algorithms.

Finally, the table 1 illustrates that TAN and
MWST methods have about the same complex-
ity (regarding the computational time) and are
a good compromise between Naive Bayes clas-
sifiers and Greedy Searches either in DAGs or
CPDAG spaces.



Method HEPATITIS HORSE HOUSE MUSHROOMS THYROID

sizes 20; 90;65; 8% 28; 300;300; 88% 17; 290;145; 46% 23; 5416;2708; 31% 22; 2800;972; 30%

NB 73.8% [62.0;83.0] 73.5% [62.0;82.6] 89.7% [83.6;93.6] 94.4% [93.5;95.2] 96.0% [94.6;97.1]

-1122 (0s) -1540 (0s) -1404 (0s) -41147 (0s) -15728 (0s)

MWST-ACA 58.5% [46.3;69.6] 82.4% [71.6;89.6] 90.3% [84.4;94.2] 75.0% [73.3;76.6] 77.4% [74.6;79.9]

-847 (2s) -1240 (16s) -1282 (5s) -31447 (178s) -15359 (96s)

MWST-EM 75.4% [63.7;84.2] 82.4% [71.6;89.6] 82.1% [75.0;87.5] 60.3% [58.5;62.2] 93.8% [92.1;95.2]

-1114 (45s) -1306 (299s) -1462 (67s) -39773 (1389s) -16912 (2254s)

TAN-ACA 64.6% [52.5;75.1] 73.5% [62.0;82.6] 93.1% [87.8;96.2] 98.4% [97.8;98.8] 95.9% [94.4;97.0]

-1123 (2s) -1319 (15s) -1284 (4s) -20453 (183s) -15894 (86s)

TAN-EM 64.6% [52.5;75.1] 77.9% [66.7;86.2] 91.7% [86.1;95.2] 98.4% [97.8;98.8] 97.0% [95.7;97.9]

-1186 (71s) -1546 (307s) -1339 (185s) -33885 (2345s) -16292 (1936s)

GS-ACA 67.7% [55.6;77.8] 80.9% [70.0;88.5] 91.7% [86.1;95.2] 76.7% [75.0;78.2] 77.4% [74.6;79.9]

-865 (55s) -1052 (774s) -1289 (71s) -25256 (9086s) -15394 (2537s)

SEM 64.6% [52.5;75.1] 51.5% [39.8;62.9] 67.6% [59.6;74.7] 74.9% [73.2;76.5] 93.8% [92.1;95.2]

-1091 (156s) -1442 (977s) -1483 (982s) -50969 (22562s) -16197 (963s)

GS+T-ACA 58.5% [46.3;69.6] 77.9% [66.7;86.2] 93.1% [87.8;96.2] 77.1% [75.5;78.6] 77.4% [74.6;79.9]

-826 (16s) -1052 (603s) -1233 (52s) -20469 (5050s) -15391 (856s)

SEM+T 64.6% [52.5;75.1] 51.5% [39.8;62.9] 93.1% [87.8;96.2] 74.9% [73.2;76.5] 93.8% [92.1;95.2]

-1112 (341s) -1447 (2190s) -1485 (1094s) -50969 (30417s) -15729 (5492s)

GES-ACA 64.6% [52.5;75.1] 82.4% [71.6;89.6] 93.8% [88.6;96.7] 77.1% [75.5;78.6] 96.1% [94.7;97.1]

-866 (76s) -1160 (536s) -1293 (123s) -23462 (6350s) -15535 (515s)

GES-EM 64.6% [52.5;75.1] 51.5% [39.8;62.9] 68.3% [60.3;75.3] 74.9% [73.2;76.5] 93.8% [92.1;95.2]

-1101 (240s) -1446 (1120s) -1522 (1062s) -38947 (54748s) -16197 (1545s)

Table 1: Two first lines : dataset names; number of attributes; dataset length; test dataset length; percentage
of incomplete entries. Following lines : method names; best good classification percentage on three runs; 95%-
confidence interval; selected model likelihood; learning time in seconds on a laptop 2.4GHz with Matlab R©R2006a.

4 Conclusions and prospects

Bayesian networks are a tool of choice for
reasoning in uncertainty. However, most of
the time, Bayesian network structural learning
only deal with complete data.

Usually EM principle is used for structure
learning as it has been proved to be optimal
when the dataset is MAR as ACA is known to
introduce a bias when the dataset is MAR and
not only MCAR. In those experiments, we have
supposed that learning datasets are NMAR as
they are real life issued datasets and as it is dif-
ficult to know the kind of the dataset if you
have not artificially built it. There is no more
reasons to use EM rather than ACA during the
learning process as both methods are biased.

In this study, ACA (available cases analy-
sis or pairwise deletion) has empirically been
compared to EM for Bayesian structure learn-

ing. First results show that this method is quite
efficient and not very complex. By using it, it is
possible to find structures which have a good
likelihood and lead to good classification rates,
and to do really less time than using the EM al-
gorithm. This first conclusive experiment stage
is not final. We are now planning to test and
evaluate these algorithms on a wider range of
problems.

Moreover, we know the limitation of the
BIC criterion and we need to try other crite-
rions: some specific to classification problems
as an adaptation of the classification likelihood
LCL/LLc or of ICL to structure learning or
more general ones as AIC, AICc, BDe, BDeu,
BDγ, MDL/IMDL to study which one perform
well with ACA or EM as we have noticed big
graphical differences in learnt structures de-
pending on the used method (not reported here
because of space limitation).



Acknowledgements

We would like to thank Philippe Leray for the
useful discussions we have had.

References

[Auvray and Wehenkel2002] V. Auvray and L. We-
henkel. 2002. On the construction of the in-
clusion boundary neighbourhood for markov
equivalence classes of bayesian network struc-
tures. In Adnan Darwiche and Nir Friedman,
editors, Proceedings of the 18th Conference on Un-
certainty in Artificial Intelligence (UAI-02), pages
26–35, S.F., Cal. Morgan Kaufmann Publishers.

[Bennani and Bossaert1996] Y. Bennani and
F. Bossaert. 1996. Predictive neural net-
works for traffic disturbance detection in
the telephone network. In Proceedings of
IMACS-CESA’96, Lille, France.

[Blake and Merz1998] C.L. Blake and C.J. Merz.
1998. UCI repository of machine learning
databases.

[Castelo and Kocka2002] R. Castelo and T. Kocka.
2002. Towards an inclusion driven learning of
bayesian networks. Technical Report UU-CS-
2002-05, Institute of information and comput-
ing sciences, University of Utrecht.

[Chickering and Heckerman1996] D. Chickering
and D. Heckerman. 1996. Efficient Ap-
proximation for the Marginal Likelihood of
Incomplete Data given a Bayesian Network.
In UAI’96, pages 158–168. Morgan Kaufmann.

[Chickering and Meek2002] D. Chickering and
C. Meek. 2002. Finding optimal bayesian net-
works. In Adnan Darwiche and Nir Friedman,
editors, Proceedings of the 18th Conference on
Uncertainty in Artificial Intelligence (UAI-02),
pages 94–102, S.F., Cal. Morgan Kaufmann
Publishers.

[Chickering et al.1995] D. Chickering, D. Geiger,
and D. Heckerman. 1995. Learning bayesian
networks: Search methods and experimental
results. In In Proceedings of Fifth Conference on
Artificial Intelligence and Statistics, pages 112–
128.

[Chickering2002a] D.M. Chickering. 2002a. Learn-
ing equivalence classes of bayesian-network
structures. Journal of machine learning research,
2:445–498.

[Chickering2002b] D.M. Chickering. 2002b. Op-
timal structure identification with greedy
search. Journal of Machine Learning Research,
3:507–554, November.

[Chow and Liu1968] C.K. Chow and C.N. Liu. 1968.
Approximating discrete probability distribu-
tions with dependence trees. IEEE Transactions
on Information Theory, 14(3):462–467.

[Cooper and Hersovits1992] G. Cooper and
E. Hersovits. 1992. A bayesian method
for the induction of probabilistic networks
from data. Maching Learning, 9:309–347.

[Dash and Druzdzel2003] D. Dash and M.J.
Druzdzel. 2003. Robust independence
testing for constraint-based learning of causal
structure. Proceedings of The Nineteenth Con-
ference on Uncertainty in Artificial Intelligence
(UAI03), pp 167-174.

[Dempster et al.1977] A. Dempster, N. Laird, and
D. Rubin. 1977. Maximum likelihood from in-
complete data via the EM algorithm. Journal of
the Royal Statistical Society, B 39:1–38.

[François and Leray2004] O. François and
P. Leray. 2004. Evaluation d’algorithmes
d’apprentissage de structure pour les réseaux
bayésiens. In 14ieme Congrès francophone
de Reconnaissance des formes et d’Intelligence
artificielle, pages 1453–1460.

[François and Leray2006] O.C.H. François and
P. Leray. 2006. Learning the tree aug-
mented naive bayes classifier from incomplete
datasets. In Proceedings of the Third European
Workshop on Probabilistic Graphical Models
(PGM’06), pages 91–98, Prague, Czech Repub-
lic, september.

[François2006] Olivier François. 2006. De
l’identification de structure de réseaux
bayésiens à la reconnaissance de formes à
partir d’informations complètes ou incom-
plètes. Ph.D. thesis, Institut National des
Sciences Appliquées de Rouen (INSA),
http://ofrancois.tuxfamily.org/these.html.

[Friedman1997] N. Friedman. 1997. Learning be-
lief networks in the presence of missing val-
ues and hidden variables. In Proceedings of the
14th International Conference on Machine Learn-
ing, pages 125–133. Morgan Kaufmann.

[Friedman1998] N. Friedman. 1998. The bayesian
structural EM algorithm. In Gregory F. Cooper
and Serafín Moral, editors, Proceedings of the
14th Conference on Uncertainty in Artificial Intel-
ligence (UAI-98), pages 129–138, San Francisco,
July. Morgan Kaufmann.



[Geiger1992] D. Geiger. 1992. An entropy-based
learning algorithm of bayesian conditional
trees. In Uncertainty in Artificial Intelligence:
Proceedings of the Eighth Conference (UAI-1992),
pages 92–97, San Mateo, CA. Morgan Kauf-
mann Publishers.

[Geman and Geman1984] S. Geman and D. Geman.
1984. Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6(6):721–741, November.

[Gillispie and Lemieux2001] S.B. Gillispie and
C. Lemieux. 2001. Enumerating markov
equivalence classes of acyclic digraph models.
In Uncertainty in Artificial Intelligence: Proceed-
ings of the Seventeenth Conference (UAI-2001),
pages 171–177, San Francisco, CA. Morgan
Kaufmann Publishers.

[Heckerman et al.1994] D. Heckerman, D. Geiger,
and M. Chickering. 1994. Learning Bayesian
networks: The combination of knowledge and
statistical data. In Ramon Lopez de Man-
taras and David Poole, editors, Proceedings of
the 10th Conference on Uncertainty in Artificial
Intelligence, pages 293–301, San Francisco, CA,
USA, July. Morgan Kaufmann Publishers.

[Heckerman et al.1995] D. Heckerman, D. Geiger,
and M. Chickering. 1995. Learning Bayesian
networks: The combination of knowledge and
statistical data. Machine Learning, 20:197–243.

[Jensen1996] F.V. Jensen. 1996. An introduction to
Bayesian Networks. Taylor and Francis, London,
United Kingdom.

[Keogh and Pazzani1999] E. Keogh and M. Pazzani.
1999. Learning augmented bayesian classi-
fiers: A comparison of distribution-based and
classification-based approaches. In Proceedings
of the Seventh International Workshop on Artificial
Intelligence and Statistics, pages 225–230.

[Kim and Pearl1987] J.H. Kim and J. Pearl. 1987.
Convice; a conversational inference consolida-
tion engine. IEEE Trans. on Systems, Man and
Cybernetics, 17:120–132.

[Koc̆ka et al.2001] T. Koc̆ka, R.R. Bouckaert, and
M. Studenỳ. 2001. On characterization in-
clusion of bayesian networks. In J Breese
and D. Koller, editors, Proceedings of the Seven-
teenth Conference on Uncertainty in Artificial In-
telligence., pages 261–268. Morgan Kaufmann.

[Lauritzen1995] S. Lauritzen. 1995. The EM al-
gorithm for graphical association models with
missing data. Computational Statistics and Data
Analysis, 19:191–201.

[Leray and François2004a] P. Leray and O. François.
2004a. BNT structure learning package: Docu-
mentation and experiments. Technical Report
2004/PhLOF, Laboratoire PSI, INSA de Rouen.

[Leray and François2004b] P. Leray and O. François.
2004b. Réseaux bayésiens pour la classification
- méthodologie et illustration dans le cadre du
diagnostic médical. Revue d’Intelligence Artifi-
cielle, 18(2/2004):169–193.

[Leray and François2005] P. Leray and O. François.
2005. Bayesian Network Structural Learning
and Incomplete Data. In Proceedings of the
International and Interdisciplinary Conference on
Adaptive Knowledge Representation and Reason-
ing (AKRR 2005), Espoo, Finland, pages 33–40.

[Meek1997] C. Meek. 1997. Graphical Models: Se-
lecting causal and statistical models. Ph.D. thesis,
Carnegie Mellon University.

[Murphy2001] K. Murphy. 2001. The BayesNet
Toolbox for Matlab. Computing Science and
Statistics: Proceedings of Interface, 33.

[Myers et al.1999] J.W. Myers, K.B. Laskey, and T.S.
Lewitt. 1999. Learning bayesian network from
incomplete data with stochastic search algo-
rithms. In the Proceedings of the Fifteenth Con-
ference on Uncertainty in Artificial Intelligence
(UAI99).

[Naïm et al.2004] P. Naïm, P.-H. Wuillemin, P. Leray,
O. Pourret, and A. Becker. 2004. Réseaux
bayésiens. Eyrolles, ISBN : 2-212-11137-1.

[Pearl1998] J. Pearl. 1998. Graphical models for
probabilistic and causal reasoning. In Dov M.
Gabbay and Philippe Smets, editors, Handbook
of Defeasible Reasoning and Uncertainty Manage-
ment Systems, Volume 1: Quantified Representa-
tion of Uncertainty and Imprecision, pages 367–
389. Kluwer Academic Publishers, Dordrecht.

[Ramoni and Sebastiani1998] M. Ramoni and P. Se-
bastiani. 1998. Parameter estimation in
Bayesian networks from incomplete databases.
Intelligent Data Analysis, 2:139–160.

[Ramoni and Sebastiani2000] M. Ramoni and P. Se-
bastiani. 2000. Robust learning with missing
data. Machine Learning, 45:147–170.

[Rubin1976] D.B. Rubin. 1976. Inference and miss-
ing data. Biometrika, 63:581–592.

[Spiegelhalter and Lauritzen1990] D. J. Spiegelhal-
ter and S. L. Lauritzen. 1990. Sequential up-
dating of conditional probabilities on directed
graphical structures. Networks, 20:579–605.



Robust Classification using Mixtures of Dependency Networks

José A. Gámez1 and Juan L. Mateo1 and Thomas D. Nielsen2 and José M. Puerta1

1 Computing Systems Department – SIMD i3A 2 Department of Computer Science
University of Castilla-La Mancha Aalborg University

02071, Albacete, Spain 9220 Aalborg, Denmark

Abstract

Dependency networks have previously been proposed as alternatives to e.g. Bayesian net-
works by supporting fast algorithms for automatic learning. Recently dependency net-
works have also been proposed as classification models, but as with e.g. general proba-
bilistic inference, the reported speed-ups are often obtained at the expense of accuracy.
In this paper we try to address this issue through the use of mixtures of dependency
networks. To reduce learning time and improve robustness when dealing with data sparse
classes, we outline methods for reusing calculations across mixture components. Finally,
the proposed model is empirically compared to other state-of-the-art classifiers, both in
terms of accuracy and learning time.

1 Introduction

Classification is a typical data mining task in
which the class label for new instances must be
inferred from the values taken by their predic-
tive attributes. The induction of accurate clas-
sifiers from pre-labelled data is a hot area of re-
search in machine learning and artificial intelli-
gence. Among the wide range of paradigms used
to induce classifiers, Bayesian network classifiers
(BNCs) (Friedman et al., 1997) have received
much attention.

In this paper we consider the use of a spe-
cial class of dependency networks (Heckerman
et al., 2000) for classification. Compared to
BNs, dependency networks allow directed cy-
cles, and structural learning can therefore be
performed very efficiently, since the node fami-
lies can be learned independently of each other.
On the other hand, due to the presence of cycles,
standard BN inference algorithms cannot be
adapted and so approximate algorithms (Gibbs
sampling being the most prevalent) are often
required. Fortunately, for classification prob-
lems where only the class variable is unknown,
inference boils down to simply multiplying the
appropriate table entries, and it can therefore
be performed in linear time w.r.t. the number

of variables.

The efficient learning algorithms for DNs hide
their main problem, namely inconsistency (a
DN does not necessarily represent a joint proba-
bility distribution). Moreover, inherent to DNs
is the problem of overfitting: the node fam-
ilies are generally larger than in BNs, hence
the estimation of the local probability distribu-
tions is less reliable and requires more data than
in a BN (to reduce parameter variance). To
address this problem, Heckerman et al. (2000)
proposed to use probabilistic decision trees
(PDTs) for parameter specification, and re-
cently Gámez et al. (2008a) has proposed a
specification language based on combinations of
probability tables (PTs).

A study on inconsistencies in DNs was con-
ducted by Gámez et al. (2008b), who also pro-
posed a heuristic procedure to reduce the incon-
sistencies. In the study, Gámez et al. (2008b)
conclude that PTs outperform PDTs in terms
of accuracy, and in their experimental results
the inconsistencies almost disappear when using
PTs. On the other hand, PDTs have the ability
to represent contextual independence (i.e., inde-
pendence relations between variables that hold
for some but not necessarily all values), but by
focusing on PTs we lose this property.



In order to include aspects of contextual in-
dependence when working with PTs, we con-
sider DN-based classifiers inspired by multinets
(Geiger and Heckerman, 1996). Multinets are
useful for representing certain types of contex-
tual independence, which cannot easily be rep-
resented by a single PT-based model. In clas-
sification we may, for example, represent differ-
ent independence relations for the different class
values.

As we will also demonstrate, multinets sup-
port a notion of re-usability. The underlying
idea of re-usability is to exploit similarities in
the dependency structures across classes. That
is, if we have an unbalanced class distribution,
we may in some situations be able to reuse parts
of a learned probability model (for an instance-
rich class) when learning the probability model
for a class with few instances. Thus, re-usability
may produce more robust classifiers when deal-
ing with unbalanced class distributions.

2 Dependency Networks

Dependency networks (DNs) were proposed by
Heckerman et al. (2000) as an alternative to
BNs. Formally, a dependency network is a tuple
(G,P) over a domain X where G is a directed
graph (not necessarily acyclic) and P is a set
of conditional probability distributions, one for
each variable in X. Every P ∈ P must be such
that

P (Xi|Pai) = P (Xi|X \ Xi).

This means that the set of parents Pa(Xi)
for every variable Xi is its Markov blanket
MB(Xi).

This definition requires specification consis-
tency, in the sense that the joint probability
distribution for X can be recovered from P.
This is a very restrictive condition when learn-
ing from data, so Heckerman et al. (2000) de-
fine general dependency networks that relax the
factorization requirement by letting P (X) ≈∏

i P (Xi|Pai).

Since directed cycles are allowed, a DN can
be learned from data by learning the parent
set for each variable independently, thus sup-
porting fast learning algorithms. On the other

hand, by having directed cycles we cannot adapt
traditional BN inference algorithms. Instead,
Heckerman et al. (2000) relies on approximate
inference carried out using Gibbs sampling (Ge-
man and Geman, 1984), and propose the so-
called modified ordered Gibbs sampler, which is
more efficient than standard Gibbs sampling.
Fortunately, sampling algorithms are not re-
quired when we have complete data for the pre-
dictive attributes, and we shall therefore not
discuss this topic further.

3 Multinets and Re-usability:

Proposed Scheme

Multinets (Geiger and Heckerman, 1996) are
useful for representing natural contextual inde-
pendence assertions. For example, in a classi-
fication context we may directly represent the
(possibly different) independence relations over
the predictive attributes for each of the class
values. Consequently a multinet classifier is ex-
pected to have a higher, or at least the same,
representational power than that of a single BN
classifier.

A multinet classifier based on DNs (termed a
MultiDN) is built by learning a DN model for
each class value. Every DN model is built by
independently learning the MB for each vari-
able using e.g. the IAMB algorithm (Tsamardi-
nos et al., 2003), specified in Figure 1. The
algorithm relies on a method for testing inde-
pendence, and in this paper we have considered
traditional statistical tests, such as G2, as well
as tests measuring the score difference between
candidate structures (Chickering, 2002) using
e.g. the BIC (Schwarz, 1978) or the BD score
(Cooper and Herskovits, 1992).

It should be noted that as an alternative to
IAMB, Peña et al. (2007) proposed the PCMB
algorithm, which they showed to be more data
efficient than IAMB. The results, however, also
indicate that for very small data sets (e.g. Alarm
with 100 instances) PCMB has worse precision
(although better recall) than IAMB. The com-
bination of these two factors means that PCMB
may identify larger candidate MB sets than
IAMB. This behavior was also confirmed in our



1 { Phase I ( forward ) }
2 MB = ∅
3 While MB has changed
4 Y = argmaxX∈U\(MB∪{T}) dep(X, T |MB)
5 I f Y ⊥⊥/ T |MB Then

6 MB = MB ∪ {Y }
7
8 { Phase I I ( backwards ) }
9 For each X ∈ MB Do

10 I f X ⊥⊥ T |(MB\X) Then

11 MB = MB\{X}
12
13 Return MB

Figure 1: The incremental association Markov
blanket (IAMB) algorithm for learning the MB
for a target variable T .

preliminary experiments, where we compared
both algorithms based on the datasets listed
in Section 4 (having similar ratio between the
number of variables and instances as the exam-
ple above). This limits the usability of PCMB
for learning DNs, since the larger MBs make the
probability estimates less reliable.

3.1 Re-usability

In a multinet classifier we basically need to learn
several networks, one for each class value. As-
suming that the set of independence statements
for the different class values are not disjoint, one
might be able to use parts of the learned prob-
ability model for one class value when learning
the probability model for another class value.
The potential advantages are twofold: First we
may speed up learning, and, secondly, we may
obtain a more robust classifier when data is
scarce for some of the classes.

For MultiDNs, re-usability consists in seeding
the MB learning algorithm with a candidate MB
set. In the IAMB algorithm this is achieved by
simply replacing line 2 with MB = seedMB.
We call this new algorithm SeededIAMB. If the
candidate seed is good, i.e., it corresponds to the
true MB or a subset hereof, the algorithm can
achieve substantial computational savings (the
situation where this is not the case is discussed
below).

Theorem 1. Under the assumptions that the
independence tests are correct and that the

database D is an independent and identically
distributed sample from a probability distribu-
tion P faithful to a DAG G, SeededIAMB iden-
tifies the true MB for the target variable.

Proof sketch: Given any initial set the algo-
rithm will in the forward phase always intro-
duce all variables in the MB because, by def-
inition, there is no set of variables that can
make the variables in the MB independent of
the target. So at the end of this phase we will
have a super-set of the MB for the target vari-
able. The backward phase, removing all false
positives, behaves in the same way as the non-
seeded version. �

As indicated above, if the candidate set used
for SeededIAMB is close to the actual MB, then
we may get computational savings. On the
other hand, if the candidate set does not in-
tersect the true MB, then the seeded version of
the IAMB algorithm may introduce a computa-
tional overhead. Thus, it is important to find
a good ordering in which to process the classes,
and to be able to determine when a previous
structure should be used as seed. Below we have
detailed some of our considerations.

• Ordering the class values: In our experiments
we order the classes according to the number of
instances associated with each class value, start-
ing with the class value having most instances.
Here we assume that more data yields more re-
liable MB estimates for potential reuse.

• Determine the score for a candidate seed
structure: Assume that we have a collection of
previous models DNi, i = {1, . . . , n}, and that
the current model must be learned from data
Dcj

. The log-likelihood of the previous mod-
els DNi given Dcj

, log L(DNi|Dcj
), can be used

to select which of these models to use as seed.
Furthermore, we can also use the local score for
each single variable X

1

Nj

Nj∑

l=1

log P (X|MB(X)i,DNi)(dl),

indicating how well MB(X)i predicts X in Dcj
.

• Setting the threshold for when to reuse a
MB: A possible threshold value is the score



of the empty structure, since if IAMB is not
seeded, then this is the structure that is used as
prior. Here we have two strategies. One strat-
egy (called BESTlogL) consists in picking the
best MB(X)i for a given variable X, if its score
is greater than that of the empty MB. As an-
other strategy (called THRESHOLDlogL), we
can pick the union of all MB(X)i for all pre-
vious models that have greater score than the
empty MB.

• When to compute the score of a candidate
seed structure: Although the log-likelihood is
easy to compute (its complexity is linear in the
number of instances), it still incurs an overhead
for the algorithm. We have considered three
alternatives for deciding on re-usability with-
out having to compute a score; thus, saving
computation time but making the selection less
informed. The first method simply uses the
first learned model as seed for all the subse-
quent models, and is labelled First. The second
method uses the intersection of the MBs for all
the previous learned models (Intersection), and
the third method uses the union of the MBs for
all the previous learned models (Union).

4 Experiments

We have performed a set of experiments in or-
der to analyze the performance of the proposed
algorithm in terms of classification accuracy,
learning time, and the potential improvement
obtained by re-usability.1 For evaluating the
accuracy and learning time, we have compared
our classifier with a collection of other well-
known classifiers, both probabilistic and non-
probabilistic. For the actual learning, we have
used 28 dataset from the UCI repository (Asun-
cion and Newman, 2007), see Table 1.

All experiments have been carried out on a
PC with a 3GHz Intel Pentium IV processor
and 2Gb RAM memory.

1Given the space limitation not all results of our
experiments are included, but a complete list can
be found at http://www.dsi.uclm.es/personal/JuanLuis
Mateo/mixtureDN.html

Table 1: Datasets used in our experiments.
dataset insts. vars. |class|
australian 690 14 2
autos 205 23 7
balance 625 5 3
breast-cancer 286 10 2
breast-w 699 10 2
car 1728 7 4
cmc 1473 10 3
diabetes 768 7 2
ecoli 336 7 8
heart 270 14 2
hepatitis 155 20 2
ionosphere 351 34 2
iris 150 5 3
kr-vs-kp 3196 37 2
labor 57 12 2
mushroom 8124 23 2
nursery 12960 9 5
page-blocks 5473 11 5
post-op 90 9 3
segment 2310 20 7
soybean 683 36 19
spambase 4601 56 2
vehicle 846 19 4
vote 435 17 2
vowel 990 14 11
waveform 5000 20 3
wine 178 14 3
zoo 101 17 7

4.1 Algorithms

The algorithms used in the comparison are J48
(Quinlan, 1993), multilayer perceptron (NN)
(Bishop, 1995), k-nearest neigbours (kNN)
(Aha and Kibler, 1991), support vector machine
(SVM) (Platt, 1999), naive Bayes (NB) (Lang-
ley et al., 1992), k-dependence Bayesian clas-
sifier (kDB) (Sahami, 1996), tree augmented
naive Bayes (TAN) (Friedman et al., 1997),
multinet with Bayesian networks (MultiBN)
(Friedman et al., 1997), and another DN-based
classifier (ChiSqDN) (Gámez et al., 2006).

We have used the Weka implementation of
J48, NN, kNN, and SVM (Witten and Frank,
2005). For these classifiers, all parameters were
set to their default values, except for kNN for
which we tried both k = 1, and k = 3 with
inverse distance weighting. For kDB we have
experimented with k = 1, 2, 3, 4. For MultiBN
we have considered two variants. One based
on the PC learning algorithm (Spirtes et al.,
2001), and the other based on local search (hill-



climbing) with the BIC (Schwarz, 1978) or the
BD score (Cooper and Herskovits, 1992). For
MultiDN we used the IAMB algorithm to de-
termine the MB for each variable, and the inde-
pendence tests were performed using either G2

or by measuring the difference in BIC score for
the candidate structures. All algorithms (ex-
cept J48, NN, kNN and SVM) have been imple-
mented in Java with the Elvira software (Elvira
Consortium, 2002). Accuracy is assessed using
a 5x2 cross validation scheme.

4.2 Results

For each algorithm appearing in several versions
(different parameter settings) we only report
on the version giving the best accuracy results.
That is, kNN with k = 3 and inverse distance
weighting, kDB with k = 1, and multinets based
on the BIC score.

Table 2 shows the accuracy results for some
of the selected classifiers; the results reported
for MultiDN relates to the BIC variant with no
reuse across classes. Due to space restrictions
we have only included the best classifiers, but
the results for the remaining classifiers can be
found at the web page specified above.

From Table 2 we see that SVM achieves the
best result on average. In order to determine
which of the other classifiers that (from a statis-
tical point of view) cannot be considered weaker
than SVM, we have carried out Holm’s post-hoc
test with the SVM classifier as control. This test
shows that kDB and both multinet-based classi-
fiers are comparable with SVM; the remaining
classifiers receive worse results and the differ-
ences are statistically significant.

4.2.1 Learning Time

In Table 3 we list the learning time for the al-
gorithms selected above. MultiDN obtains the
best results in several cases and is never the
worst. MultiBN, on the other hand, is never
the best and several times the worst, whereas
SVM is the fastest for most of the datasets, but
it is sometimes the slowest too. In order to test
whether there is a statistical difference, we have
evaluated the results using Wilcoxon’s signed
rank test. With significance level 0.05 the test

Table 2: Accuracy results. For each dataset,
the best results are shown in bold face, and the
worst results are underlined.

kDB MultiBN MultiDN SVM
australian 84.64 85.42 86.35 84.93
autos 79.02 79.81 73.27 82.14

balance 74.05 73.82 74.08 74.11
breast-cancer 70.28 69.79 70.49 71.12
breast-w 96.22 96.57 97.34 96.68
car 93.26 91.68 91.01 92.45
cmc 53.96 52.49 53.29 53.96
diabetes 77.47 77.68 79.27 76.77
ecoli 84.82 85.12 82.26 83.87
heart 81.63 80.3 82.37 83.7
hepatitis 87.88 86.45 85.81 85.55
ionosphere 91.97 92.65 92.19 90.48
iris 95.07 94.53 96.27 96.40

kr-vs-kp 94.22 96.49 95.27 95.24
labor 89.8 92.22 94.72 92.29
mushroom 99.87 100.00 99.95 99.99
nursery 93.26 95.57 93.73 93.06
page-block 95.75 96.42 96.24 96.81

post-op 66.22 66.89 66.89 69.56
segment 94.17 94.94 91.36 95.56
soybeam 91.6 94.00 93.35 92.5
spam-base 92.73 93.65 92.58 93.81

vehicle 71.23 71.28 70.33 73.14

vote 93.75 93.89 94.16 95.22

vowel 73.17 69.82 64.99 79.07
waveform 82.25 81.79 81.26 84.86

wine 97.08 97.98 98.31 97.87
zoo 94.65 94.26 94.06 94.26

aver. 85.72 85.91 85.4 86.62

indicates that MultiDN is significantly faster
than kDB and MultiBN, but there is no such dif-
ference between SVM and MultiDN, and they
can therefore be considered equally fast. The
critical values for the comparisons are 1.42e-
3 for kDB, 8.20e-7 for MultiBN, and 0.52 for
SVM.

4.2.2 Re-usability Analysis

To get an indication of the theoretical com-
plexity of the re-use methods, we introduce the
notion of reuse-complexity, which is defined as
the number of computations2 times the average
number of variables involved in each computa-
tion; note that reuse-complexity does not take
into account the overload introduced by BEST-
logL and TRHESHOLDlogL. This overload is
considered in learning time. Table 4 shows the
average complexity and learning time among all
datasets.

From the results we see that reusability based
on Intersection achieves the best results in

2A computation is a call to the function that either
calculates the score of a local structure with BIC or BDe,
or performs a statistical test with G2.



Table 3: Learning time in mileseconds.
kDB MultiBN MultiDN SVM

australian 543 1036 249 174

autos 711 3226 951 268

balance 30 46 37 85
breast-cancer 89 372 94 72

breast-w 196 228 130 68

car 173 166 114 352
cmc 396 428 281 653
diabetes 83 96 67 81
ecoli 42 59 63 325
heart 213 256 129 40

hepatitis 348 433 254 33

ionosphere 3995 5716 1849 105

iris 14 22 17 60
kr-vs-kp 47422 63283 18906 1545

labor 41 75 62 29

mushroom 25730 93243 13727 3792

nursery 2481 2087 1285 17293
page-block 1960 4760 1443 2763
post-op 29 58 37 61
segment 4875 14380 2343 2863
soybeam 8425 4374 4383 2651

spam-base 217476 79629796 39136 8311

vehicle 1557 15215 1428 653

vote 573 847 389 49

vowel 792 8088 994 1582
waveform 10810 6131 3815 10478
wine 144 148 122 66

zoo 157 166 217 303

terms of both complexity and learning time.
Moreover, both BESTlogL and TRHESHOLD-
logL have the highest learning times, which indi-
cates that their overload for determining when
and what to re-use is not justified by the learn-
ing time. As part of future work, we plan to in-
vestigate other ways to evaluate candidate seed
structures.

Table 4: Complexity and learning time for the
different re-usability schemes averaged over all
datasets.

Complexity Time
NOREUSE 2045 3303
BESTlogL 1920 3671
TRHESHOLDlogL 1925 3861
First 1915 3201
Intersection 1899 3136

Union 1945 3400

The underlying idea of reusability is to use
the probability estimates from data-rich classes
to improve the estimates for data-poor classes.
In order to evaluate this idea we have selected
a subset of the datasets in Table 1, all of which
have an unbalanced class distribution. The re-

sults can be found in Table 5, which shows the
absolute difference in accuracy between each of
the proposed re-usability methods and the plain
algorithm without re-usability. On average we
can see that there is always an improvement,
and to compare the methods we have carried out
a one-tailed Wilcoxon’s signed rank test with
significance level 0.05. The critical values for
these five methods are 0.03 for BESTlogL, 0.01
for THRESHOLDlogL, 0.02 for First, 0.07 for
Intersection, and 0.13 for Union. From these
values the experiments indicate that BESTlogL,
THRESHOLDlogL, and First significantly im-
prove the original algorithm’s performance. The
improvement is usually small, but we have to
bear in mind that this improvement is typically
over class values with few instances.

Table 5: Absolute difference in accuracy for
each of the re-usability methods with respect
to the plain learning algorithm without re-
usability. 1=BESTlogL, 2=THRESHOLDlogL,
3=First, 4=Intersection, 5=Union

1 2 3 4 5
autos 1.17 1.07 1.07 -0.20 0.87
balance 0.00 0.00 -0.03 -0.03 0.00
breast-cancer 0.28 0.28 0.28 0.28 0.28
breast-w 0.00 0.00 0.00 0.00 0.00
car 0.00 0.00 0.00 0.00 0.00
cmc 0.19 0.20 0.20 0.11 0.29
diabetes 0.03 0.03 0.08 0.08 0.08
ecoli 0.00 0.00 0.00 0.00 0.00
hepatitis 0.26 0.26 0.65 0.65 0.65
ionosphere -0.11 -0.11 -0.17 -0.17 -0.17
nursery 0.00 0.00 0.00 0.00 -0.58
page-block 0.04 0.04 0.05 0.04 0.05
post-op 0.00 0.00 0.00 0.00 0.00
soybeam -0.09 0.03 -0.03 0.06 -0.70
spam-base 0.36 0.36 0.13 0.13 0.13
vote 0.09 0.09 0.23 0.23 0.23
zoo 0.00 0.00 0.00 0.00 0.20

average 0.13 0.13 0.14 0.07 0.08

In order to investigate this aspect further we
can consider the confusion matrices for the two
datasets cmc and hepatitis. For each dataset
we perform learning with re-usability (using the
First method) and without re-usability (see Ta-
bles 6 and 7); for BESTlogL and THRESHOLD-
logL we obtain the same behavior. In these ma-
trices we see an improvement for the class value
with fewer instances, which corresponds to the



second column in cmc and the first column in
hepatitis. These states represent 23% and 21%
of the instances, respectively, and in both cases
the improvement obtained with re-usability is
3% for that state.

The impact of these results can be illustrated
by considering e.g. medical diagnosis, where the
number of cases with people being sick is typ-
ically much smaller than the number of cases
with healthy people. A false negative for a
person being sick means that she will not be
given a treatment for her illness (possibly with
disastrous consequences). With re-usability we
can reduce this mis-classification rate, which, in
situations like the medical example above, can
have significant consequence.

Table 6: Confusion matrices without re-
usability (a) and using with re-usability using
the First method (b) on the cmc dataset.

0 1 2

0 363.8 72.0 127.2
1 82.8 150.2 112.8
2 182.4 110.8 271.0

0 1 2

0 360.4 66.4 118.8
1 87.6 159.4 124.0
2 181.0 107.2 268.2

(a) (b)

Table 7: Confusion matrices without re-
usability (a) and with re-usability using the
First method (b) on the hepatitis dataset.

0 1

0 21.8 11.8
1 10.2 111.2

0 1

0 22.6 11.6
1 9.4 111.4

(a) (b)

In comparison with the SVM classifier (see
Table 8) we see a significant difference: the
SVM classifier has the best average accuracy,
but, in these cases, it has difficulties with class
values having few instances. This behaviour can
be expected by taking into account how this
classifier is built. Nonetheless, if we instead look
at the MultiBN or kDB classifiers, we also ob-
serve (results not included) that the proposed
classifier obtains better results for states with
poor representation of instances.

5 Conclusions and Future Work

In this paper we have presented a probabilis-
tic classifier based on a class mixture of de-

Table 8: Confusion matrices for SVM with cmc
(a) and hepatitis (b) datasets.

0 1 2

0 387.0 81.8 139.8
1 54.8 95.6 59.0
2 187.2 155.6 312.2

0 1

0 19.0 9.4
1 13.0 113.6

(a) (b)

pendency networks. In addition to supporting
fast learning algorithms, the proposed classi-
fier allows for intermediate results to be reused
across classes, thereby obtaining potential com-
putational savings as well as improving the ro-
bustness for data scarce classes. We have pro-
posed strategies for deciding on what and when
to reuse. However, while the preliminary re-
sults indicate that the proposed strategies can
improve classification accuracy, they also indi-
cate that a simple uninformed strategy achieves
better learning time results than more elabo-
rate strategies. Measured in terms of the re-
usability percentage, preliminary results indi-
cate that the heuristic BESTlogL obtains the
best results; for this strategy, 35% of the seeded
variables also appear in the final Markov blan-
kets (averaged over all the datasets). Designing
other heuristic functions for guiding re-usability
is a topic for future research. Here the aim is to
find strategies that give a more balanced trade-
off between accuracy improvements and learn-
ing time overhead.

As part of future work we also plan to con-
duct more extensive re-usability experiments on
larger datasets. Medical datasets, in particular,
can be of interest, since they typically have hun-
dreds of variables and relatively few instances.
Another issue for future work is how to establish
a good class ordering. One may, for example, be
able to exploit the natural class ordering found
in ordinal variables, i.e., we may expect that
class values close to each other induce similar
dependency structures over the attributes.

Acknowledgments

This work has been partially supported by
Spanish Ministerio de Educación y Ciencia
(project TIN2007-67418-C03-01); Junta de Co-
munidades de Castilla-La Mancha (project PBI-



08-048) and FEDER funds.
We would like to thank José Manuel Peña for

useful comments and suggestions for earlier ver-
sions of this paper. We would also like to thank
the anonymous reviewers for their constructive
comments.

References

D. Aha and D. Kibler. 1991. Instance-based learn-
ing algorithms. Machine Learning, 6:37–66.

A. Asuncion and D.J. Newman. 2007. UCI machine
learning repository.

C.M. Bishop. 1995. Neural Networks for Pattern
Recognition. Oxford University Press.

D.M. Chickering. 2002. Optimal Structure Identifi-
cation With Greedy Search. Journal of Machine
Learning Research, 3:507–554.

G.F. Cooper and E. Herskovits. 1992. A Bayesian
Method for the Induction of Probabilistic Net-
works from data. Machine Learning, 9(4):309–
347.

Elvira Consortium. 2002. Elvira: An Environ-
ment for Creating and Using Probabilistic Graph-
ical Models. In Proceedings of the Fist Euro-
pean Workshop on Probabilistic Graphical Models,
pages 222–230.

N. Friedman, D. Geiger, and M. Goldszmidt. 1997.
Bayesian Network Classifiers. Machine Learning,
29(2-3):131–163.

J.A. Gámez, J.L. Mateo, and J.M. Puerta. 2006.
Dependency networks based classifiers: learning
models by using independence test. In Third
European Workshop on Probabilistica Graphical
Models (PGM06), pages 115–122.

J.A. Gámez, J.L. Mateo, and J.M. Puerta. 2008a.
Improved EDNA (Estimation of Dependency Net-
works Algorithm) Using Combining Function
with Bivariate Probability Distributions. In Ge-
netic and Evolutionary Computation Conference
(Gecco08).

J.A. Gámez, J.L. Mateo, and J.M. Puerta. 2008b.
Towards consistency in general dependency net-
works. Technical Report DIAB-08-04-1, Comput-
ing Systems Deparment, University of Castilla-La
Mancha.

D. Geiger and D. Heckerman. 1996. Knowledge rep-
resentation and inference in similarity networks
and bayesian multinets. Artificial Intelligence,
82:45–74.

S. Geman and D. Geman. 1984. Stochastic re-
laxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 6:147–
156.

D. Heckerman, D.M. Chickering, C. Meek, R. Roun-
thwaite, and C. Kadie. 2000. Dependency net-
works for inference, collaborative filtering and
data visualization. Journal of Machine Learning
Research, 1:49–75.

P. Langley, W. Iba, and K. Thompson. 1992. An
Analisys of bayesian Classifiers. In Proceedings of
the 10th National Conference on Artificial Intel-
ligence, pages 223–228.

J.M. Peña, R. Nilsson, J. Björkegren, and J. Tegnér.
2007. Towards scalable and data efficient learning
of markov boundaries. International Journal of
Approximate Reasoning, 45(2):211–232.

J. Platt, 1999. Advances in Kernel Methods - Sup-
port Vector Learning, chapter Fast Training of
Support Vector Machines using Sequential Min-
imal Optimization, pages 185–208. MIT Press.

R. Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann.

M. Sahami. 1996. Learning Limited Depen-
dence Bayesian Classifiers. In Second Inter-
national Conference on Knowledge Discovery in
Databases, pages 335–338.

G. Schwarz. 1978. Estimating the dimension of a
model. Annals of Statistics, 6(2):461–464.

P. Spirtes, C.N. Glymour, and R. Scheines. 2001.
Causation, Prediction, and Search. MIT Press.

I. Tsamardinos, C.F. Aliferis, and A. Statnikov.
2003. Algorithms for large scale markov blanket
discovery. In Proceedings of the Sixteenth Interna-
tional Florida Artificial Intelligence Research So-
ciety Conference FLAIRS 2003.

I.H. Witten and E. Frank. 2005. Data Mining:
Practical machine learning tools and techniques.
Morgan Kaufmann, 2nd edition edition.



Towards consistency in general dependency networks

José A. Gámez and Juan L. Mateo and José M. Puerta
Computing Systems Department

Intelligent Systems and Data Mining Group – i3A
University of Castilla-La Mancha

Albacete, 02071, Spain

Abstract

Dependency networks are a probabilistic graphical model that claim several advantages
from other models like Bayesian networks and Markov networks, for instance. One of
these advantages in general dependency networks, which are the object of study in this
work, is the ease of learning from data. Nonetheless this easiness is also the cause of
its main drawback: inconsistency. A dependency network cannot encode the probability
distribution underlay in the data but an approximation. This approximation can be
enough good for some applications but not in other cases. In this work we make a study
of this inconsistency and propose a method to reduce it. From the conclusions we have
taken from this analysis we have developed an algorithm that has to be run after the
standard learning algorithm yields its solution. Our method is an heuristic approach so
we cannot assure that the resulting model is fully consistent, however we have carried
out some experiments which make us to think that it produces high quality models and
therefore is advisable its use.

1 Introduction

Probabilistic graphical models (PGM) (Lau-
ritzen, 1996; Jensen and Nielsen, 2007) have
been deeply under research and have been used
in many applications in the last two decades
because of their capabilities. There are several
kinds of PGMs like decision graphs or Markov
networks (MN), but probably the most famous
and used are Bayesian networks (BN).

Dependency networks (DN) are a probabilis-
tic graphical model proposed by (Heckerman
et al., 2000) as an alternative to BN. The main
difference between them is that the graph in DN
does not have to be acyclic. The parametric
component is the same, i.e. every variable has
a conditional probability distribution given its
parents. Another difference is that in DNs the
parents for each variable is its Markov Blan-
ket (MB) in the Bayesian network encoding the
same domain. This is the reason why the graph
of a dependency network can be cyclic.

In (Heckerman et al., 2000) are presented

some tasks in which DNs can be worthwhile
like probabilistic inference, collaborative filter-
ing and visualization of relationships. Nonethe-
less, from the automatic learning point of view
DNs have a drawback because its not easy to
learn a set of conditional probability distribu-
tions (CPD) consistent with the joint probabil-
ity distribution (JPD). That is the reason the
authors relaxed the definition of DNs and they
defined general dependency networks, however
now we cannot expect that with the set of CPDs
we were able to recover the JPD but an approxi-
mation. Heckerman et al. (2000) argue that this
approximation can be better as the amount of
data used in the learning process increases, how-
ever it still is an approximation.

In this work we want to analyze how this ap-
proximation can deteriorate the performance of
a DN model and we propose a way to improve
the whole model with a minimun computational
cost or even speeding up the learning process.

In Section 2 we present a more formal and
detailed definition of DNs. In Section 3 we



make an analysis of the inconsistencies in gen-
eral DNs. In Section 4 we explain our proposal
to reduce those inconsistencies. In Section 5 we
describe some experiments we have carried out
in order to validate our proposal and show the
results, and in Section 6 we conclude.

2 Dependency Networks

2.1 Consistent Dependency Networks

Given a set of variables X = {X1, . . . ,Xn} with
a positive JPD P (X), a consistent dependency
network for this domain consists of a pair (G,P)
where G is a directed graph (not necessarily
acyclic), in which every node represents a vari-
able, and P is a set of CPDs. In G the set of
parents for each variable Xi, denoted by Pai, is
formed by all those variables such that verify

P (Xi|Pai) = P (Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn). (1)

So if P (X) is faithful to a graph, what is a
common assumption in machine learning algo-
rithms, then the parents for a given variable in
a DN are its MB. Other way to say so is that a
DN has the same adjacencies than a MN.

A DN is consistent in the sense that all the
CPDs in P can be obtained from the JPD P (x),
i.e. we can obtain P (X) from P in a similar way
than in an BN or MN by the product of local
probability distributions:

P (X) =

n∏

i=1

P (Xi|Pai)

In (Heckerman et al., 2000) is shown the equiv-
alence between DNs and MNs. The only differ-
ence is that in MNs the quantitative component
is provided by potential functions whereas in
DNs is provided by CPDs. Given this equiv-
alence one approach to learn DNs from data
can be to learn a MN in order to obtain the
structure and then compute the set of CPDs
from the MN via probabilistic inference. Other
possibility suggested also in that paper is to
learn another probabilistic model (a BN for in-
stance) and translate it into a DN. Nonetheless
the problem with these approaches is that the
conversion can be computational expensive and
inefficient in many cases. That is the reason
why the authors presented another definition

for DNs more relaxed in order to ease the auto-
matic learning from data. This new definition
is covered in next section.

2.2 General Dependency Networks

A consistent DN is not attractive from an ma-
chine learning point of view because of the diffi-
culties related with obtaining the set of CPDs,
specially with the restriction that this set has to
be consistent with the JPD for the variables in
the domain. So general DNs, also described in
(Heckerman et al., 2000), are based on the idea
of removing those restriction about consistency.
Thus every single CPD P (Xi|Pai) can be es-
timated independently from the others by any
probabilistic classification method, as a prob-
abilistic decision tree (PDT) (Buntine, 1991).
Once we have all the CPDs we can build the
structure of the dependency network from the
(in)dependencies that are appeared during the
learning process.

This way of learning a DN can be more effi-
cient than learning from a MN in many cases,
and other advantage is that its parallelization is
straightforward, what can report a great bene-
fit if we are dealing with a domain with a large
number of variables. Nonetheless this heuris-
tic approach has a disadvantage, due mainly to
the independent search over the variables and
poor estimations in small datasets, the learned
CPDs may not be consistent with the JPD, this
can be called parametrical inconsistency. But
also structural inconsistencies can appear be-
cause after learning the CPD we can see that,
for instance, Xi can be parent of Xj but not
the opposite, i.e. the CPD for Xi would not
contain Xj but the CPD for Xj would contain
Xi. In (Heckerman et al., 2000), authors argue
that this inconsistencies can be reduced as the
amount of data used for leaning increases.

A formal definition for this new model is
as follows. Given a set of variables X =
{X1, . . . ,Xn}, consider the set of CPDs P =

{P1(X1|X\X1), P2(X2|X\X2), . . . , Pn(Xn|X\Xn))}. It
is not required that these distributions are con-
sistent with P (X), i.e. it is not required that
this set can be obtained via inference from the
JPD. Under these conditions a dependency net-



work for X and P is the pair (G,P ′), where G
is a directed graph usually cyclic and P ′ is a set
of CPDs such that

Pi(Xi|Pai) = Pi(Xi|X\Xi) (2)

for every Pi ∈ P.

2.3 Inference

In any case, with a consistent or general de-
pendency network, given the likely existence of
cycles in the graph we cannot use exact infer-
ence algorithms used in BNs and some of the
approximate. In the case of consistent DNs
it can be converted to a MN and use stan-
dard techniques for probabilistic inference over
MNs. Nonetheless a more general option is sug-
gested in (Heckerman et al., 2000) for both mod-
els, Gibbs sampling (Geman and Geman, 1984).
Basically this method works by repeatedly cy-
cling through each variable in a fixed order dur-
ing all the process, and sampling each Xi ac-
cording to P (Xi|Pai). This procedure is called
ordered Gibbs sampler but in the case of a gen-
eral DN, given that the CPDs may not be con-
sistent with the JPD, is called ordered pseudo-
Gibbs sampler. Besides in (Heckerman et al.,
2000) it is developed a more efficient method
which can avoid some sampling and it is called
modified ordered (pseudo-)Gibbs sampler. This
method, in order to get P (Y|Z) and the value
of Z is z for a DN in a domain with a set of
variables X, is shown in Figure 1.

The key point is in line 6, since if the values
for all the parents for a given variable are known
we can avoid the sampling for that variable and
just take its value from its CPD. This algorithm
is justified by Equations (1) and (2).

However, given the modified ordered Gibbs
sampler, there are some situations in which we
can avoid completely the sampling. For instance
if we use a DN as a classifier and we assume
that we always know the values for all predictive
variables (Gámez et al., 2006). Other case is
when is needed to obtain the probability for a
full configuration in a DN, i.e. P (X) when we
have fixed the value for every single variable.
We can see this computation in other way

P (X) =

n∏

i=1

P (Xi|X\Xi).

1 U = Y (∗ the unprocessed v a r i a b l e s ∗)
2 P = Z (∗ the proce s sed and cond i t i on in g

v a r i a b l e s ∗)
3 p = z (∗ the va lues o f P ∗)
4 While U 6= ∅
5 Pick Xi ∈ U s . t . Xi has no more

parents in U than any va r i ab l e
in U

6 I f a l l parents o f Xi are in P

7 P (Xi|p) = p(Xi|Pai)
8 Else
9 Use modi f ied ordered Gibbs

sampling to get P (Xi|p)
10 U = U − Xi

11 P = P + Xi

12 p = p + xi

13 Return the product o f the c ond i t i o n a l s
P (Xi|p)

Figure 1: Modified ordered Gibbs sampler

If we take the right part of the equation and
use the modified ordered Gibbs sampler we have
that Y = {Xi} and Z = {X\Xi}, in line 5 we
have only one choice and in line 6 the condition
is true so the sampling is avoided. Therefore we
can compute statistics such as the likelyhood
of a DN for a dataset, and we assume that the
dataset does not contain missing data, without
any sampling.

3 Analysis of Parametrical

Inconsistency

In this section we want to analyze some issues
regarding with inconsistency in DNs. From now
on we consider only general DNs.

Example 1. Consider the case in which we
have two variables, X and Y , and they are de-
pendent, then the DN for this domain, DN ,
should have a graph with two links X → Y and
X ← Y .

Hence P ′ = {P (X|Y ), P (Y |X)} for DN .
However is clear that P (X,Y ) 6= P (X|Y ) ·
P (Y |X). In fact

P̂ (X, Y ) =
P (X, Y ) · P (X,Y )

P (X) · P (Y )
= f(X, Y )·P (X, Y ) (3)

where
f(X, Y ) =

P (X,Y )

P (X) · P (Y )

Therefore, even in a situation so simple like this
one, we cannot expect to have a DN without



inconsistencies, when it is learned from data of
course. Moreover, looking at Equation (3) we
can say that the inconsistency is smaller as the
dependency between X and Y is weaker and
f(X,Y ) tends to 1.

In (Heckerman et al., 2000) they propose
learn DNs by means of probabilistic decision
trees. This model are very good to encode con-
textual dependencies. Encoding the CPDs by
probabilistic decision trees can help to reduce
the inconsistencies because a decision tree tries
to represent a more general probability distribu-
tion by pruning some branches which are simi-
lar. Then the dependence between the variables
can be smoothed and thus f(X,Y ) is closer to
1. However if this happens we have a poorer
estimation for the JPD even though is less in-
consistent.

In order to illustrate that we can consider
both variables in Example 1 are discrete with
three states and their JPD is defined by this
table:

Y=0 Y=1 Y=2
X=0 0.12 0.04 0.04
X=1 0.06 0.18 0.06
X=2 0.10 0.10 0.30

When we compute P (X|Y ) and P (Y |X) from
P (X,Y ) in the way of a probability table or a
full expanded probabilistic decision trees (see
Figure 2 (a) and (b)) we obtain an estimation
P̂1(X,Y ) which is shown in Figure 2(c):

Y

0.43;0.21;0.38
0.13;0.56;0.31

0.10;0.15;0.75

=0
=1

=2

(a)

X

0.60;0.20;0.20
0.20;0.60;0.20

0.20;0.20;0.60

=0
=1

=2

(b)

Y=0 Y=1 Y=2
X=0 0.257 0.025 0.020
X=1 0.043 0.338 0.030
X=2 0.075 0.063 0.450

(c)

Figure 2: Joint probability distribution
P̂1(X,Y ) (c) obtained using full decision trees
for CPDs P (X|Y ) (a) and P (Y |X) (b).

We can see large differences between the true
figures and the estimation. Besides we can
check that P̂1(X,Y ) is not a probability distri-
bution because

∑
x,y P̂1(x, y) = 1.301 6= 1. If,

for instance, the learning procedure decides to
change the representation of P (X|Y ) for a prob-
abilistic decision tree in which branches for val-
ues 0 and 1 are merged (Figure 3(a)), because
they are the most similar, then we obtain a new
estimation P̂2(X,Y ) which is shown in Figure
3(b). P̂2(X,Y ) still differs from P (X,Y ) but is
closer to it than P̂1(X,Y ) in average, and also
is closer to be a probability distribution because∑

x,y P̂2(x, y) = 1.170.

Y

0.28;0.39;0.34 0.10;0.15;0.75

6= 2 =2

(a)
Y=0 Y=1 Y=2

X=0 0.166 0.055 0.020
X=1 0.078 0.233 0.030
X=2 0.069 0.069 0.450

(b)

Figure 3: Joint probability distribution
P̂2(X,Y ) (b) obtained using a simpler decision
tree for P (X|Y ) (a).

Therefore in spite of the use of probabilistic
decision trees we still have an approximation
which could not be good enough for some ap-
plications. In next section we present a simple
heuristic method that can reduce inconsisten-
cies in DNs improving its accuracy.

4 How to Improve Consistency

As it has been seen in the previous Section
even in a simple case like Example 1 we can-
not expect to get a consistent DN if the CPDs
are learned independently. If two variables are
dependent this equation P (X,Y ) = P (X|Y ) ·
P (Y |X) will never be true, nonetheless this ex-
pression P (X,Y ) = P (X) ·P (Y |X) = P (X|Y ) ·
P (Y ) is always true and does not matter if both
variable are dependent or not. Bearing this in
mind, in Example 1 we can ensure consistency if
at the end of the learning process we realize that
X is a predictive variable for Y and vice versa
and then instead of maintaining both CPDs we
replace P (X|Y ) by P (X) or P (Y |X) by P (Y ).
This is the basic idea of our proposal, but there
is not so easy when there are more variables in-



volved. In that case we do not expect to obtain
the best set of probabilities whose composition
yield the right JPD, but a good approximation
and, more important, more consistent.

More precisely the proposal consists in esti-
mating a set of CPDs of a BN that encode the
same (in)dependencies that the learned DN. We
have to point out that our proposal only changes
the set of probability distributions but not the
graph, so the model learned still has the same
advantages about visualization. However, given
that the relationships represented in a DN can
be encoded by several BNs with different fac-
torizations of the JPD, and that the conversion
from DN to BN can not be attractive from the
computational point of view, this proposal is
based on a heuristic approach whose complex-
ity order is linear in the number of dependencies
found. The method proposed is shown in Figure
4.

1 For each va r i ab l e Xi

2 For each Yj parent o f Xi

3 I f Xi i s a l s o a parent o f Yj

4 I f the cond i t i on in g s e t o f Xi i s
g r a t e r that Yj ’ s

5 Yj i s removed as parent o f Xi

6 Else
7 Xi i s removed as parent o f Yj

Figure 4: Proposed method to obtain a more
consistent set of CPDs.

We can call this new step in the learning pro-
cess as parametric reduction. An important
point in this procedure is in line 4. With this
condition we want avoid large conditioning sets,
what can reduce overfitting in the parameters
estimation. The order in which the links can be
traversed can be any although not all of then
will yield the same solution. The reason for that
is the heuristic nature of this algorithm and that
a more sophisticated search would not be inter-
esting for practical reasons. One of the benefits
of DNs is ease of learning so we do not want to
change that by introducing a complicated post-
learning algorithm.

After performing this step is needed to re-
compute every probability distribution which
has been modified. In the case that these prob-

ability distributions are in form of probability
trees, if the removed variables are in the leaves
the only thing to do is to aggregate its values
to the up node in the tree, otherwise the entire
tree should be re-built. However, if in the lear-
ing process we have cached the statistics the
new tree can be built without computational
cost. In the case of probability tables we can
postpone leaning these tables after that step.

5 Experimental Results

This section is devoted to evaluate our proposal
with some experiments. Our testing framework
is base on the one used in (Heckerman et al.,
2000) for testing probabilistic inference with
real data. We use the same score function for a
test dataset with N instances {d1, . . . , dN} and
n variables:

score(d1, . . . , dN |model) = −

∑N

i=1
ln P (di|model)

nN
.

(4)

However, instead of using real dataset we pre-
fer using data sampled from known BNs. The
reason is that we want focus only in parametri-
cal learning and inference so if the real depen-
dencies are known we can give this information
to the different algorithms in order to avoid that
the results were affected by the structural learn-
ing. Next we present a detailed description of
our experimentation.

5.1 Description of the Experiments

We have selected seven BNs from different
sources: alarm (Beinlich et al., 1989), asia (Lau-
ritzen and Spiegelhalter, 1988), car-starts and
headache (Elvira Consortium, 2002), insurance

(Binder et al., 1992), credit (DSL) and water

(Jensen et al., 1989), which is a dynamic net-
work and we have use only the two first slices.
Some details of these networks can be seen in
Table 1. From each of these networks we have
sampled two datasets with 5000 instances each
one, one for training and one for testing.

We have defined eight models to make a com-
parison between them. First one is the reference
model and is a BN in which the structure is fixed



Table 1: Set of Bayesian networks used in our
experiments.

Num. States Aver. MB Aver.
network vars range states range MB

alarm 37 2-4 2.84 1-12 3.89

asia 8 2-2 2.00 1-5 2.50

car-starts 18 2-3 2.06 1-9 3.44

credit 12 2-4 2.83 2-6 3.67

headache 12 1-4 2.92 1-4 2.67

insurance 27 2-5 3.30 1-16 6.22

water 16 3-4 3.63 1-12 6.00

with the real links (BN-f). Second model is an
empty network (Empty). Next we have three
dependency networks models, one with proba-
bility tables in which links have been fixed from
the real MB for each variable in the network
(PT-f), other with probabilistic decision trees
learned from data (PDT), and other with prob-
abilistic decision trees but in which the search
space for each PDT have been restricted to the
real MB (PDT-f). In both cases we use the sug-
gested value for κ = 0.1. For any of these three
models we have another version in which we
have used our method for reducing the CPDs.
These new models are labeled with an asterisk
(PT-f*, PDT* and PDT-f*). In all cases pa-
rameters are learned from data by using Laplace
smoothing.

Every model has been learned with each
training dataset. For all of them it has been
computed their score (Equation (4)) with the
test dataset. As the model BN-f is the refer-
ence one we have also obtained the absolute dif-
ference of score between each model and BN-f.
This value is more informative because we are
looking for models closer to the true probability
distribution what is represented by BN-f. Be-
sides, we have computed also the summation of
all possible configurations, i.e. total joint prob-
ability, which should be equal to 1, but only for
those models with a tractable number of config-
urations (asia, car-starts, credit, headache).

5.2 Results

In Table 2 we report the score value for every
model and dataset. At the botton line we show
the average value for each model. Lower val-

ues should indicate a better model, so all pure
DN models should be taken as the best ones.
However that does not make sense because they
are even better than our reference model (BN-
f) which represents the true JPD. The reason is
that, as we have seen in Section 3, inconsistent
DNs tend to have greater probability values in
average so their score is lower. That is the rea-
son why we prefer paying more attention to the
difference with respect to the reference model.

Thus, these new results are shown in Table
3. There we can see that always the model
closer to BN-f is the one in which we have ap-
plied our proposal. Specially the model based
on probability tables is always the best one but
in two datasets. Also is important to notice that
our proposal improves the original model in ev-
ery dataset for PT-f model. However, in PDT
model our proposal deteriorates the accuracy in
alarm and headache dataset, although in average
its application improves the global accuracy.

Another interesting point is that PDT models
without our proposal are much better than PT-
f. That corroborate the idea that for DNs the
use of more general encoding for the CPDs is
advisable despite that this encoding is also an
approximation in many cases.

Previous results give us an idea about the
quality of those model. We can suppose that the
increment in accuracy must be related with the
reduction in the inconsistency. Additionally we
have checked if the models encode a real prob-
ability distribution, i.e. whether the total joint
probability for a given model is equal to one.
This computation has been only done for the
models learned with the smaller networks be-
cause this computation is computationally un-
feasible for the others. The result is shown in
Table 4. According to the table is clear that the
pure DN models are quite far form being a prob-
ability distribution, but our proposal achieve
that condition for all of them.

5.2.1 Time

Given that our proposal is a post-process to
any learning algorithm, it seems that we will
need more running time. In our experiments in-
volving PDT we see that running time increases



Table 2: Score for each model and dataset.
BN-f Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*

alarm 0.282 0.397 0.173 0.298 0.253 0.342 0.242 0.338
asia 0.287 0.342 0.224 0.289 0.225 0.287 0.225 0.289
car-starts 0.127 0.175 0.070 0.127 0.070 0.136 0.070 0.127
credit 0.879 0.959 0.765 0.886 0.807 0.888 0.807 0.900
headache 0.435 0.609 0.214 0.435 0.419 0.585 0.419 0.593
insurance 0.490 0.651 0.399 0.519 0.420 0.556 0.420 0.550
water 0.401 0.410 0.417 0.410 0.388 0.409 0.388 0.408

0.414 0.506 0.323 0.423 0.369 0.458 0.367 0.458

Table 3: Absolute score difference between BN-f and the other models.
Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*

alarm 0.115 0.110 0.015 0.029 0.060 0.040 0.056
asia 0.055 0.062 0.002 0.062 0.000 0.062 0.002
car-starts 0.048 0.057 0.000 0.057 0.009 0.057 0.000

credit 0.080 0.114 0.007 0.071 0.009 0.071 0.021
headache 0.174 0.222 0.000 0.017 0.150 0.017 0.158
insurance 0.161 0.092 0.029 0.070 0.066 0.071 0.059
water 0.009 0.016 0.010 0.013 0.008 0.013 0.007

0.092 0.096 0.009 0.046 0.043 0.047 0.043

Table 4: Total joint probability for tested models.

BN-f Empty PT-f PT-f* PDT PDT* PDT-f PDT-f*
asia 1.00 1.00 3.60 1.00 3.42 1.00 3.42 1.00
car-starts 1.00 1.00 20.04 1.08 11.40 1.00 11.40 1.00
credit 1.00 1.00 6.41 1.00 4.26 1.00 4.26 1.00
headache 1.00 1.00 29.68 1.00 5.70 1.00 5.70 1.00

1% in average, but also we have to take into ac-
count that we do not include the improvements
explained at the end of Section 4. However
with PT, if we assume that structural learning
will be the same in both cases and compare our
post-process and parameter learning we can see
in Table 5 that we always obtain a faster al-
gorithm. The reason is that our post-process
makes the probability tables to estimate are
much smaller and so that parametrical learn-
ing will be much faster because the complexity
order is O(M × S) where M is the number of
instances in the dataset and S is the size of each
table.

6 Conclusions

In this paper we have presented a method which
aims to improve DNs. The main advantage of
(general) DNs is that they can be learned from
data easily, easier than BNs because of the lack

Table 5: Percentage of run time our proposal
can reduce the original algorithm.

dataset % reduction
alarm 43
asia 13
car-starts 23
credit 18
headache 11
insurance 95
water 98

of restrictions about cyclicity and easier than
MNs because CPDs can be learn independently.
Nonetheless this is also the main problem, the
independent learning can lead to inconsisten-
cies. They can be both structural and para-
metrical, however the later are more important.
Whereas structural inconsistencies can be inter-
esting for a better interpretation of the model
(strong and weak dependencies), parametrical



ones deteriorate model performance.

Thus our proposal is based on improving DNs
accuracy by reducing CPDs, because, as it has
been seen in Section 3, the use of full distri-
butions is the cause of that inconsistencies. Is
worthy to point out that our proposal does not
change the qualitative component of a model,
i.e. its links. This new method, that can be
seen as a post-learning stage, works by trying
to recover a set of CPDs similar to a BN which
represents the same relationships between vari-
ables. In order not to lose the computational
advantage of the DNs learning we have chosen a
heuristic approach which has a linear complex-
ity order in the number of links. Its heuristic
nature can be object of complaint, nonetheless
in our experimentation we have made clear its
benefit.

We plan to extend this work in two lines as fu-
ture work. First we plan to make a deeper anal-
ysis of our proposal checking the performance
with different sample sizes and different order-
ing in the reduction step and see whether it af-
fects the results. Besides we want to test proba-
bilistic queries for different set of variables with
evidence in which we have to use Gibbs sam-
pling. The second line of work is applying this
method to scenarios where DNs have been use
in order to improve their results, such as classi-
fiers or Estimation of Distribution Algorithms.

Acknowledgments

This work has been partially supported by
Spanish Ministerio de Educación y Cien-
cia (TIN2007-67418-C03-01); Junta de Comu-
nidades de Castilla-La Mancha (PBI-08-048)
and FEDER funds.

References

I.A. Beinlich, H.J. Suermondt, R.M. Chavez,
and G.F. Cooper. The ALARM monitoring
system: A case study with two probabilistic
inference techniques for belief networks. In
2nd European Conf. on Artificial Intelligence
in Medicine, pages 247–256, 1989.

J. Binder, D. Koller, S. Russell, and
K. Kanazawa. Adaptive probabilistic net-

works with hidden variables. Machine Learn-
ing, 29(2):213–244, 1992.

W. Buntine. Theory refinement on bayesian
networks. In Uncertainty in Artificial Intelli-
gence, pages 52–60, 1991.

Decision Systems Laboratory DSL. Genie.
http://genie.sis.pitt.edu/.

Elvira Consortium. Elvira: An Environment
for Creating and Using Probabilistic Graph-
ical Models. In 1st European Workshop on
Probabilistic Graphical Models, pages 222–
230, 2002. http://leo.ugr.es/elvira.

J. A. Gámez, J. L. Mateo, and J. M. Puerta. De-
pendency networks based classifiers: learning
models by using independence test. In 3rd
European Workshop on Probabilistic Graphi-
cal Models, pages 115–122, 2006.

S. Geman and D. Geman. Stochastic relax-
ation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 6:
147–156, 1984.

D. Heckerman, D. M. Chickering, and C. Meek.
Dependency networks for inference, collabo-
rative filtering and data visualization. Ma-
chine Learning Research, 1:49–75, 2000.

F. V. Jensen and T. D. Nielsen. Bayesian net-
works and decision graphs. Springer, 2007.

F. V. Jensen, U. Kjærulff, K. G. Olesen, and
J. Pedersen. Et forprojekt til et ekspert-
system for drift af spildevandsrensning (an
expert system for control of waste water
treatment — a pilot project). Technical
report, Judex Datasystemer A/S, Aalborg,
Denmark, 1989.

S. L. Lauritzen. Graphical Models. Oxford Uni-
vesity Press, 1996.

S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their application to expert sys-
tems. Royal Statistics Society, Series B, 50:
157–194, 1988.



Sensitivity of Gaussian Bayesian networks to inaccuracies in their
parameters

Miguel A. Gómez-Villegas and Paloma Main
Departamento de Estad́ıstica e Investigación Operativa

Universidad Complutense de Madrid
28040 Madrid, Spain

Rosario Susi
Departamento de Estad́ıstica e Investigación Operativa III

Universidad Complutense de Madrid
28040 Madrid, Spain

Abstract

To determine the effect of a set of inaccurate parameters in Gaussian Bayesian networks, it
is necessary to study the sensitivity of the model. With this aim we propose a sensitivity
analysis based on comparing two different models: the original model with the initial
parameters assigned to the Gaussian Bayesian network and the perturbed model obtained
after perturbing a set of inaccurate parameters with specific characteristics.

The network’s outputs obtained for both models, after the evidence propagation, are
going to be compared with the Kullback-Leibler divergence. This measure is useful to
discriminate between two probability distributions, comparing the whole behavior of the
considered probability distributions.

Depending on the set of parameters that are going to be perturbed, different ex-
pressions for the Kullback-Leibler are obtained. It is possible to determine the set of
parameters that mostly disturb the network’s output, detecting the variables that must
be accurately described in the model.

The methodology developed in this work is for a Gaussian Bayesian network with a
set of variables of interest and a set of evidential variables.

One example is introduced to show the sensitivity analysis proposed.

1 Introduction

In Bayesian networks some sensitivity anal-
ysis had been proposed to study the effect
of inaccurate parameters over the network’s
output. Most of them, like the analyses and
methodologies proposed by Laskey (1995),
Coupé, van der Gaag and Habbema (2000),
Kjærulff and van der Gaag (2000),
Bednarski, Cholewa and Frid (2004) or
Chan and Darwiche (2005), to name a few, are
developed to study the sensitivity in discrete
Bayesian networks. Some other papers discuss
about general problems with different measures
of sensitivity, like Pradhan, et al. (1996),

Coupé and van der Gaag (2002) and
Onisko and Druzdzel (2003).

In Gaussian Bayesian networks
Castillo and Kjærulff (2003) performed
a methodology based on studying small
changes in the parameters, with one
variable of interest in the model, and
Gómez-Villegas, Main and Susi (2007) de-
veloped a sensitivity analysis to study any kind
of perturbations, small or large changes in the
parameters, when there exists one variable of
interest in the Gaussian Bayesian network.
In the present work, we study a generaliza-
tion of the sensitivity analysis proposed by



Gómez-Villegas, Main and Susi (2007), be-
cause now we consider a Gaussian Bayesian
network with a set of variables of interest and
a set of evidential variables. This approach is
significatively different to the previous work
because simultaneous perturbations in several
parameters can be analyzed.

This paper is organized as follows. In Section
2 a brief introduction is presented, defining first
a Bayesian network and a Gaussian Bayesian
network and reviewing the evidence propaga-
tion for these models. Moreover, we introduce
the working example. In Section 3, we present
the methodology developed to study the sensi-
tivity of a Gaussian Bayesian network with a
set of variables of interest and in Section 4, we
perform the sensitivity analysis proposed with
the working example. Finally, the paper ends
with some conclusions.

2 Gaussian Bayesian networks

A Bayesian network is a probabilistic graphical
model useful to study a set of random variables
with a specified dependence structure.
Bayesian networks have been studied by au-
thors like Pearl (1988), Lauritzen (1996) or
Jensen and Nielsen (2007), among others.

Definition 1 (Bayesian network). A Bayesian
network is a couple (G,P) where G is a
directed acyclic graph (DAG) whose nodes
are random variables X = {X1, ..., Xn}
and edges represent probabilistic dependencies,
P={p(x1|pa(x1)), ..., p(xn|pa(xn))} being a set
of conditional probability distributions (one for
each variable), pa(xi) the set of parents of node
Xi in G and pa(xi) ⊆ {X1, ..., Xi−1}.
The set P defines the joint probability distribu-
tion as

p(x) =
n

∏

i=1

p(xi|pa(xi)). (1)

Because of this modular structure, Bayesian
networks are useful to study real life problems
in complex domains.

Depending on the kind of variables of the
problem, it is possible to describe discrete,

Gaussian and mixed Bayesian networks. The
results presented in this paper are developed
for Gaussian Bayesian networks defined next

Definition 2 (Gaussian Bayesian network).
A Gaussian Bayesian network is a Bayesian
network where the joint probability distribution
of X = {X1, ..., Xn} is a multivariate normal
distribution N(µ,Σ), then the joint density

f(x) =

(2π)−n/2|Σ|−1/2 exp

{

−
1

2
(x − µ)′Σ−1(x − µ)

}

(2)
where µ is the n-dimensional mean vector and
Σ the n×n positive definite covariance matrix.

Moreover, the conditional probability distri-
bution of Xi, satisfying expression (1), is a uni-
variate normal distribution with density

f(xi|pa(xi)) ∼ N(xi|µi +
i−1
∑

j=1

βij(xj − µj), νi)

where µi is the mean of the variables Xi, βij are
the regression coefficients of Xi on its parents,
and νi = Σii − ΣiPa(xi)Σ

−1
Pa(xi)Σ

′

iPa(xi)
is the

conditional variance of Xi given its parents
in the DAG. It should also be pointed that
pa(xi) ⊆ {X1, ..., Xi−1}.

In Bayesian networks, when there exists evi-
dence about one variable of the problem, know-
ing its value, the evidence propagation updates
the probability distributions of the rest of the
variables of the network given the evidence.
Different algorithms had been developed to
propagate the evidence in Bayesian networks
(see Jensen and Nielsen (2007)). In Gaussian
Bayesian networks most of the algorithms pro-
posed are based on computing the conditional
probability distribution for a multivariate nor-
mal distribution given a set of evidential vari-
ables.
Thereby, to perform the evidence propagation
in a Gaussian Bayesian network we consider a
partition of the set of variables, where X =
(E,Y)′, with E the set of evidential variables



and Y the rest of variables that will be con-
sidered as the set of variables of interest. Af-
ter performing the evidence propagation, the
conditional probability distribution of the vari-
ables of interest Y given the evidence E = e is
a multivariate normal distribution, Y|E = e ∼
N(y|µY|E=e, ΣY|E=e) where

µY|E=e = µY + ΣYEΣ−1
EE

(e − µE) (3)

and

ΣY|E=e = ΣYY − ΣYEΣ−1
EE

ΣEY (4)

are the conditional mean vector and covariance
matrix respectively.

Next, the working example of a Gaussian
Bayesian network is introduced.

Example 1. The interest of the problem is
about the duration of time that a machine
works for. The machine is made up of 7
elements with random time to failure, Xi

i = 1, ..., 7, connected as shown in the DAG of
Figure 1.

Figure 1: DAG of the Gaussian Bayesian net-
work in Example 1

It is known that the time that each element is
working is a normal distribution, being the joint

probability distribution of X = {X1, X2, ..., X7}
a multivariate normal distribution N(µ,Σ) with
parameters

µ =

























1
3
2
1
4
5
8

























;Σ =

























1 0 0 1 0 2 2
0 1 0 2 2 8 8
0 0 2 0 2 4 4
1 2 0 6 4 20 20
0 2 2 4 10 28 28
2 8 4 20 28 97 97
2 8 4 20 28 97 99

























The Gaussian Bayesian network that rep-
resents the problem is given by the joint
probability distribution of X ∼ N(x|µ,Σ)
and by the DAG in Figure 1, showing the
dependence structure between the variables of
the example.

Experts know that the evidence is given by

E = {X1 = 2, X2 = 2, X3 = 1}

Then, after performing the evidence propaga-
tion, the probability distribution of the rest of
the variables is Y|E ∼ N(y|µY|E, ΣY|E) with
parameters

µY|E =











0
1
−3
0











;ΣY|E =











1 0 2 2
0 4 8 8
2 8 21 21
2 8 21 23











The effect of introducing the evidence updates
the parameters of the marginal distribution of
the variables Y given by

µY =











1
4
5
8











;ΣY =











6 4 20 20
4 10 28 28
20 28 97 97
20 28 97 99











and the independence relationship because X4

and X5 become dependent.

3 Sensitivity Analysis

The aim of this work is to generalize the
one way sensitivity analysis developed by



Gómez-Villegas, Main and Susi (2007) to a set
of variables of interest.
The proposed methodology consists in compar-
ing two different network’s outputs: the first
one, given by the network’s output after the
evidence propagation at the original model, and
the other one, given by the network’s output
after the evidence propagation with a perturbed

model. The perturbed model is obtained after
adding a set of perturbations to the inaccurate
parameters, as will be shown in Subsection 3.2.
In this case, both network’s outputs are the
conditional probability distributions of the set
of variables of interest, given the evidence.
It is useful to study the effect of inaccuracy
over the parameters of a Gaussian Bayesian
network for one variable of interest, after the
evidence propagation. Nevertheless, now we
can analyze simultaneous perturbations in
several parameters.

3.1 Kullback-Leibler divergence

To compare the network’s outputs we work with
the n-dimensional Kullback-Leibler divergence
(Kullback-Leibler, 1951). This measure takes
into account the whole behavior of the distri-
butions to be considered, therefore, it provides
a suitable procedure to compare the network’s
outputs. The Kullback-Leibler (KL) divergence
measure was introduced as a generalization of
Shannon’s entropy and has been used in statis-
tical inference by authors like Jeffreys, Fisher
and Lindley.

Definition 3 (Kullback-Leibler divergence).
Let f(w) and f ′(w) be two probability densities
defined over the same domain. The Kullback-
Leibler divergence is given by

KL(f(w), f ′(w)) =

∫ ∞

−∞
f(w) ln

f(w)

f ′(w)
dw (5)

When the probability densities to be com-
pared with the KL divergence are multivariate
normal distributions expression (5) can be
written as

KL(f, f ′) =

=
1

2

[

ln
|Σ′|

|Σ|
+ tr

(

ΣΣ′−1
)

− dim(X)

]

+

+
1

2

[

(

µ′ − µ
)T

Σ′−1 (

µ′ − µ
)

]

(6)

where f is the joint probability density of
X ∼ N(x|µ,Σ) and f ′ is the joint probability
density of X ∼ N(x|µ′,Σ′).

3.2 Sensitivity Analysis: methodology

The sensitivity analysis consists in comparing,
with the KL divergence, two different network’s
output, obtained for the original and the
perturbed model.
The original model is the initial description
of the parameters of the network, given by
X ∼ N(x|µ,Σ). The perturbed model quan-
tifies the uncertainty about the inaccurate
parameters of the original model, as a set of
additive perturbations. These are given by the
mean vector perturbations δ and the covariance

matrix perturbations ∆, where

δ =

(

δE
δY

)

;∆ =

(

∆EE ∆EY

∆YE ∆YY

)

Depending on the inaccurate parameters it
is possible to consider five different perturbed
models obtained when the uncertainty is about
the evidential means, the means of interest,
the variances-covariances between evidential
variables, the variances-covariances between
variables of interest and about the covariances
between evidential variables and variables of
interest. Therefore, next perturbed models are
considered:

• X ∼ N(x|µδE , Σ) where

µδE =

(

µE + δE
µY

)

• X ∼ N(x|µδY , Σ) being

µδY =

(

µE

µY + δY

)



• X ∼ N(x|µ,Σ∆EE) with

Σ∆EE =

(

ΣEE + ∆EE ΣEY

ΣYE ΣYY

)

• X ∼ N(x|µ,Σ∆YY) where

Σ∆YY =

(

ΣEE ΣEY

ΣYE ΣYY + ∆YY

)

• X ∼ N(x|µ,Σ∆YE) where

Σ∆YE =

(

ΣEE ΣEY + ∆EY

ΣYE + ∆YE ΣYY

)

In this way, with the proposed sensitivity
analysis the network’s outputs of all the per-
turbed models are going to be compared with
the network’s output of the original model.
Thereby, five different KL divergences are ob-
tained, one for each perturbed model.
When the KL divergence is large for a specific
perturbed model we can conclude that the set of
parameters perturbed must be reviewed to de-
scribe the network more accurately. However,
when the KL divergence is small, close to zero,
it can be concluded that the network is not sen-
sitive to the proposed perturbations. In sum-
mary, it can be established the set of inaccurate
parameters that causes the worst perturbation.
We have studied these cases separately
to distinguish the effects of different kind
of uncertain parameters. And we have
also studied perturbations on parameters of
both Y and E, giving a robustness mea-
sure of the Gaussian Bayesian network (see
Gómez-Villegas, Main and Susi (2008)).

3.3 Main results

The computations of the KL divergence for each
perturbed model are in Propositions 1 and 2.

Proposition 1 (Uncertainty about the mean
vector). Let (G, P ) be a Gaussian Bayesian

network with X = {E,Y} and X ∼
N(x|µ,Σ) where the mean vector µ is uncertain.

Giving values to the perturbations of the mean

vector δ = (δE , δY )T , the following results are

obtained

1. When the perturbation δE is added to the

mean vector of the evidential variables, the

perturbed model after the evidence propaga-

tion is Y|E, δE ∼ N(y|µY|E,δE ,ΣY|E) with

µY|E,δE = µY|E − ΣYEΣ−1
EE

δE. The KL

divergence is

KLµE =
1

2

[

δT
EMT

1

(

ΣY|E
)−1

M1δE

]

with M1 = ΣYEΣ−1
EE

2. When the perturbation δY is added to the

mean vector of the variables of interest, af-

ter the evidence propagation the perturbed

model is Y|E, δY ∼ N(y|µY|E,δY ,ΣY|E)
where µY|E,δY = µY|E + δY and the KL

divergence is

KLµY =
1

2

[

δT
Y

(

ΣY|E
)−1

δY

]

Proof. For uncertainty about the mean vector,
we work with two perturbed models, depending
on the set of inaccurate parameters.

In both perturbed models the covariance
matrix ΣY|E is the same for the original
model and for the perturbed model, then

tr

(

ΣY|E
(

ΣY|E
)−1

)

= dim(Y). So, working

with expression (6) and dealing with the per-
turbed models, the KL divergences follow di-
rectly.

Note also that the KL divergence obtained
when there exists uncertainty about the mean
vector of the evidential variables coincides with
the KL divergence computed for a perturbation
in the evidence vector e. This gives us a tool
to evaluate evidence influence on the network’s
outputs, as can be seen in Susi (2007).

Proposition 2 (Uncertainty about the co-
variance matrix). Let (G,P ) be a Gaussian

Bayesian network with X = {E,Y} and X ∼
N(x|µ,Σ) where the covariance matrix Σ is un-

certainty. Giving values to the perturbations of

the covariance matrix ∆ =

(

∆EE ∆EY

∆YE ∆YY

)

,

the following results are obtained



1. When the perturbation ∆EE is added to

the variances-covariances of the evidential

variables, after the evidence propagation,

the perturbed model is

Y|E,∆EE ∼ N(y|µY|E,∆EE ,ΣY|E,∆EE)

with µY|E,∆EE = µY +
ΣYE (ΣEE + ∆EE)−1 (e − µE) and

ΣY|E,∆EE = ΣYY −
ΣYE (ΣEE + ∆EE)−1

ΣEY

The KL divergence is

KLΣEE =

=
1

2



ln

∣

∣

∣ΣY|E,∆EE

∣

∣

∣

∣

∣ΣY|E
∣

∣

− dim(Y)



 +

+
1

2

[

tr

(

ΣY|E
(

ΣY|E,∆EE

)−1
)]

+

+
1

2

[

MT
2

(

ΣY|E,∆EE

)−1
M2

]

where M2 = µY|E,∆EE − µY|E.

2. When the perturbation ∆YY is added to the

variances-covariances between the variables

of interest, after the evidence propagation

the perturbed model is

Y|E,∆YY ∼ N(y|µY|E,ΣY|E,∆YY)

with ΣY|E,∆YY = ΣY|E + ∆YY.

The obtained KL divergence is

KLΣYY =

=
1

2



ln

∣

∣

∣ΣY|E + ∆YY

∣

∣

∣

∣

∣ΣY|E
∣

∣

− dim(Y)



 +

+
1

2

[

tr

(

ΣY|E
(

ΣY|E + ∆YY

)−1
)]

3. If the perturbation ∆YE is added to the co-

variances between Y and E, the perturbed

model after the evidence propagation is

Y|E,∆YE ∼ N(y|µY|E,∆YE ,ΣY|E,∆YE)

with µY|E,∆YE = µY +
(ΣYE + ∆YE)Σ−1

EE
(e − µE) and

ΣY|E,∆YE = ΣYY −
(ΣYE + ∆YE)Σ−1

EE
(ΣEY + ∆EY)

Then, the KL divergence is

KLΣYE =

=
1

2



ln

∣

∣

∣ΣY|E − M(∆YE)
∣

∣

∣

∣

∣ΣY|E
∣

∣

− dim(Y)



 +

+
1

2

[

tr

(

ΣY|E
(

ΣY|E − M(∆YE)
)−1

)]

+

+
1

2

[

(e − µE)T
(

Σ−1
EE

)T
M3Σ

−1
EE

(e − µE)

]

where

M3 = ∆T
YE

(

ΣY|E − ∆YEΣ−1
EE

ΣT
YE

−ΣYEΣ−1
EE

∆EY − ∆YEΣ−1
EE

∆EY

)−1
∆YE

Proof. We work with three perturbed models
defined for different sets of inaccurate param-
eters. The corresponding conditional parame-
ters for the perturbed model are stated. Then,
computing the KL divergence with (6) to com-
pare the network’s output of the original model
with the network’s outputs obtained for the per-
turbed models, the obtained expressions follow
directly.

Although computation involves matrix opera-
tions and depends on the network size, the final
calculations consider a reduced dimension be-
cause of the partition in the original covariance
matrix. The introduced results can be imple-
mented algorithmically with a polynomial com-
putational complexity.

4 Experimental results

Next, we will run the sensitivity analysis pro-
posed in Section 3 for the Example 1.

Example 2. There are different opinions
between experts about the parameters of
the Gaussian Bayesian network shown in



Example 1. Quantifying this uncertainty we ob-
tain the perturbed mean vector δ and the per-
turbed covariance matrix ∆ as follows

δE =







0
−1
1






; δY =











0
1
0
−1











ΣEE =







0 0 0
0 1 0
0 0 −1







ΣYY =











0 0 0 1
0 1 0 0
0 0 1 −2
1 0 −2 0











ΣEY =







0 0 0 0
0 0 0 0
0 0 0 −1







Taking into account the evidence
E = {X1 = 2, X2 = 2, X3 = 1} and the
variables of interest Y = {X4, X5, X6, X7}, it
is possible to perform the sensitivity analysis
proposed.
Then, for the KL divergence with the expres-
sions presented in Propositions 1 and 2, next
values are obtained:

KLµE = 2.125
KLµY = 2.375
KLΣEE = 0.596
KLΣYY(f, fΣYY) = 1.629
KLΣYE(f, fΣYE) = 0.265

With the obtained results it is possible
to conclude that some parameters must be
reviewed to describe the network more accu-
rately. The parameters that must be reviewed
are the mean vector, because the possible
perturbations makes the KL divergence larger
than 1 and, moreover, it is necessary to review
the parameters that describe the variances-
covariances between the variables of interest
because the network is sensitive to uncertainty
about these parameters.

Uncertainty about the variances-covariances
between evidential variables and about the
covariances between variables of interest and
evidential variables do not change the network’s
output so much, therefore the network is not
sensitive to these inaccurate parameters.

5 Conclusions

In a Gaussian Bayesian network, some inaccura-
cies about the parameters that describe the net-
work, involve a sensitivity analysis of the model.
In this paper we propose a sensitivity analysis
for Gaussian Bayesian networks, useful to de-
termine the set or sets of inaccurate parameters
that must be reviewed to be introduced in the
network more accurately, or if the network is
not sensitive to inaccuracies.
The analysis performed is a generalization of
the one way sensitivity analysis developed by
Gómez-Villegas, Main and Susi (2007), work-
ing now with a set of variables of interest and
being able to analyze a set of parameters per-
turbations simultaneously.
At the proposed sensitivity analysis five differ-
ent sets of parameters are considered, depend-
ing on the type of variables and if they describe
the mean or the covariance of the model. After
computing the expressions of the KL divergence
obtained in Propositions 1 and 2, it is possible
to conclude the set or sets of parameters that
must be reviewed to describe the network more
properly. In this way, when a KL divergence is
small, next to zero, we can conclude that the
network is not sensitive to the proposed pertur-
bations.
The methodology we present is easy to perform
with any Gaussian Bayesian network and is use-
ful to evaluate any kind of inaccurate parame-
ters, that is, large and small perturbations as-
sociated to uncertain parameters.

Acknowledgments

This research was supported by the
Ministerio de Educación y Ciencia from
Spain Grant MTM2005–05462 and Comunidad
de Madrid–Universidad Complutense Grant



910395 CCG06–UCM / ESP–1165.

References

Bednarski, M., Cholewa, W. and Frid, W. 2004.
Identification of sensitivities in Bayesian net-
works. Engineering Applications of Artificial In-
telligence, 17:327–335.

Castillo, E. and Kjærulff, U. 2003. Sensitivity
analysis in Gaussian Bayesian networks using
a symbolic-numerical technique.Reliability Engi-
neering and System Safety, 79:139–148.

Chan, H. and Darwiche, A. 2005. A dis-
tance Measure for Bounding Probabilistic Be-
lief Change.International Journal of Approximate
Reasoning, 38(2):149–174.

Coupé, V.M.H., van der Gaag, L.C. and Habbema,
J.D.F. 2000. Sensitivity analysis: an aid
for belief-network quantification.The Knowledge
Engineering Review, 15(3):215–232.

Coupé, V.M.H. and van der Gaag, L.C. 2002.
Propierties of sensitivity analysis of Bayesian be-
lief networks. Annals of Mathematics and Artifi-
cial Intelligence, 36:323–356.

Gómez-Villegas, M.A., Main, P. and Susi, R. 2007.
Sensitivity Analysis in Gaussian Bayesian Net-
works Using a Divergence Measure. Commu-
nications in Statistics: Theory and Methods,
36(3):523–539.

Gómez-Villegas, M.A., Main, P. and Susi, R. 2008.
The effect of block parameter perturbations in
Gaussian Bayesian networks: Sensitivity and Ro-
bustness. (Submitted).

Jensen, F.V. and Nielsen, T.D. 2007.Bayesian Net-
works and Decision Graphs. New York, Springer
Verlag.

Kjærulff, U. and van der Gaag, L.C. 2000. Making
Sensitivity Analysis Computationally Efficient. In

Proceedings of the 16th Conference on Uncer-
tainty in Artificial Intelligence, San Francisco,
CA, USA, pages 315–325. Morgan Kaufmann.

Kullback, S. and Leibler, R.A. 1951. On Information
and Sufficiency. Annals of Mathematical Statis-
tics, 22:79–86.

Laskey, KB. 1995. Sensitivity Analysis for Proba-
bility Assessments in Bayesian Networks. IEEE
Transactions on Systems, Man and Cybernetics,
25:901–909.

Lauritzen, S.L. 1996. Graphical Models. Oxford,
Clarendon Press.

Onisko, A. and Druzdzel, M.J. 2003. Effect of Impre-
cision in Probabilities on Bayesian Network Mod-
els: An Empirical Study Working notes of the
European Conference on Artificial Intelligence in
Medicine.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems. Networks of Plausible Inference. Morgan
Kaufmann, Palo Alto.

Pradhan, M., Henrion, M., Provan, G., del Favero,
B. and Huang, K. 1996. The Sensitivity of Belief
Networks to Imprecise Probabilities: An Experi-
mental Investigation. Artificial Intelligence, 85(1–
2):363–397.

Susi R. 2007. Análisis de Sensibilidad en Redes
Bayesianas Gaussianas. Ph.D. Thesis, Departa-
mento de Estad́ıstica e Investigación Operativa,
Universidad Complutense de Madrid, Spain.



Approximate representation of optimal strategies from influence
diagrams

Finn Verner Jensen
Department of Computer Science

Aalborg University
9220 Aalborg, Denmark

fvj@cs.aau.dk

Abstract

There are three phases in the life of a decision problem, specification, solution, and rep-
resentation of solution. The specification and solution phases are off-line, while the rep-
resention of solution often shall serve an on-line situation with rather tough constraints
on time and space. One of the advantages of influence diagrams (IDs) is that for small
decision problems, the distinction between phases does not confront the decision maker
with a problem; when the problem has been properly specified, the solution algorithms are
so efficient that the ID can also be used as an on-line representation of the solution. If the
solution algorithm cannot meet the on-line requirements, you will construct an alternative
structure for representing the optimal strategy, for example a look-up table or a strategy
tree. We report on ongoing work with situations where the solution algorithm is too space
and time consuming, and where the policy functions for the decisions have so large do-
mains that they cannot be represented directly in a strategy tree. The approach is to have
separate ID representations for each decision variable. In each representation the actual
information is fully exploited, however the representation of policies for future decisions
are approximations. We call the approximation information abstraction. It consists in
introducing a dummy structure connecting the past with the decision. We study how to
specify, implement and learn information abstraction.

1 Introduction

There are several algorithms for solving IDs
(Shachter, 1986),(Shenoy, 1992), (Jensen et al.,
1994), but the principle behind them all is dy-
namic programming starting with the last deci-
sion. That is, first an optimal policy for the last
decision is determined. Next, this policy is rep-
resented somehow, and the optimal policy for
the second last decision is determined by using
the policy for the last decision for forecasting the
future. To illustrate this process, consider the
ID in Figure 1. We can represent the optimal
policy for the last decision as a conditional prob-
ability table (CPT), and the ID from Figure 1
is transformed to the one in Figure 2.

When the solution process is over, you may
represent the optimal strategy as a set of CPTs

representing the policies, and you will have the
Bayesian network in Figure 3.

This process is off-line, and it may require
very much space and time. However, as long
as the task is tractable the solution phase is not
really a problem.

Note that if the ID contains only one decision,
then the information variables are instantiated
when a decision is to be taken, and the task is
reduced to propagation in a Bayesian network.
That is, you need not specify the parents of the
decision variable, and you have a very compact
and efficient representation of the optimal pol-
icy.



D1

B D2

C D3

E U

X1

Y1

Z1

A

X2

Y2

Z2
X3

Y3

Z3

Figure 1: We shall refer to this ID throughout as an illustrating example.

D1

D3B

D2

C

U

X1

E

Y1

Z1

A

X2

Y2

Z2

X3

Y3

Z3

Figure 2: The node for the last decision is substituted with a chance node representation of a policy.

X1

D1
D3

D2

B
E

Y1

C

Z1

A

X2

Y2

Z2

X3

Y3

Z3

Figure 3: A representation of a strategy. Actually, if we are not interested in the expected utilities,
we only need the conditional probabilities for the D-nodes



2 On-line use of a solved influence

diagram

We look at situations where the influence dia-
gram is too complex for on-line use. In particu-
lar, we consider the situation where the domains
for the policies are too large. We shall assume
that this is the case for the ID in Figure 1.

Now, consider the last decision, D3. When
you decide on D3, you know the states
of X1, Y 1, Z1,D1,X2, Y 2, Z2,D2,X3, Y 3, and
Z3. Then the model in Figure 4 can be used.
The information is entered as evidence, and the
expected utilities for D3 are easily calculated.

D3

E UA

X1

Y1

Z1

B

X2

Y2

Z2

C

D1

D2

X3

Y3

Z3

Figure 4: An ID for on-line representation of the
last decision.

On the other hand, when deciding D2, you
need to calculate the expected utility of each
option, and in order to do that you need to
know the policy δD3 for the future decision.
Representing δD3 as in Figure 2 is intractable.
You need an alternative representation, and you
have to settle with an approximate prepresenta-
tion. What is crucial for an approximate repre-
sentation is that it for each configuration over
past(D2) reflects the order of expected utili-
ties for D2. (If X is a decision variable, then
past(X) denotes the set of variables known at
the time of deciding on X).

3 Information abstraction

An approximation approach is information ab-

straction: introduce extra structure connect-
ing the information with the decision. There
are several schemes for information abstraction.

For example, past(D2) way be represented by a
history variable. An immediate representation
would be a chance node H with past(D2) as
parents, but if you were faced with intractably
learge policy domains, then the CPT for H will
also be intractable. Another representation can
be a history belt (see Figure 5).

Domain knowledge can help to determine a
good way of introducing history variables. We
shall later discuss ways of learning history vari-
ables from the initial ID specification.

We propose another scheme for information
abstraction, conditional decomposition of do-

mains. Let δD be a policy for a decision variable
D. A way of decomposing the domain of δD

would be to assume that the policy has the form:

if f(X) then g(Y) else h(Z),

where X,Y,Z are subsets of the domain, and
f is a Boolean valued function. The function f

may be an alert function. For example, an un-
manned vehicle will focus on fullfilling its mis-
sion unless an alert tells it to return for more
fuel. In a game scenario, you may try to meet
your own goals. However, if your opponent is
close to achieving hers, you must focus on block-
ing her way.

If you from domain knowledge know how δD

can be decomposed, you can exploite it in the
solution phase, and you may not need an ap-
proximate representation after all. Using the
language sequential influence diagrams (SIDs)
(Jensen et al, 2006), a specification would look
like the one in Figure 6, where X = {E,F}, Y =
{C,E}, Z = {F,G}.

D1

B

D2

U
A

C

E

F

G

f

1

0

Figure 6: An SID representing a decision with a
policy of the form if f(E,F ) then g(C,E) else

h(E,G).



D2

H7

C

U

X1

H1

H2

Y1

Z1 H3

H4

D1

B

H5

A

X2

Y2

Z2

H6

D3

E

X3

Y3

Z3

Figure 5: An ID for representing δD2. δD3 is approximated through a belt of history variables
ending with H7, wich is assumed to be observed.

The specification in Figure 6 can be translated
to two IDs; one for determining δD1(C,E) with
f = 1 inserted as evidence, and one for δD2 with
f = 0 inserted.

In an ID with several decisions, the decom-
posed policy from Figure 6 can be represented
as in Figure 7.

A

C

E

F

G

D1

D Bf

D2

Figure 7: A BN representation of the decom-
posed policy from Figure 6. The nodes D1 and
D2 have an extra state "no decision".

As indicated above, conditional decomposi-
tion may come up naturally from the domain.
We will later discuss how artificial decomposi-
tions may be learned from the ID specification.

3.1 Overestimation of information

The abstractions presented above underestimate
the information available when the decision ac-
tually is taken. The information is used to esti-
mate the distribution of the parents of the rel-
evant utility functions, and with abstraction of

information, this estimate will be less precise.

You may also overestimate the information.
For example, consider the ID in Figure 8.

D1

B

E

D2 C U

A

T1

T2

T3

T4

T5

T6

T7

Figure 8: An ID with seven different tests for
the same variable.

When deciding D1, it may be reasonable to
say that when you in the future decide D2 you
will know the state of B, and a good approxi-
mating ID for calcultating the policy for D1 will
be the one in Figure 9.

We shall not pursue overestimation of infor-
mation further in this paper.



D1

B

E

D2

C U

A

Figure 9: An ID for calculating a policy for D1
in Figure 8.

4 Space issues

Just to get an impression of the space issues,
consider the example ID in Figure 1. Let the
decision nodes and the observed nodes have 5
states, and let the background nodes A,B,C

and E have 25 states. Then the maximal clique
in a minimal clique junction tree is of size
6, 3 · 109. The maximal clique size in a junc-
tion tree for the representation in Figure 3 is
2, 5 · 108.

If we in the representation with history vari-
ables (Figure 1) let H1 have ten states and in-
crease the number of states by two up to H7
with 22 states, then a junction tree for the model
in Figure 1 has size 3, 5 · 106, and the maximal
clique has size 1, 5 · 106. If we instead start with
six states for H1, increase by one up to H7 with
12 states then the junction tree size is 430,000
and the maximal clique has size 187,000.

If we approximate δD3 with the policy
"if f(Z1, Z2, Z3) then g(X1,X2,X3,D1,D2)
else h(Y 1, Y 2, Y 3,D1,D2)", then the junction
tree has maximal clique size of 3, 9 · 106 and if
we use "if f(Z1, Z2, Z3) then g(X1,X2,X3)
else h(Y 1, Y 2, Y 3)", then the maximal clique
size is 165,000.

5 Learning information abstraction

Consider Figure 4, and assume that we wish to
learn a representation of δD3 as used in Fig-
ure 5. In order to do so you can establish a
sample by exploiting a representation proposed
by (Cooper, 1988). The decision node is sub-
stituted by a chance node with even priors, and
the utility node is substituded by a chance node
with two states (1 and 0). The conditional prob-
ability table P (U = 1|pa(U)) represents normal-
ized utilities. For the resulting network it holds

that P (D|U = 1, e) is proportional to the ex-
pected ulitities for D given the evidence e. Now,
sample from the network with U = 1 inserted.
By removing the unobserved variables (and U)
from the table, you have a sample representing
P (D|pa(D)), which is proportional to the ex-
pected utilities of D given pa(D).

5.1 An example

Take the simple example in Figure 10. The
parameters in the model are so that the policy
for D is characterized by the three functions
(f(Z), g(X), h(Y )) in the following way:

if Z = y then

(if X = y then D = a1 else D = a2)

else (if Y = y then D = a3 else D = a4).

Past of D

D

B U

X

Y

Z

A

Figure 10: A simple ID to illustrate learning of
information abstraction.

The model is transformed to the Bayesian net-
work in Figure 11, where P (D|X,Y,Z,U = 1)
is proportional to EU(D|X,Y,D), and therefore
δD(X,Y,Z) = argmaxDP (D|X,Y,Z,U = 1).

A

X

Y

Z B

D

U

Figure 11: The Bayesian network for sampling.
U = 1 is inserted before sampling

We sampled 10.000 cases from the model in
Figure 11 with U = 1 inserted, and we used
the EM algorithm (Lauritzen, 1995) to learn the
unknown parameters P (f |Z), P (DX|f,X), and
P (DY |f, Y ) in Figure 12.



A

X

Y

Z

DX

D

DY

f

Figure 12: A decomposition model. The CPTs
for f,DX, and DY are unknown

The CPT for D reflects that if f = 1 then
D = DX, and if f = 0 then D = DY . The
learning resulted in CPTs for (f,DX, and DY )
which are very close to the functions (f, g, h).
Finally, we modify the CPTs to give probability
1 to the state of maximal probability, and we
ended up with the correct policy.

If you do not know the form of the decom-
position, then you have to experiment with dif-
ferent structures. For this example, we tried to
learn a policy characterized by the three func-
tions (f(X), g(Z), h(Y )). The resulting struc-
ture had 5 out of 8 decisions correct.

In the model in Figure 13 we have introduced
the history variables H1 with three states, and
H2 with four states. The learning procedure re-
sulted in parameters such that the correct deci-
sion in all eight cases have maximal probability.
To modify the tables to give probability 1 to the
decision with maximal probability, you can use
various tuning methods (see for example (Jensen
and Nielsen, 2006)).

A

X

Y

Z

H1

H2 D

Figure 13: A model with history variables. The
CPTs for H1,H2, and D are unknown.

6 Discussion and future work

The size of domains of decision policies is a ma-
jor obstacle in practical use of decision theory
for decision problems involving a sequence of
decisions. We have in this paper analysed the
problem and we have proposed some schemes

for addressing the problem. First of all we
need a larger set of schemes for information
abstraction, and we need experience with un-
derestimation as well as overestimation of in-
formation. Issues to study will be complex-
ity as well as precision. We have in this pa-
per presented a method for learning parameters
when the structure for information abstraction
is given. Learning structure is more intricate.
As neither the number of latent variables nor
the number of states of the variables are known,
the only method known to us is trial and error.
We need a systematic way of passing through
possible structures.

An alternative method for addressing in-
tractably large decision domains is LIMIDs
(Nilsson and Lauritzen, 2001). The approach is
to remove some variables from the domains. For
the ID in Figure 1, a LIMID structure could be
that the decision maker only knows the current
information and the previous decision. This is
illustrated in Figure 14, where the policies are
represented as CPTs for D1,D2 and D3.

Nilsson and Lauritzen propose an iterative
procedure for determining approximate optimal
policies: start with an arbitrary set of policies
and solve the three single decision IDs; use the
calculated policies as CPTs and solve the new
single decision ID. Continue so untill no policy
is changed.

Following the approach presented in this pa-
per, we would solve the last decision through
sampling and use of the EM algorithm to de-
termine a policy for D3; then use this policy to
determine a policy for D2 through sampling and
EM, and eventually solve the ID for D1. It is an
interesting issue for further research to compare
these two approaches.

References

Gregory F. Cooper (1988). A method for using belief
networks as influence diagrams. Fourth Workshop
on Uncertainty in Artificial Intelligence: 55–63.

Finn V. Jensen, Thomas D. Nielsen and Prakash P
Shenoy (2006). Sequential influence diagrams:
A unified asymmetry framework. International
Journal of Approximate Reasoning, 42(1–2): 101-
118.



X1

D1

B D2

Y1

Z1

A

X2

Y2

Z2

C
D3

E

X3

Y3

Z3

Figure 14: A LIMID structure representing decisions where only the current information and the
previous decision are included in the decision domain

Finn V. Jensen, Thomas D. Nielsen (2007). Bayesian
Networks and Decision Graphs. Springer, New
York.

Frank Jensen, Finn V. Jensen and Søren L. Dittmer
(1994). From Influence Diagrams to Junction
trees. Tenth Conference on Uncertainty in Arti-
ficial Intelligence, Morgan Kaufmann: 367–374.

Steffen L. Lauritzen (1995). The EM algorithm for
graphical association models with missing data.
Computational Statistics and Data Analysis, 19:
191–201.

Dennis Nilsson and Steffen L. Lauritzen (2001). Rep-
resenting and solving decision problems with lim-
ited information. Management Science, 47: 1235-
1251.

Ross Shachter (1986). Evaluating influence dia-
grams. Operations Research, 34(6): 871–882.

Prakash P. Shenoy (1992). Valuation Based Systems
for Bayesian Decision Analysis. Operations Re-
search, 40(3): 463–484.





Complexity Results for Enumerating MPE and Partial MAP

Johan Kwisthout
Department of Information and Computer Sciences, Utrecht University

P.O. Box 80.089, 3508TB Utrecht, The Netherlands
johank@cs.uu.nl

Abstract

While the computational complexity of finding the most likely joint value assignment given
full (MPE) or partial (Partial MAP) evidence is known, less attention has been given to
the related problem of finding the k-th most likely assignment, for arbitrary values of k.
Yet this problem has very relevant practical usages, for example when we are interested in
a list of alternative explanations in decreasing likeliness. In this paper a hardness proof of
enumerating Most Probable Explanations (MPEs) and Maximum A-Priori Probabilities
(Partial MAPs) is given. We prove that finding the k-th MPE is P

PP-complete, and prove

that finding the k-th Partial MAP is P
PP

PP
-complete.

1 Introduction

An important problem that rises from the prac-
tical usage of probabilistic networks (Jensen,
2007; Pearl, 1988) is the problem of finding the
most likely value assignment to a set of vari-
ables, given full or partial evidence. When the
evidence is equal to the entire complement of
that set in the network, the problem is known as
the Most Probable Explanation or MPE-
problem1. Finding, or even approximating,
such a value assignment is NP-hard (Shimony,
1994; Bodlaender et al., 2002; Abdelbar and
Hedetniemi, 1998). On the other hand, find-
ing the most likely value assignment, given ev-
idence for a subset of the complement set (the
Partial MAP-problem), is even harder: Park
and Darwich proved (2004) that this problem
is NP

PP-complete and remains NP-complete on
polytrees.

In practical applications, one often wants to
find a number of different value assignments
with a high likeliness, rather than only the most
likely assignment (see e.g. Santos Jr. (1991)
or Charniak and Shimony (1994)). For exam-
ple, in medical applications one wants to sug-

1In the literature also denoted as Maximum Probabil-
ity Assignment (MPA) or Maximum A-posteriori Prob-
ability (MAP).

gest alternative (but also likely) explanations
to a set of observations. One might like to pre-
scribe medication that covers a number of plau-
sible causes, rather than only the most probable
cause. It may be useful to examine the second-
best explanation to gain insight in how good the
best explanation is, relative to other solutions,
or, how sensitive it is to changes in the parame-
ters of the network (Chan and Darwiche, 2006).

While algorithms exist that can sometimes
find k-th best explanations fast, once the best
explanation is known (Charniak and Shimony,
1994), it has been shown that calculating or
even approximating the k-th best explanation
is NP-hard (Abdelbar and Hedetniemi, 1998),
whether the best explanation is known or not.
Nevertheless, the exact complexity of this prob-
lem has not been established yet.

The complexity of finding k-th best assign-
ments to the Partial MAP-problem has, to
our best knowledge, not yet been investigated.
However, in many applications it is unlikely that
full evidence of the complement of the variables
of interest in the network is available. For ex-
ample, in the Oesophagus Network, a proba-
bilistic network for patient-specific therapy se-
lection for oesophageal cancer (van der Gaag
et al., 2002), a number of variables (like the



presence of haematogenous metastases or the
extent of lymph node metastases) are interme-
diate, non-observable variables. Likewise, the
ALARM network (Beinlich et al., 1989) has six-
teen observable and thirteen intermediate vari-
ables. Therefore, the problem of finding k-th
best assignments, given partial evidence, may
be even more relevant in practical applications
than the corresponding problem where full evi-
dence is available.

In this paper, we extend the problem of find-
ing the most likely value assignment to the prob-
lem of enumerating joint value assignments,
i.e., finding the k-th likely assignment for ar-
bitrary values of k, with either full or partial
evidence. We will prove that (decision variants
of) these problems are complete for the com-

plexity classes P
PP and P

PP
PP

, respectively, sug-
gesting that these problems are much harder
than the (already intractable) restricted cases
where k = 1, and also much harder than the PP-
complete Inference problem. Furthermore,
while some problems are known to be P

PP-
complete, finding the k-th Partial MAP is (to
our best knowledge) the first problem with a

practical application that is shown to be P
PP

PP
-

complete, making this problem interesting from
a more theoretical viewpoint as well.

This paper is organized as follows. First, in
Section 2, we will briefly introduce probabilis-
tic networks and introduce a number of con-
cepts from computational complexity theory.
We will discuss the complexity of enumerating
value assignment with full, respectively partial,
evidence in Sections 3 and 4. In Section 5 we
conclude this paper.

2 Preliminaries

A probabilistic network B = (G,Γ) is defined
by a directed acyclic graph G = (V,A), where
V = {V1, . . . , Vn} models a set of stochastic
variables and A models the (in)dependences
between them, and a set of parameter proba-
bilities Γ, capturing the strengths of the rela-
tionships between the variables. The network
models a joint probability distribution Pr(V) =
∏n

i=1 Pr(vi | π(Vi)) over its variables. We will

use bold upper case letters to denote sets of vari-
ables (i.e., subsets of V) and bold lower case
letters to denote particular value assignments
to these sets. The set of observed variables (the
evidence variables) will be denoted as E, and
the observations themselves as e. We will use
Pr(v |e) as a shorthand for Pr(V = v |E = e).

The MPE-problem is the problem of find-
ing a joint value assignment v to V \ E such
that Pr(v |e) is maximal. The Partial MAP-
problem is the problem of finding a joint value
assignment v to the so-called MAP-variables
VMAP ( V \ E such that Pr(v | e) is maxi-
mal.

2.1 Complexity Theory

In the remainder, we assume that the reader is
familiar with basic concepts of computational
complexity theory, such as Turing Machines, the
complexity classes P, NP, PP, #P, and com-
pleteness proofs for these classes. For a thor-
ough introduction to these subjects we refer to
textbooks like Garey and Johnson (1979) and
Papadimitriou (1994). Furthermore, we use the
concept of oracle access. A Turing Machine M
has oracle access to languages in the class A,
denoted as MA, if it can query the oracle in
one state transition, i.e., in O(1). We can re-
gard the oracle as a ‘black box’ that can an-
swer membership queries in constant time. For
example, NP

PP is defined as the class of lan-
guages which are decidable in polynomial time
on a non-deterministic Turing Machine with ac-
cess to an oracle deciding problems in PP, like
the well known Inference-problem, which is
PP-complete (Littman et al., 1998).

We will frequently use the fact that #P is
polynomial-time Turing equivalent to PP (Si-
mon, 1977). Informally, this implies that a class
that uses #P as an oracle, can also be defined as
using PP and vice versa. For example, the class
NP

PP is equal to the class NP
#P; however, the

former notation is more common. We will use
this property frequently in our hardness proofs.

The complexity class P
PP is defined as the

class of languages, decidable by a determinis-
tic Turing Machine with access to a PP ora-
cle. While P

PP is less known than the related



classes NP
PP and co−NP

PP, complete decision
problems have been discussed in Toda (1994).
Intuitively, while NP is associated with the exis-

tence of a satisfying solution, PP with a thresh-

old of satisfying solutions, and #P with the ex-

act number of satisfying solutions, P
PP is asso-

ciated with the middle satisfying solution. For
this class, the canonical complete problems Mid

SAT and Kth SAT are the problems of de-
termining whether in the lexicographically mid-
dle (k-th) satisfying assignment x1x2 . . .xn ∈
{0, 1}n to a Boolean formula φ, the least sig-
nificant bit is odd (Toda, 1994).

The complexity results in this paper are based
on function—rather than decision—problems.
While a decision problem requires a yes or no

answer (like ‘Is there a satisfying truth assign-
ment to the variables in a formula?’), a function
problem requires a construct, like a satisfying
truth assignment. Formally, traditional com-
plexity classes like P and NP are defined on deci-
sion problems, using acceptor Turing Machines.
The functional counterparts of these classes, like
FP and FNP are defined using transducer Turing
Machines; on an input x a transducer M com-

putes y if M halts in an accepting state with y
on its output tape. In our opinion, the problem
of finding the k-th solution has a more ‘natural’
correspondence with function problems than de-
cision problems and require less technical details
in our hardness proofs.

To prove P
PP (or FP

PP) -hardness of a par-
ticular problem, one needs to reduce it from
a known complete problem like Kth SAT. To
prove membership of P

PP (FP
PP), one needs to

show that it is accepted (computed) by a metric

Turing Machine. Metric Turing Machines were
defined by Krentel (1988).

Definition 1 (Metric Turing Machine). A
metric Turing Machine (metric TM for short)
is a polynomial-time bounded non-deterministic
Turing Machine such that every computation
path halts with a binary number on an out-
put tape. Let M̂ denote a metric TM, then
Out

M̂
(x) denotes the set of outputs of M̂ on

an input x, and KthValue
M̂

(x, k) is defined to
be the k-th smallest number in Out

M̂
(x).

Toda showed (1994), that a function f is in
FP

PP if and only if there exists a metric TM
M̂ such that f is polynomial-time one-Turing
reducible2 to KthValue

M̂
(f ≤FP

1−T KthValue
M̂

for short). Correspondingly, a set L is in P
PP if

and only if a metric TM M̂ can be constructed,
such that KthValue

M̂
is odd for an input x if

and only if x ∈ L. In the remainder, we will
construct such metric TMs for the MPE- and
Partial MAP-problems to prove membership

in FP
PP and FP

PP
PP

.

3 Enumerating MPE

In this section we will construct a FP
PP-

completeness proof for the Kth MPE prob-
lem. More specifically, we show that Kth MPE

can be computed by a metric TM in polyno-
mial time (proving membership of FP

PP), and
we prove hardness of the problem by a reduc-
tion from Kth SAT. We formally define the
functional3 version of Kth MPE problem as
follows.

Kth MPE

Instance: Probabilistic network B = (G,Γ),
evidence variables E with instantiation e,
natural number k.
Question: What is the k-th most probable
assignment vk to the variables in V \ E given
evidence e?

The functional version of Kth SAT, the
problem that we will use in the reduction, is
defined as follows.

Kth SAT

Instance: Boolean formula φ(x1, . . . , xn),
natural number k.
Question: What is the lexicographically k-th
assignment x1 . . . xn ∈ {0, 1}n that satisfies φ?

We will use the formula φex = ((x1 ∨ ¬x2) ∧
x3)∨¬x4 as a running example. We construct a

2A function f is polynomial-time one-Turing reducible
to a function g if there exist polynomial-time computable
functions T1 and T2 such that for every x, f(x) =
T1(x, g(T2(x))) (Toda, 1994, p.5).

3Note that we can transform this functional version
into a decision variant by designating a variable Vd ∈
V \ E with vd as one of its values, and asking whether
Vd = vd in vk.



¬

∧

Vφ

X3 X4X1 X2

∨ ¬

X

V

∨

Figure 1: Example of k-th MPE construction for the
formula φex = ((x1 ∨ ¬x2) ∧ x3) ∨ ¬x4

probabilistic network Bφ from a given Boolean
formula φ in the Kth SAT-instance with n vari-
ables xi, as illustrated in Figure 1. For all vari-
ables xi in the formula φ, we create a match-
ing stochastic variable Xi in V for the network
Bφ, with possible values true (T ) and false (F ).
These variables are roots in the network Bφ

and are denoted as the variable instantiation

part (X) of the network. The prior probabili-
ties p1, . . . , pn for the variables X1, . . . , Xn are
chosen such that the prior probability of a par-
ticular value assignment x is higher than x′,
if and only if the corresponding truth assign-
ment to X1, . . . , Xn is lexicographically higher.
More in particular, we choose prior probabili-
ties p1, . . . , pi, . . . , pn such that pi = 1

2
− 2i−1

2n+1 .
In our example with four variables, the prob-
ability distribution will be p1 = 15

32
, p2 = 13

32
,

p3 = 9
32

, and p4 = 1
32

; the reader can verify that
the probability of a value assignment x is higher
than an assignment x′, if and only if the corre-
sponding truth assignment x1 . . . xn ∈ {0, 1}n

is lexicographically smaller. Note that we can
formulate these probabilities, using a number of
bits which is polynomial in the input size.

For each logical operator in φ, we create
an additional stochastic variable in the net-
work, whose parents are the corresponding sub-
formulas (or single sub-formula in case of a
negation operator) and whose conditional prob-
ability table is equal to the truth table of that
operator. For example, the variable correspond-

ing to a ∧-operator would have a conditional
probability Pr(∧ = T ) = 1 if and only if both
its parents have the value true, and 0 otherwise.
We denote the stochastical variable that is asso-
ciated with the top-level operator in φ with Vφ.
The thus constructed part of the network will
be denoted as the truth-setting part (V) of the
network. It is easy to see that, for a particular
value assignment of variables Xi in the network,
Pr(Vφ = T ) = 1 if and only if the corresponding
truth setting to the variables in φ satisfies φ.

Theorem 1. Kth MPE is FP
PP-complete.

Proof. To prove membership, we will show that
a metric TM can be constructed for the Kth

MPE-problem. Let M̂ be a metric non-
deterministic TM that, on input B, calculates
Pr(V). Since Pr(V) =

∏n
i=1 Pr(vi | π(Vi)), M̂

calculates Pr(V | e) by non-deterministically
choosing instantiations vi, consistent with ev-
idence e, at each step i, and multiplying the
corresponding probabilities. The output is, for
each computation path, a binary representa-
tion (e.g., in fixed precision notation) of 1 −
Pr(v |e) with sufficient precision. Then, clearly
KthValue

M̂
returns the k-th probable explana-

tion of Pr(V | e). This proves that Kth MPE

is in FP
PP.

To prove hardness, we reduce Kth SAT to
Kth MPE. Let φ be an instance of Kth SAT

and let Bφ be the network constructed from φ

as described above. Observe that Pr(X = x |
C = T ) = 0 if x represents a non-satisfying
value assignment, and Pr(X = x | C = T ) is
equal to the prior probability of X = x if x rep-
resents a satisfying value assignment. Further-
more note that the values of the variables that
model logical operators are fully determined by
the values of their parents. Then, given evi-
dence C = T , the k-th MPE corresponds to the
lexicographical k-th satisfying value assignment
to the variables in φ. Thus, given an algorithm
for calculating the k-th MPE, we can solve the
Kth SAT problem as well. Clearly, the above
reduction is a polynomial-time one-Turing re-
duction from Kth SAT to Kth MPE. This
proves FP

PP-hardness of Kth MPE.



Observe, that the problem remains FP
PP-

complete when all nodes have indegree at most
two, and all variables are binary.

4 Enumerating Partial MAP

While the MPE-problem is complete for the
class NP (solvable by a nondeterministic TM),
Partial MAP is complete for NP

PP, i.e., solv-
able by a nondeterministic TM with access to
an oracle for problems in PP. In the previous
section we have proven that the Kth MPE-
problem is complete for FP

PP, thus solvable by
a metric TM. Intuitively, this suggests that the
Kth Partial MAP-problem is complete for

FP
PP

PP
, the class of function problems solvable

by a metric TM with access to a PP-complete
oracle. To our best knowledge, no complete
problems have been discussed for this complex-
ity class. We introduce the Kth NumSat-
problem, defined as follows.

Kth NumSAT

Instance: Boolean formula
φ(x1, . . . , xm, . . . , xn), natural numbers k, l.
Question: What is the lexicographically k-th
assignment x1 . . . xm ∈ {0, 1}m such that
exactly l assignments xm+1 . . . xn ∈ {0, 1}n−m

satisfy φ?

We will prove in the appendix that Kth

NumSAT is FP
PP

PP
-complete. To prove hard-

ness of Kth Partial MAP, we will use a ver-
sion of this problem with bounds on the proba-
bility of the MAP variables.

Kth Partial MAP

Instance: A probabilistic network
B = (G,Γ), evidence variables E with
instantiation e, observable variables
VMAP ⊂ V \ E, natural number k, rational
numbers 0 ≤ q ≤ r ≤ 1 .
Question: What is, within the interval [q, r],
the k-th most probable assignment vk to the
variables in VMAP given evidence e?

Note that the Kth Partial MAP problem
without boundary constraints is a special case
where q = 0 and r = 1, and that we can use
binary search techniques to find a solution to

¬

∧

Vφ

X3 X4X1 X2

∨

Eφ

¬

C

E

X

V

∨

Figure 2: Example of k-th Partial MAP construction for
the formula φex = ((x1 ∨ ¬x2) ∧ x3) ∨ ¬x4, with MAP
variables x1 and x2

the bounded problem variant, using an algo-
rithm for the unbounded problem variant, so
we can transform a bounded problem variant
into an unbounded problem variant in poly-
nomial time, and vice versa. However, using
the bounded problem formulation facilitates our
hardness proof.

We will prove FP
PP

PP
-completeness of Kth

Partial MAP by a reduction from Kth Num-

SAT. We will again use the formula φex =
((x1∨¬x2)∧x3)∨¬x4 as a running example (see
Figure 2). We want to find the lexicographically
k-th assignment to {x1, x2} such that exactly l
instantiations to {x3, x4} satisfy φex.

As in the previous section, we construct
a probabilistic network Bφ from a given
Kth NumSAT instance φ(x1, . . . , xm, . . . , xn).
Again, we create a stochastical variable Xi

for each variable xi in φ, but now with uni-
form probability. We denote the variables
Xi, . . . , Xm as the variable instantiation part
(X). These variables are the MAP variables in
our k-th Partial MAP construction. For each
logical operator in φ, we create additional vari-
ables in the network as in the previous section,
with Vφ as variable associated with the top level
operator in φ. Observe that, for a particu-
lar value assignment vk to the MAP variables



{X1, . . . , Xm}, Pr(Vφ = T ) = l
n−m

, where l is
the number of value assignments to the variables
{Xm+1, . . . , Xn} that satisfy φ.

Furthermore, we construct a enumeration

part (E) of the network by constructing a
logn-deep binary tree with the MAP vari-
ables X1, . . . , Xm as leafs and additional vari-
ables Ep,q, each with possible values true and
false. Without loss of generality, we assume
that the number of leafs is a power of two
(we can use additional dummy variables). A
variable Ep,1 has parents X2p−1 and X2p; vari-
ables Ep,q(q > 1) have parents E2p−1,q−1 and
E2p,q−1. Let π(Ep,q) = {X2p−1, X2p}, respec-
tively {E2p−1,q−1, E2p,q−1} denote the parent
configuration for Ep,1 and Ep,q(q > 1). Then
the conditional probability table for Ep,q is de-
fined as follows:

Pr(Ep,q = T |π(Ep,q) = {T, T}) = 0

Pr(Ep,q = T |π(Ep,q) = {T, F}) = 1
2p+n−m+1

Pr(Ep,q = T |π(Ep,q) = {F, T}) = 2
2p+n−m+1

Pr(Ep,q = T |π(Ep,q) = {F, F}) = 3
2p+n−m+1

The root of this tree will be denoted as Eφ. In
the example network, there are only two MAP
variables (m = 2) so Eφ = E1,1 with prob-
abilities Pr(Eφ = T ) = 0, 1

16
, 2

16
, and 3

16
for

the value assignments {T, T}, {T, F}, {F, T}
and {F, F}, respectively. Note that the above
construct ensures that lexicographically smaller
value assignments to the MAP variables, lead
to a higher probability Pr(Eφ = T ), but that
this probability is always less than 1

2n−m .
We add an additional variable C with par-

ents Vφ and Eφ, with the following conditional
probability table:

Pr(C = T ) =















1 if Vφ = T ∧ Eφ = T
1
2

if Vφ = T ∧ Eφ = F
1
2

if Vφ = F ∧ Eφ = T

0 if Vφ = F ∧ Eφ = F

We now have, that for a particular instan-
tiation to the MAP variables, the probability
Pr(C = T ) is within the interval [ l

2n−m ,
l+1

2n−m ],
where l denotes the number of value assign-
ments to the variables Xm+1, . . . , Xn that make
φ true.

Theorem 2. Kth Partial MAP is FP
PP

PP
-

complete.

Proof. The FP
PP

PP
membership proof is very

similar to the FP
PP membership proof of the

Kth MPE-problem, but now we use an oracle
for Exact Inference (which is #P-complete,
see Roth (1996)) to compute the probability of
the assignment vk. If it is within the interval
[q, r], we output 1 minus that probability; if not,
we output 1. Note that we really need the oracle
to perform this computation since we need to
marginalize on vk. Clearly, KthValue

M̂
returns

the k-th Partial MAP, and this proves that Kth

Partial MAP is in FP
PP

PP
.

To prove hardness, we construct a prob-
abilistic network Bφ from a given instance
φ(x1, . . . , xm, . . . , xn), similar to the previous
section. The conditional probabilities in the
thus constructed network ensure that the prob-
ability of a value assignment vk to the variables
{X1, . . . , Xm} such that l value assignments to
the variables {Xm+1, . . . , Xn} satisfy φ, is in the
interval [ l

2n−m ,
l+1

2n−m ]. Moreover, Pr(C = T |
xk) > Pr(C = T | x′

k
) if the truth value that

corresponds with xk is lexicographically smaller
than x′

k
. Thus, with evidence C = T and ranges

[ l
2n−m ,

l+1
2n−m ], the k-th Partial MAP corresponds

to the lexicographical k-th truth assignment to
the variables x1 . . .xm for which exactly l truth
assignments to xm+1 . . .xn satisfy φ. Clearly,
the above reduction is a polynomial-time one-
Turing reduction from Kth NumSAT to Kth

Partial Map. This proves FP
PP

PP
-hardness

of Kth Partial MAP.

Observe again, that the problem remains

FP
PP

PP
-complete when the MAP-variables have

no incoming arcs, when all nodes have indegree
at most two, and all variables are binary.

5 Conclusion

In this paper, we have addressed the compu-
tational complexity of finding the k-th MPE
or k-th Partial MAP. We have shown that the
Kth MPE-problem is P

PP-complete, making
it considerably harder than both MPE (which



is NP-complete) and Inference (which is PP-
complete). The computational power (and thus
the intractability of Kth MPE) of P

PP is il-
lustrated by Toda’s theorem (1991) that states
that P

PP includes the entire Polynomial Hier-
archy. Yet finding the k-th MPE is arguably
easier than finding the most probable explana-
tion given only partial evidence (the Partial

MAP-problem) which is NP
PP-complete. More-

over, when inference can be done in polynomial
time (such as in polytrees) then we can find the
k-th MPE in polynomial time (Sy, 1992; Srini-
vas and Nayak, 1996).

Finding the k-th Partial MAP, on the other
hand, is considerably harder. We have shown

that this problem is P
PP

PP
-complete in gen-

eral. Park and Darwiche (2004) show that the
Partial MAP-problem remains NP-complete
on polytrees, using a reduction from 3SAT4.
Their proof can be easily modified to reduce
Kth Partial MAP on polytrees from the P

PP-
complete problem Kth 3SAT (Toda, 1994),
hence finding the k-th Partial MAP on poly-
trees remains P

PP-complete. Nevertheless, the
approach of Park and Darwiche (2004) for ap-
proximating Partial MAP may be extended
to find the k-th Partial MAP as well.

For small or fixed k, these problems may be
easier, depending on the exact problem formu-
lation5. For example, it may be the case that
Kth MPE is fixed-parameter tractable, i.e. an
algorithm exists for Kth MPE which has a run-
ning time, exponentially only in k.

Acknowledgements

This research has been (partly) supported by
the Netherlands Organisation for Scientific Re-
search (NWO).
The author wishes to thank Hans Bodlaender
and Gerard Tel for their insightful comments on
earlier drafts of this paper, and Leen Torenvliet
for discussions on the Kth NumSAT problem.

4Technically, they reduce Partial MAP from MAX

SAT to preserve approximation results.
5The problem ‘Are there at least k value assign-

ments with a probability at least q’ is trivially in NP

for k ≤ log n, but when we want to know whether there
are exactly k such assignments the problem may be con-
siderable harder.

References

A. M. Abdelbar and S. M. Hedetniemi. 1998.
Approximating maps for belief networks is NP-
hard and other theorems. Artificial Intelligence,
102:21–38.

I. Beinlich, G. Suermondt, R. Chavez, and
G. Cooper. 1989. The ALARM monitoring sys-
tem: A case study with two probabilistic infer-
ence techniques for belief networks. In Proceed-
ings of the Second European Conference on AI
and Medicine, pages 247–256.

H. L. Bodlaender, F. van den Eijkhof, and L. C.
van der Gaag. 2002. On the complexity of the
MPA problem in probabilistic networks. In Pro-
ceedings of the Fifteenth European Conference on
Artificial Intelligence, pages 675–679.

H. Chan and A. Darwiche. 2006. On the robustness
of most probable explanations. In Proceedings of
the 22nd Conference on Uncertainty in Artificial
Intelligence, pages 63–71.

E. Charniak and S. E. Shimony. 1994. Cost-based
abduction and map explanation. Artificial Intel-
ligence, 66(2):345–374.

S. A. Cook. 1971. The complexity of theorem prov-
ing procedures. In Annual ACM Symposium on
Theory of Computing, pages 151–158.

M. R. Garey and D. S. Johnson. 1979. Comput-
ers and Intractability. A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., San
Francisco.

F. V. Jensen. 2007. Bayesian Networks and De-
cision Graphs. Berlin: Springer Verlag, second
edition.

M. W. Krentel. 1988. The complexity of optimiza-
tion problems. Journal of Computer and System
Sciences, 36:490–509.

M. L. Littman, J. Goldsmith, and M. Mundhenk.
1998. The computational complexity of proba-
bilistic planning. Journal of Artificial Intelligence
Research, 9:1–36.

C. H. Papadimitriou. 1994. Computational Com-
plexity. Addison-Wesley.

J. D. Park and A. Darwiche. 2004. Complexity
results and approximation settings for MAP ex-
planations. Journal of Artificial Intelligence Re-
search, 21:101–133.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, Palo Alto.



D. Roth. 1996. On the hardness of approximate rea-
soning. Artificial Intelligence, 82(1-2):273–302.

E. Santos Jr. 1991. On the generation of alternative
explanations with implications for belief revision.
In Proceedings of the Seventh Conference on Un-
certainty in Artificial Intelligence, pages 339–347.

S. E. Shimony. 1994. Finding MAPs for be-
lief networks is NP-hard. Artificial Intelligence,
68(2):399–410.

J. Simon. 1977. On the difference between one and
many. In Proceedings of the Fourth Colloquium
on Automata, Languages, and Programming, vol-
ume 52 of LNCS, pages 480–491. Springer-Verlag.

S. Srinivas and P. Nayak. 1996. Efficient enumer-
ation of instantiations in Bayesian networks. In
Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence, pages 500–
508.

B.K. Sy. 1992. Reasoning MPE to multiply con-
nected belief networks using message-passing. In
Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 570–576.

S. Toda. 1991. PP is as hard as the polynomial-
time hierarchy. SIAM Journal of Computing,
20(5):865–877.

S. Toda. 1994. Simple characterizations of P(#P)
and complete problems. Journal of Computer and
System Sciences, 49:1–17.

J. Torán. 1991. Complexity classes defined
by counting quantifiers. Journal of the ACM,
38(3):752–773.

L. C. van der Gaag, S. Renooij, C. L. M. Witteman,
B. M. P. Aleman, and B. G. Taal. 2002. Prob-
abilities for a probabilistic network: a case study
in oesophageal cancer. Artificial Intelligence in
Medicine, 25:123–148.

Appendix

In Section 4 we reduced Kth NumSAT to
Kth Partial MAP. Here we show that Kth

NumSAT is FP
PP

#P
-complete, and thus also

FP
PP

PP
-complete.

Kth NumSAT

Instance: Boolean formula
φ(x1, . . . , xm, . . . , xn), natural numbers k, l.
Question: What is the lexicographically k-th
assignment x1 . . .xm ∈ {0, 1}m such that
exactly l assignments xm+1 . . .xn ∈ {0, 1}n−m

satisfy φ?

The hardness proof of Kth NumSAT is
based on the FP

PP-hardness proof of Kth

SAT by Toda (1994), and uses a result by
Torán (1991) that states that the Counting Hi-

erarchy (and thus P
PP

#P
in particular) is closed

under polynomial time many-one reductions
(and consequently, the functional counterpart

FP
PP

#P
is closed under polynomial time one-

Turing reductions). Thus, any computation in

FP
PP

#P
can be modeled by a metric TM that

calculates a bit string q based on its input x,
then queries its #P oracle and writes down a
number based on q and the result of the oracle,
thus only querying the oracle once.

Theorem 3. Kth NumSAT is FP
PP

#P
-

complete.

Proof. Since Toda’s proof (Toda, 1994) rela-

tivizes, a function f is in FP
PP

#P
if there ex-

ists a metric TM M̂ with access to an oracle
for #P-complete problems such that f ≤FP

1−T

KthValue
M̂

. It is easy to see that a metric
TM, that nondeterministically computes a sat-
isfying assignment to x1 . . .xm (using an oracle
for counting the number of satisfying assign-
ments to xm+1 . . .xn), and writing the binary
representation of this assignment on its output
tape, suffices.

To prove hardness, let M̂ be a metric TM
with a #P oracle. Given an input x to M̂,
we can construct (using Cook’s theorem (1971))
a tuple of two Boolean formulas (φx(q), ψx(r))
such that φx is true if and only if q specifies a
computation path of M̂ that is presented to the
#P oracle, which returns the number l of satis-
fying instantiations to ψx(r), such that F (q, l) is
the output of M̂. Since the computation path
that computes q is uniquely determined, q is
the k-th satisfying assignment to φx for which
l instantiations to r satisfy ψx(r), if and only if
F (q, l) is the k-th output of M̂. Thus, we can
construct a ≤FP

1−T -reduction from every function
accepted by a metric TM with access to a #P

oracle to Kth NumSAT.



Parameter Estimation in Mixtures of Truncated Exponentials

Helge Langseth
Department of Computer and Information Science

The Norwegian University of Science and Technology, Trondheim (Norway)
helgel@idi.ntnu.no

Thomas D. Nielsen
Department of Computer Science

Aalborg University, Aalborg (Denmark)
tdn@cs.aau.dk

Rafael Rumı́ and Antonio Salmerón
Department of Statistics and Applied Mathematics

University of Almeŕıa, Almeŕıa (Spain)
{rrumi,antonio.salmeron}@ual.es

Abstract

Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient in-
ference algorithms and provide a flexible way of modeling hybrid domains. On the other
hand, estimating an MTE from data has turned out to be a difficult task, and most preva-
lent learning methods treat parameter estimation as a regression problem. The drawback
of this approach is that by not directly attempting to find the parameters that maximize
the likelihood, there is no principled way of e.g. performing subsequent model selection
using those parameters. In this paper we describe an estimation method that directly aims
at learning the maximum likelihood parameters of an MTE potential. Empirical results
demonstrate that the proposed method yields significantly better likelihood results than
regression-based methods.

1 Introduction

In domains involving both discrete and continu-
ous variables, Bayesian networks with mixtures
of truncated exponentials (MTE) (Moral et al.,
2001) have received increasing interest over the
last few years. Not only do MTE distributions
allow discrete and continuous variables to be
treated in a uniform fashion, but since the fam-
ily of MTEs is closed under addition and multi-
plication, inference in an MTE network can be
performed efficiently using the Shafer-Shenoy
architecture (Shafer and Shenoy, 1990).

Despite its appealing approximation and in-
ference properties, data-driven learning meth-
ods for MTE networks have received only lit-
tle attention. In this context, focus has mainly
been directed towards parameter estimation,
where the most prevalent methods look for the
MTE parameters minimizing the mean squared
error w.r.t. a kernel density estimate of the data
(Romero et al., 2006).

Although the least squares estimation pro-
cedure can yield a good MTE model in terms
of generalization properties, there is no guar-
antee that the estimated parameters will be
close to the maximum likelihood (ML) param-
eters. This has a significant impact when
considering more general problems such as
model selection and structural learning. Stan-
dard score functions for model selection include
e.g. the Bayesian information criterion (BIC)
(Schwarz, 1978), which is a form of penalized
log-likelihood. However, the BIC score assumes
ML parameter estimates, and since there is no
justification for treating the least squares pa-
rameter estimates as ML parameters, there is in
turn no theoretical foundation for using a least
squared version of the BIC score.1

In this paper we propose a new parameter es-

1Learning the general form of an MTE can also be
posed as a model selection problem, where we look for
the number of exponential terms as well as appropriate
split points. Hence, the problem also appears in this
simpler setting.



timation method for univariate MTE potentials
that directly aims at estimating the ML param-
eters for an MTE density with predefined struc-
ture (detailed below). The proposed method is
empirically compared to the least squares es-
timation method described in (Romero et al.,
2006), and it is shown that it offers a significant
improvement in terms of likelihood.

The method described in this paper should
be considered as a first step towards a general
maximum likelihood-based approach for learn-
ing Bayesian networks with MTE potentials.
Thus, we shall only hint at some of the diffi-
culties (complexity-wise) that are involved in
learning general conditional MTE potentials,
and instead leave this topic as well as structural
learning as subjects for future work.

2 Preliminaries

Throughout this paper, random variables will
be denoted by capital letters, and their values
by lowercase letters. In the multi-dimensional
case, boldfaced characters will be used. The
domain of the variable X is denoted by ΩX.
The MTE model is defined by its correspond-
ing potential and density as follows (Moral et
al., 2001):

Definition 1 (MTE potential) Let X be a
mixed n-dimensional random vector. Let W =
(W1, . . . ,Wd) and Z = (Z1, . . . , Zc) be the dis-
crete and continuous parts of X, respectively,
with c + d = n. We say that a function f :
ΩX 7→ R

+
0 is a Mixture of Truncated Expo-

nentials (MTE) potential if for each fixed value
w ∈ ΩW of the discrete variables W, the poten-
tial over the continuous variables Z is defined
as:

f(z) = a0 +

m
∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







, (1)

for all z ∈ ΩZ, where ai, i = 0, . . . ,m and b
(j)
i ,

i = 1, . . . ,m, j = 1, . . . , c are real numbers. We
also say that f is an MTE potential if there is a
partition D1, . . . ,Dk of ΩZ into hypercubes and
in each Di, f is defined as in Eq. (1).

An MTE potential is an MTE density if it inte-
grates up to 1.

In the remainder of this paper we shall focus
on estimating the parameters for a univariate
MTE density. Not surprisingly, the proposed
methods also immediately generalize to the spe-
cial case of conditional MTEs having only dis-
crete conditioning variables.

3 Estimating Univariate MTEs from

Data

The problem of estimating a univariate MTE
density from data can be divided into three
tasks: i) partitioning the domain of the vari-
able, ii) determining the number of exponential
terms, and iii) estimating the parameters for a
given partition of the domain and a fixed num-
ber of exponential terms. At this point we will
concentrate on the estimation of the parame-
ters, assuming that the split points are known,
and that the number of exponential terms is
fixed.

We start this section by introducing some no-
tation: Consider a random variable X with den-
sity function f(x) and assume that the support
of f(x) is divided into M intervals {Ωi}

M
i=1. Fo-

cus on one particular interval Ωm. As a target
density for x ∈ Ωm we will consider an MTE
with 2 exponential terms:

f(x|θm) = km+amebmx+cmedmx, x ∈ Ωm. (2)

This function has 5 free parameters, namely
θm = (km, am, bm, cm, dm). For notational con-
venience we may sometimes drop the subscript
m when clear from the context.

3.1 Parameter Estimation by

Maximum Likelihood

Assume that we have a sample x = {x1, . . . , xn}
and that nm of the n observations are in Ωm.
To ensure that the overall parameter-set is a
maximum likelihood estimate for Θ = ∪mθm,
it is required that

∫

x∈Ωm

f(x|θm) dx = nm/n. (3)

Given this normalization, we can fit the param-
eters for each interval Ωm separately, i.e., the
parameters in θm are optimized independently



of those in θm′ . Based on this observation, we
shall only describe the learning procedure for
a fixed interval Ωm, since the generalization to
the whole support of f(x) is immediate.

Assume now that the target density is as
given in Eq. (2), in which case the likelihood
function for a sample x is

L(θm|x) =
n
∏

i=1

{

km + amebmxi + cmedmxi

}

. (4)

To find a closed-form solution for the maximum
likelihood parameters, we need to differentiate
Eq. (4) wrt. the different parameters and set the
results equal to zero. To exemplify, we perform
this exercise for bm, and obtain

∂L(θm|x)

∂bm

=
n
∑

i=1







∂L(θm|xi)

∂bm

∏

j 6=i

L(θm|xj)







= ambm

n
∑

i=1

ebmxi







∏

j 6=i

(

km + amebmxj

+cm edm xj

)}

. (5)

Unfortunately, Eq. (5) is non-linear in the un-
known parameters θm. Furthermore, both the
number of terms in the sum as well as the num-
ber of terms inside the product operator grows
as O(n); thus, the maximization of the likeli-
hood becomes increasingly difficult as the num-
ber of observations rise.

Alternatively, one might consider maximizing
the logarithm of the likelihood, or more specif-
ically a lower bound for the likelihood using
Jensen’s inequality. By assuming that am > 0
and cm > 0 we have

log (L(θm|x)) =
n
∑

i=1

log (km + am exp(bm xj)

+cm exp(dm xj))

≥

n
∑

i=1

log (km) +

n
∑

i=1

log (am exp(bm xj))

+

n
∑

i=1

log (cm exp(dm xj))

= n [log(km) + log(am) + log(cm)]

+ (bm + dm)

n
∑

i=1

xi, (6)

and the idea would then be to maximize the
lowerbound of Eq. (6) to push the likelihood up-
wards (following the same reasoning underlying
the EM algorithm (Dempster et al., 1977) and
variational methods (Jordan et al., 1999)). Un-
fortunately, though, restricting both am and cm

to be positive enforces too strict a limitation on
the expressiveness of the distributions we learn.

Instead, an approximate solution can be ob-
tained by solving the likelihood equations by nu-
merical means. The proposed method for max-
imizing the likelihood is based on the observa-
tion that maximum likelihood optimization for
MTEs can be seen as a constrained optimiza-
tion problem, where constraints are introduced
to ensure that both f(x|θm) ≥ 0, for all x ∈ Ωm,
and that Eq. (3) is fulfilled. A natural frame-
work for solving this is the Lagrange multipli-
ers, but since solving the Lagrange equations
are inevitably at least as difficult as solving the
unconstrained problem, this cannot be done an-
alytically. In our implementation we have set-
tled for a numerical solution based on Newton’s
method; this is described in detail in Section
3.1.2. However, it is well-known that Newton’s
method is quite sensitive to the initialization-
values, meaning that if we initialize a search
for a solution to the Lagrange equations from
a parameter-set far from the optimal values, it
will not necessarily converge to a useful solu-
tion. Thus, we need a simple and robust proce-
dure for initializing Newton’s method, and this
is described next.

3.1.1 Näıve Maximum Likelihood in

MTE Distributions

The general idea of the optimization is to it-
eratively update the parameter estimates until
convergence. More precisely, this is done by it-
eratively tuning pairs of parameters, while the
other parameters are kept fixed. We do this
in a round-robin manner, making sure that all
parameters are eventually tuned. Denote by

θ̂
t

m =
(

kt, at, bt, ct, dt
)

the parameter values af-
ter iteration t of this iterative scheme. Algo-
rithm 3.1 is a top-level description of this pro-
cedure, where steps 3 and 4 correspond to the
optimization of the shape-parameters and steps



5 and 6 distribute the mass between the five
terms in the MTE potential (the different steps
are explained below).

Algorithm 3.1 ML estimation

1: Initialize θ̂0
m; t← 0.

2: repeat

3: (a′, b′)← arg maxa,b L(kt, a, b, ct, dt |x)

4: (c′, d′)← arg maxc,d L(kt, a′, b′, c, d |x)

5: (k′, a′)← arg maxk,a L(k, a, b′, c′, d′ |x)

6: (k′, c′)← arg maxk,c L(k, a′, b′, c, d′ |x)

7: (kt+1, at+1, bt+1, ct+1, dt+1, )← (k′, a′, b′, c, d′)

8: t← t + 1

9: until convergence

For notational convenience we shall define the
auxiliary function p(s, t) =

∫

x∈Ωm
s exp(tx) dx;

p(s, t) is the integral of the exponential function
over the interval Ωm. Note, in particular, that
p(s, t) = s · p(1, t), and that p(1, 0) =

∫

x∈Ωm
dx

is the length of the interval Ωm. The first step
above is initialization. In our experiments we
have chosen b0 and d0 as +1 and −1 respec-
tively. The parameters k0, a0, and c0 are set to
ensure that each of the three terms in the inte-
gral of Eq. (3) contribute with equal probability
mass, i.e.,

k0 ←
nm

3n · p(1, 0)
,

a0 ←
nm

3n · p(1, b0)
,

c0 ←
nm

3n · p(1, d0)
.

Iteratively improving the likelihood under the
constraints is actually quite simple as long as
the parameters are considered in pairs. Con-
sider Step 3 above, where we optimize a and b
under the constraint of Eq. (3) while keeping the
other parameters (kt, ct, and dt) fixed. Observe
that if Eq. (3) is to be satisfied after this step
we need to make sure that p(a′, b′) = p(at, bt).
Equivalently, there is a functional constraint be-
tween the parameters that we enforce by setting
a′ ← p(at, bt)/p(1, b′). Optimizing the value for
the pair (a, b) is now simply done by line-search,

where only the value for b is considered:

b′ = arg max
b

L(k,
p(at, bt)

p(1, b)
, b, ct, dt|x).

Note that at the same time we choose a′ ←
p(at, bt)/p(1, b′). A similar procedure is used in
Step 4 to find c′ and d′.

Steps 5 and 6 utilize the same idea, but
with a different normalization equation. We
only consider Step 5 here, since the general-
ization is immediate. For this step we need
to make sure that

∫

x∈Ωm
k + a exp(b′ x) dx =

∫

x∈Ωm
kt + at exp(b′ x) dx, for any pair of pa-

rameter candidates (k, a). By rephrasing, we
find that this is obtained if we insist that k′ ←
kt−p(a′−at, b′)/p(1, 0). Again, the constrained
optimization of the pair of parameters can be
performed using line-search in one dimension
(and let the other parameter be adjusted to keep
the total probability mass constant).

Note that Steps 3 and 4 do not move “proba-
bility mass” between the three terms in Eq. (2),
these two steps only fit the shape of the two ex-
ponential functions. On the other hand, Steps
5 and 6 assume the shape of the exponen-
tials fixed, and proceed by moving “probability
mass” between the three terms in the sum of
Eq. (2).

3.1.2 Refining the Initial Estimate

The parameter estimates returned by the
line-search method can be further refined by
using these estimates to initialize a nonlinear
programming problem formulation of the origi-
nal optimization problem. In this formulation,
the function to be maximized is again the log-
likelihood of the data, subject to the constraints
that the MTE potential should be nonnegative,
and that

g0(x,θ) ≡

∫

x∈Ωm

f(x |θ) dx−
nm

n
= 0.

Ideally the nonnegative constraints should be
specified for all x ∈ Ωm, but since this is not
feasible we only encode that the function should
be nonnegative in the endpoints e1 and e2 of
the interval (we shall return to this issue later).



Thus, we arrive at the following formulation:

Maximize log L(θ |x) =

n
∑

i=1

log L(θ |xi)

Subject to g0(x,θ) = 0,

f(e1 |θ) ≥ 0,

f(e2 |θ) ≥ 0,

To convert the two inequalities into equalities
we introduce slack variables:

f(x |θ) ≥ 0⇔ f(x |θ)−s2 = 0, for some s ∈ R;

we shall refer to these new equalities using
g1(e1,θ, s1) and g2(e2,θ, s2), respectively. We
now have the following equality constrained op-
timization problem:

Maximize log L(θ |x) =

n
∑

i=1

log L(θ |xi)

Subject to g(x,θ) =





g0(x,θ)
g1(e1,θ, s1)
g2(e2,θ, s2)



 = 0.

This optimization problem can be solved
using the method of Lagrange multipli-
ers. That is, with the Lagrangian func-
tion l(x,θ,λ, s) = log L(θ |x) + λ0g0(x,θ) +
λ1g1(x,θ, s1)+λ2g2(x,θ, s2) we look for a solu-
tion to the equalities defined by

A(x,θ,λ, s) = ∇l(x,θ,λ, s) = 0.

Such a solution can be found numerically by
applying Newton’s method. Specifically, by let-
ting θ

′ = (θ, s1, s2)
T, the Newton updating step

is given by

[

θ
′
t+1

λt+1

]

=

[

θ
′
t

λt

]

−∇A(x,θ′
t,λt)

−1A(x,θ′
t,λt),

where θ
′
t and λt are the current estimates and

A(x,θ′
t,λt) =

[

∇
θ

′ l(x,θ′,λ)

g(x,θ′)

]

;

∇A(x,θ′
t,λt) =

[

∇2

θ
′

θ
′ l(x,θ′,λ) ∇g(x,θ′)

∇g(x,θ′)T 0

]

.

As initialization values, θ0, we use the maxi-
mum likelihood estimates returned by the line-
search method described in Section 3.1, and in
order to control the step size during updating,
we employ the Armijo rule (Bertsekas, 1996).
For the test results reported in Section 4, the
Lagrange multipliers were initialized (somewhat
arbitrarily) to 1 and the slack variables were set
to
√

f(e1 |θ0) and
√

f(e2 |θ0), respectively.

Finally, it should be emphasized that the
above search procedure may lead to f(x |θ) be-
ing negative for some x. In the current im-
plementation we have addressed this problem
rather crudely: simply terminate the search
when negative values are encountered. More-
over, due to numerical instability, the search is
also terminated if the determinant for the sys-
tem is close to zero (< 10−9) or if the condition
number is large (> 109). Note that by termi-
nating the search before convergence, we have
no guarantees about the solution. In particu-
lar, the solution may be worse than the initial
estimate. In order to overcome this problem, we
always store the best parameter estimates found
so far (including those found by line search) and
return these estimates upon termination.

3.2 Parameter Estimation by Least

Squares

Least squares (LS) estimation is based on find-
ing the values of the parameters that mini-
mize the mean squared error between the fitted
model and the empirical density of the sample.
In earlier work on MTE parameter estimation
(Rumı́ et al., 2006), the empirical density was
estimated using a histogram. In order to avoid
the lack of smoothness, especially when data is
scarce, (Romero et al., 2006) proposed to use
kernels to approximate the empirical density in-
stead of histograms.

As the LS method does not directly seek to
maximize the likelihood of the model, the re-
sulting LS parameters are not guaranteed to
be close to the ML parameters. This differ-
ence was confirmed by our preliminary exper-
iments, and has resulted in a few modifications
to the LS method presented in (Rumı́ et al.,
2006; Romero et al., 2006): i) Instead of us-



ing Gausian kernels, we used Epanechnikov ker-
nels, which tended to provide better ML es-
timates in our preliminary experiments. ii)
Since the smooth kernel density estimate as-
signs positive probability mass, p∗, outside the
truncated region (called the boundary bias (Si-
monoff, 1996)), we reweigh the kernel density
with 1/(1 − p∗). iii) In order to reduce the ef-
fect of low probability areas, the summands in
the mean squared error are weighted according
to the empirical density at the corresponding
points.

3.2.1 The Weighted LS Algorithm

In what follows we denote by y = {y1, . . . , yn}
the values of the empirical kernel for sample
x = {x1, . . . , xn}, and with reference to the tar-
get density in Eq. (2), we assume initial esti-
mates for a0, b0 and k0 (we will later discuss
how to get these initial estimates). With this
outset, c and d can be estimated by minimiz-
ing the weighted mean squared error between
the function c exp {dx} and the points (x,w),
where w = y − a0 exp {b0x} − k0. Specifically,
by taking logarithms, the problem reduces to
linear regression:

ln {w} = ln {c exp {dx}} = ln {c}+ dx,

which can be written as w∗ = c∗ + dx; here
c∗ = ln {c} and w∗ = ln {w}. Note that we here
assume that c > 0. In fact the data (x,w) is
transformed, if necessary, to fit this constraint,
i.e., to be convex and positive. This is achieved
by changing the sign of the values w and then
adding a constant to make them positive. We
then fit the parameters taking into account that
afterwards the sign of c should be changed and
the constant used to make the values positive
should be subtracted.

A solution to the regression problem is then
defined by

(c∗, d) = arg min
c∗,d

n
∑

i=1

(w∗
i − c∗ − dxi)

2yi,

which can be described analytically:

c∗ =
(
∑n

i=1 wixiyi)− d (
∑n

i=1 xiyi)
2

(
∑n

i=1 xiyi)

d=

(

n
∑

i=1

wiyi

)(

n
∑

i=1

xiyi

)

−

(

n
∑

i=1

yi

)(

n
∑

i=1

wixiyi

)

(

n
∑

i=1

xiyi

)2

−

(

n
∑

i=1

yi

)(

n
∑

i=1

x2
i yi

)

.

Once a, b, c and d are known, we can estimate
k in f∗(x) = k+aebx+cedx, where k ∈ R should
minimize the error

E(k) =

n
∑

i=1

(yi − aebxi − cedxi − k)2yi

n
.

This is achieved for

k̂ =

∑n
i=1(yi − aebxi − cedxi)yi

∑n
i=1 yi

.

Here we are assuming a fixed number of expo-
nential terms. However, as the parameters are
not optimized globally, there is no guarantee
that the fitted model minimizes the weighted
mean squared error. This fact can be some-
what corrected by determining the contribution
of each term to the reduction of the error as
described in (Rumı́ et al., 2006).

The initial values a0, b0 and k0 can be ar-
bitrary, but “good” values can speed up con-
vergence. We consider two alternatives: i) Ini-
tialize the values by fitting a curve aebx to the
modified sample by exponential regression, and
compute k as before. ii) Force the empiric den-
sity and the initial model to have the same
derivative. In the current implementation, we
try both initializations and choose the one that
minimizes the squared error.

4 Experimental Comparison

In order to compare the behaviour of both ap-
proaches we have used 6 samples of size 1000
taken from the following distributions: an MTE
density defined by two regions, a beta distribu-
tion Beta(0.5, 0.5), a standard normal distribu-
tion, a χ2 distribution with 8 degrees of free-
dom, and a log-normal distribution LN (0, 1).



MTE Beta χ2 Normal 2 splits Normal 4 splits Log-normal

ML −2263.37 160.14 −2695.02 −1411.79 −1380.45 −1415.06
LS −2307.21 68.26 −2739.24 −1508.62 −1403.46 −1469.21
Original LS −2338.46 39.68 −2718.99 −1570.62 −1406.23 −1467.24

MTE Beta χ2 Normal 2 splits Normal 4 splits Log-normal

ML −2263.13 160.69 −2685.76 −1420.34 −1392.28 −1398.3
LS −2321.18 60.29 −2742.80 −1509.11 −1468.11 −2290.17
Original LS −2556.68 39.42 −2766.86 −1565.28 −1438.67 −1636.99

Table 1: Comparison of ML vs. LS in terms of likelihood. In the upper table the split points were
found using the method described in (Rumı́ et al., 2006), and in the lower table they were defined
by the extreme points and the inflexion points of the exact density.

For the MTE, beta and normal distributions,
we have used two split points, whereas for the
log-normal and the χ2 distributions, the num-
ber of splits points was set to 4. We have also
run the experiment with four split points for the
standard normal distribution.

The plots of the fitted models, together with
the original density as well as the empirical his-
tograms, are displayed in Figure 1. The split
points used for these figures were selected using
the procedure described in (Rumı́ et al., 2006).

Table 1 shows the likelihood of the different
samples for the models fitted using the direct
ML approach, the modified LS method, and the
original LS method described in (Rumı́ et al.,
2006). The two sub-tables correspond to the
split points found using the method described
in (Rumı́ et al., 2006) and split points found by
identifying the extreme points and the inflexion
points of the of the true density, respectively.

From the results we clearly see that the ML-
based method outperforms the LS method in
terms of likelihood. This is hardly a surprise, as
the ML method is actively using likelihood max-
imization as its target, whereas the LS methods
do not. On the other hand, the LS and Origi-
nal LS seem to be working at comparable levels.
Most commonly (in 8 out of 12 runs), LS is an
improvement over its original version, but the
results for the Log-normal distribution (with
the split-points selected according to the inflec-
tion points) cloud this picture; here the Original
LS achieves a likelihood which is 10283 times as
high as the one found by the LS method.

5 Conclusions and Future Work

In this paper we have introduced maximum like-
lihood learning for MTEs. Finding Maximum
Likelihood parameters is interesting not only in
its own right, but also as a vehicle to do more
advanced learning: With maximum likelihood
parameters we could, for instance, use the BIC
criteria (Schwarz, 1978) to choose the number of
exponential terms required to approximate the
distribution function properly. We are currently
in the process of evaluating this with the goal
of avoiding overfitting during learning.

We are also considering to use a maxi-
mum likelihood-approach to learn the location
of the split-points. Consider a sample x =
{x1, . . . , xn} where all samples are in the in-
terval Ωm = [α, β), and assume the sample
is sorted. A brute force approach to learning
split-points could be to first fit MTE distri-
butions on the intervals [α, (xi + xi+1)/2) and
[(xi + xi+1)/2, β), for each i = 1, . . . , n − 1,
and calculate the likelihood of the data using
the learned ML parameters. Then, one would
choose the split-point, which gives the high-
est likelihood. Unfortunately, the complexity of
this approach is squared in the sample size; we
are currently investigating a number of simple
heuristics to speed up the process. We have also
started working on ML-based learning of condi-
tional distributions, starting from the ideas pub-
lished in (Moral et al., 2003). However, accu-
rately locating the split-points for a conditional
MTE is even more difficult than when learn-
ing marginals distributions; locating the split-



D
en

si
ty

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

D
en

si
ty

0 5 10 15 20 25

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

(a) MTE (b) Beta (c) χ2

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

D
en

si
ty

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(d) Gaussian, 2 splits (e) Gaussian, 4 splits (f) Log-Normal

Figure 1: The plots show the results of samples from different distributions. The gold-standard
distribution is drawn with a thick line, the MTE with Lagrange-parameters are given with the
dashed line, and the results of the LS approach are given with the thin, solid line. The empiric
distributions of each sample is shown using a histogram.

points for a variable X will not only influence
the approximation of the distribution of X it-
self, but also the distributions for all the chil-
dren of X.

Acknowledgments

This work has been supported by the Span-
ish Ministry of Education and Science, through
project TIN2007-67418-C03-02.

References

D.P. Bertsekas. 1996. Constrained optimization and
Lagrange multiplier methods. Academic Press Inc.

A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977.
Maximun likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical
Society B, 39:1 – 38.

Michael I. Jordan, Zoubin Ghahramani, Tommi S.
Jaakkola, and Laurence K. Saul. 1999. An in-
troduction to variational methods for graphical
models. Machine Learning, 37:183–233.

S. Moral, R. Rumı́, and A. Salmerón. 2001. Mix-
tures of truncated exponentials in hybrid Bayesian

networks. In ECSQARU’01. Lecture Notes in Ar-
tificial Intelligence, volume 2143, pages 135–143.

S. Moral, R. Rumı́, and A. Salmerón. 2003. Approx-
imating conditional MTE distributions by means
of mixed trees. In ECSQARU’03. Lecture Notes
in Artificial Intelligence, volume 2711, pages 173–
183.

V. Romero, R. Rumı́, and A. Salmerón. 2006.
Learning hybrid Bayesian networks using mix-
tures of truncated exponentials. International
Journal of Approximate Reasoning, 42:54–68.

R. Rumı́, A. Salmerón, and S. Moral. 2006. Esti-
mating mixtures of truncated exponentials in hy-
brid Bayesian network. Test, 15:397–421.

Gideon Schwarz. 1978. Estimating the dimension of
a model. Annals of Statistics, 6:461–464.

Glenn R. Shafer and Prakash P. Shenoy. 1990. Prob-
ability Propagation. Annals of Mathematics and
Artificial Intelligence, 2:327–352.

J.S. Simonoff. 1996. Smoothing methods in Statis-
tics. Springer.



An Anytime Algorithm for Evaluating
Unconstrained Influence Diagrams

Manuel Luque
Dept. Inteligencia Artificial, UNED

28040 Madrid, Spain
mluque@dia.uned.es

Thomas D. Nielsen and Finn V. Jensen
Department of Computer Science

Aalborg University
9220 Aalborg, Denmark
{tdn,fvj}@cs.aau.dk

Abstract

Unconstrained influence diagrams (UIDs) extend the language of influence diagrams to
cope with decision problems in which the order of the decisions is unspecified. Thus, when
solving a UID we not only look for an optimal policy for each decision, but also for a so-
called step-policy specifying the next decision given the observations made so far. However,
due to the complexity of the problem temporal constraints can force the decision maker
to act before the solution algorithm has finished, and, in particular, before an optimal
policy for the first decision has been computed. This paper addresses this problem by
proposing an anytime algorithm that computes a strategy and at any time provides a
qualified recommendation for the first decisions of the problem. The algorithm performs
a heuristic-based search in a decision tree representation of the problem. Experiments
indicate that the proposed algorithm performs significantly better under time constraints
than dynamic programming.

1 Introduction

An influence diagram (ID) is a framework
for representing and solving Bayesian decision
problems with a linear temporal ordering of de-
cisions (Howard and Matheson, 1984). How-
ever, in many domains the process of finding an
ordering of the decisions is an integral part of
the decision problem, and in these situations the
use of IDs would require all decision orderings
to be explicitly specified in the model, possibly
using artificial nodes and states. Examples of
such decision problems include troubleshooting
and medical diagnosis.

Unconstrained influence diagrams (UIDs)
were introduced to represent and solve decision
problems of this type (Jensen and Vomlelova,
2002); as a special case this also includes deci-

sion problems with a linear temporal ordering
of the decisions. An optimal strategy in this
framework consists not only of an optimal pol-
icy for each decision, but also of a step-strategy
that prescribes the next decision to consider
given the observations and decisions made so
far. Such strategies are computable using dy-
namic programming in a way similar to that for
traditional IDs (Shachter, 1986; Shenoy, 1992;
Jensen et al., 1994; Madsen and Jensen, 1999).

Unfortunately, many real world problems
have an inherent complexity that makes eval-
uation through exact methods intractable when
time is scarce. Moreover, even if you had the
time for solving the problem, storing the solu-
tion as a simple lookup table may be a problem:
the number of possible past scenarios to con-
sider in a policy can be intractably large. As

mailto:mluque@dia.uned.es�
mailto:tdn@cs.aau.dk;fvj@cs.aau.dk�


an example, the evaluation of the Ictneo sys-
tem (Bielza et al., 1999) requires a table with
1, 66 × 1014 entries and produces a policy with
4, 24 × 107 configurations for the first decision.

In this paper we present an anytime algo-
rithm for solving UIDs. The algorithm provides
a solution whenever it is stopped, and given suf-
ficient time it will eventually provide a correct
solution.

In comparison, the standard evaluation algo-
rithm for UIDs (Jensen and Vomlelova, 2002)
is a backward induction algorithm employing
dynamic programming like most algorithms for
IDs. It starts computing an optimal policy for
the last decision and moves backwards in time
until it reaches the first decision. If the process
is stopped prematurely, the algorithm may pro-
vide a policy, however, the prescription for the
first decision is completely un-informed. Fur-
thermore, as described above, all effort so far
may be spent on calculating a policy for a dis-
tant decision with an enormous space for the
past; a task which will decrease considerably in
size when you actually approach the point of the
decision. If you consider a situation with a de-
cision maker (DM) impatiently awaiting advice
on what to do, he most probably wants to get
an informed advice on the first decision rather
than receiving detailed prescriptions for the last
decisions.

To address this problem the proposed any-
time algorithm starts with the first decision and
works its way forward in time. Due to the
nature of the problem, you cannot be sure of
the policy for the first decision before the en-
tire problem has been solved. However, the al-
gorithm will over time gradually improve the
probability of choosing the best decision.

2 Unconstrained Influence Diagrams

UIDs were proposed in (Jensen and Vomlelova,
2002) to represent decision problems in which
the order of the decisions is not linear, and for
which the DM is interested in the best ordering
as well as an optimal choice for each decision.

2.1 The Representation Language

We start considering a very simple example:
the diabetes diagnosis problem, introduced in
(Demirer and Shenoy, 2001). A physician is try-
ing to decide on a policy for treating patients.
After an initial examination of their symptoms
(S), the physician has to diagnose whether the
patient is suffering from diabetes (D). Diabetes
has two symptoms, glucose in urine and glucose
in blood. Before deciding on whether or not to
treat the patient for diabetes (Tr), the physi-
cian can decide to perform a urine test (UT )
and/or a blood test (BT ), which will produce
the test results U and B, respectively. After the
physician has observed the tests results (if any)
she has to decide whether to treat the patient
for diabetes. Observe that the order in which
the tests are performed is not specified and that
the result of a test is only available if the physi-
cian decides to perform the corresponding test.

To represent this problem by an influence dia-
gram we have to represent the unspecified order-
ing of the tests as a linear ordering of decisions.
This can be done by introducing two decision
variables to model the first test and the second
test, respectively. Unfortunately, the structure
of the decision problem is not apparent from the
model and for large decision problems this tech-
nique will be prohibitive as all possible scenarios
should be explicitly encoded in the model.

In the UID framework, the combinatorial
problem of representing non-sequential decision
problems is postponed to the solution phase.
A UID for the diabetes diagnoses problem is
shown in Figure 1 (explained below).

More formally, an unconstrained influence

diagram (UID) is a DAG over three sets of
nodes: a set of decision nodes (rectangles) VD,
chance nodes VC , and utility nodes (diamonds)
VU . Chance nodes can be of two types, ob-

servable (circles) and non-observable (double-
circles), and we require that utility nodes have
no children. We will use the terms ’node’ and
’variable’ interchangeably if this does not cause
any confusion.

The quantitative information associated with
a UID consists of probability distributions and



 

UT U 

Tr 

BT B 

S 

D 
V 

Figure 1: UID for the diabetes diagnosis prob-
lem.

utility functions. For each chance node C we
have a probability distribution P (C | pa(C)) for
C given its parents pa(C), and for each utility
node U we have a utility function ψU ; ψU maps
each configuration of the parents of U to a real
number. We assume that the utility functions
combine additively into a joint utility function
ψ.

The semantics of the links are similar to the
semantics from IDs, and the traditional no-
forgetting assumption is also assumed. How-
ever, as opposed to IDs a total ordering of
the decision nodes is not required. While non-
observable variables are variables that will never
be observed, an observable variable will be ob-
served when all its antecedent decision variables
have been decided. For example, in Figure 1 B

is observed after deciding on BT , and S is ob-
served before the first decision, since it has no
antecedent decision variables.

The structural specification of a UID yields
a partial temporal order. If a partial order is
extended to a lineal order we get an influence
diagram. Such an extended order is called an
admissible order.

2.2 Solving a UID

Solving a UID means establishing a set of step-

policies and a set of decision-policies. Together,
the step-policies and the decision-policies form
an optimal strategy. To organize the compu-
tations, we work with a secondary computa-
tional structure, called an S-DAG, which is a

DAG representing the admissible orderings of
the nodes in the UID (see Figure 2). A GS-

DAG is a minimal S-DAG containing all admis-
sible orderings relevant for computing an opti-
mal strategy.

 

BT UT B U 

Tr 

UT BT U B 

S 

Figure 2: An S-DAG for the UID model of Fig-
ure 1.

A step-policy for a node N in an S-DAG
is a rule that based on the current history
hst(N) ∪ {N} specifies which of its children
ch(N) to go to. As the policy needs not be
deterministic, we formally define a step-policy
for node N as a conditional probability distri-
bution P (ch(N) | hst(N)). A decision-policy for
a decision node D in an S-DAG is probability
distribution P (D | hst(D)). A strategy for an
S-DAG consists of a step-policy for each node
and a decision policy for each decision.

To define the expected utility (EU) of a strat-
egy S, we unfold it to a strategy tree: following
the policies of S we construct a tree in which all
root-leaf paths represent admissible orderings.
The expected utility for a strategy tree is de-
fined as for decision trees, and it is by definition
the expected utility of the strategy.

Jensen and Vomlelova (Jensen and Vom-
lelova, 2002) describe an algorithm for finding a
strategy of maximum expected utility (MEU).
The algorithm utilizes the S-DAG for the UID,
and basically solves the UID/S-DAG through
dynamic programming similarly to solving in-
fluence diagrams (i.e., eliminating the variables
in reverse temporal order).

3 An Anytime Algorithm

In general, the basic idea with an anytime al-
gorithm is that time constraints may cause the
user to be unable to wait for the standard solu-
tion algorithm to finish. Thus, it should be pos-
sible to stop the algorithm at any time, and the



algorithm should then provide an approximate
solution. With this requirement we may settle
for an algorithm that may take longer than the
standard algorithm, but which in the mean time
can provide a better approximate solution than
the standard algorithm.

With respect to UIDs, the standard algo-
rithm provides a strategy by solving the prob-
lem in reverse temporal order. If the algorithm
is stopped prematurely, it can provide a strat-
egy, which consists of choosing completely ran-
domly for the decisions which have not yet been
dealt with, and to follow the calculated optimal
policies for the last decisions. In this way, it can
be said that you have an anytime algorithm; it
provides a strategy whenever it is stopped, the
expected utility of the strategy never decreases
over time, and eventually, the algorithm pro-
vides an optimal strategy.

However, this is not satisfactory. If the user
stops the algorithm prematurely, it is because
she needs to take the first decision, but the al-
gorithm does not give her any clue on what to
do first. Therefore, the aim of an anytime al-
gorithm for solving UIDs (or decision graphs in
general) is to provide more and more informed
advice on what to do first.

We propose an algorithm performing a for-
ward search in a decision tree (Raiffa and
Schlaifer, 1961) representation of the UID. The
tree is built from the root toward the leaves,
and it keeps a list of triggered nodes (the cur-
rent leaves in the tree constructed so far) as can-
didates for expansion.1 A triggered node X is
expanded by adding its children to the tree and
calculating the expected utility of the path from
the root to X using a heuristic function for es-
timating the maximum expected utility (MEU)
obtainable at the children of X.

3.1 A Search Based Solution Algorithm

An S-DAG (and a GS-DAG) can be converted
into a decision tree (possibly using a dummy
source node), which in turn can be used as a
computational structure for solving the corre-

1The terminology is borrowed from AO* search algo-
rithms (Nilsson, 1980), from which the proposed algo-
rithm has been inspired.

sponding decision problem (disregarding com-
plexity issues). A decision tree is a rooted
tree in which the leaves are utility nodes and
the nonleaf nodes are either decision nodes or
chance nodes. The decisions on the possible or-
derings are made explicit in the model by parti-
tioning the decision nodes into either ordinary
decisions or branching point decisions.

The past of a node X (denoted by past(X))
is the configuration specified by the labels asso-
ciated with the arcs on the path from the root
to X; if X is a value node then past(X) is called
a scenario.

The quantitative part of the decision tree con-
sists of probabilities and utilities. Each arc from
a chance node A is associated with a probabil-
ity P (A = a | past(A)), where A = a is the la-
bel of the arc. These probabilities can be found
by converting the UID into a Bayesian network:
value nodes are removed, and decision nodes are
replaced by chance nodes having no parents and
with an arbitrary probability distribution.2 Fi-
nally, with each value node V in the decision
tree, we associate the utility ψ(past(V )) of the
scenario past(V ). These utilities can be read
directly from the UID model.

The decision tree represents each scenario in
the decision problem explicitly; hence the size
of the tree can grow exponentially in the num-
ber of variables. The size can, however, be re-
duced by collapsing identical subtrees, a proce-
dure also know as coalescence (Olmsted, 1983).
The opportunities for exploiting coalescence can
be automatically detected in the S-DAG of the
UID.

Instead of building the decision tree in full
and solving it using the “average-out and fold-
back” algorithm (Raiffa and Schlaifer, 1961), we
propose to build the tree from the root toward
the leaves. A heuristic function h provides an
estimate of the MEU obtainable at every node
in the decision tree. Thus, at any point in
time we have a partial decision tree in which
the heuristic can be used to estimate the MEU
at the leaf nodes. These estimates can in turn

2The time for computing the probabilities is small
compared to the time required for evaluating the UID,
and we shall therefore not consider this issue further.



be propagated upward in the tree, which gives
an estimate of the MEU of the nodes in the ex-
plored part of the tree, and, in particular, an
estimate of the optimal policy for the decision
nodes in this part.

A collection of optimal policies for a subset
of the decision nodes is called a partial strategy

∆′, and a partial strategy based on the heuristic
function is called a partial heuristic strategy ∆̂′.
Clearly, the closer the heuristic function is at
estimating the MEU of the triggered nodes in
the partial decision tree, the closer the EU of
∆̂′ will be at the EU of ∆′.

A partial strategy can always be extended to
a full (not necessarily optimal) strategy by as-
signing random policies to the decision nodes in
the unexplored part of the tree. When we have
a set of policies S, we define the uniform exten-

sion of S as a strategy ∆ such that every policy
in S is in ∆ and the rest of the policies in ∆ are
uniform distributions.

3.2 Selecting a Heuristic Function

The choice of heuristic function not only deter-
mines the policies being computed, but it may
in fact also be used to prune irrelevant parts of
the tree thereby reducing complexity. A spe-
cial class of heuristic functions are the so-called
admissible heuristic functions.

Definition 1. A heuristic function h is said to
be admissible if h(N) ≥ MEU(N) for any node
N in the decision tree.

An admissible heuristic can be exploited dur-
ing the search: Consider a decision node whose
children X and Y are the roots in two subtrees.
If the subtree defined by Y has been explored
and h(X) ≤ MEU(Y ), then we need not explore
the subtree rooted at X.

Obviously, we would like the heuristic func-
tion h to define a tight upper bound on the ex-
pected utility, and relative to the computational
complexity of solving the decision tree we would
also like for h to be easy to compute.

3.2.1 An Admissible Heuristic

A possible choice of heuristic function could
be (Vomlelova, 2003)

hU (X) = max
l∈L

ψ(path(X, l)), (1)

where L is the set of leaf nodes in the subtree
rooted at X and ψ(path(X, l)) is the sum of the
utilities associated with l and the path from X

to l.

It is trivial to see that hU is admissible. More-
over, hU has the advantage of being computa-
tionally efficient, since it can be evaluated by
max-marginalizing out the variables appearing
in the domains of the utility potentials. The
number of required max-marginalizations is at
most |VC ∪ VD|. In contrast to the dynamic
programming approach, the complexity of com-
puting this heuristic does not depend on the
number of possible paths in the GS-DAG as
max-operations commute.

Unfortunately, preliminary experiments have
shown that hU yields a very loose bound on the
expected utility. For certain UIDs the estimated
optimal policy for the first decision failed to sta-
bilize over time, and in fact a random policy
would on average provide a similar solution in
terms of expected utility. Since we have not
been able to define an alternative computation-
ally efficient admissible heuristic, we have in-
stead been looking for a nonadmissible heuris-
tic.

3.2.2 A Nonadmissible Heuristic

The estimation given by the admissible
heuristic hU can be extremely far from the
MEU. However, since it provides an upper
bound on the expected utility, we can use it
in combination with a lower bound to derive a
good approximation to the expected utility.

As a lower bound hL, we use the expected
utility of the uniform extension of the current
partial strategy; decision nodes in the unex-
plored part of the decision tree are treated
as chance nodes with a uniform distribution.
Relative to the computational complexity of
solving the UID, this heuristic can be calcu-
lated efficiently by sum-marginalizing out the



variables in the utility and probability poten-
tials. The number of required marginalizations
is at most |VC ∪ VD| and does not depend on
the number of paths in the GS-DAG as sum-
marginalizations commute (this means that we
are not required to follow an admissible elimi-
nation order consistent with the UID).

If all the variables in the future of node X

are chance variables, i.e., if future(X) ⊆ VC ,
then hL(X) = MEU(X). Furthermore, as the
number of decision nodes in future(X) increases
the larger the difference MEU(X)− hL(X) will
be. The opposite holds for the heuristic hU (X).

In order to derive a heuristic close to the ac-
tual expected utility, we define the nonadmissi-
ble heuristic h as a weighted linear combination
of hL and hU :

h(X) = wL(X)hL(X) + wU (X)hU (X),

where wL(X) = α · kX · c(X) and wU (X) =
α · d(X) ; here c(X) and d(X) are the num-
ber of chance and decision nodes in future(X),
respectively, and α is a normalizing factor en-
suring that wL(X) + wU (X) = 1. By varying
the parameter kX between 0 and +∞, we can
achieve any desired mixture of conservatism and
optimism as defined by the two heuristics; note
that kX may be the same for all nodes.

One potential difficulty with this heuristic is
how to choose a good value for kX . To alle-
viate this problem, we propose to update kX

automatically as the tree is expanded. The in-
tuition underlying the updating method is that
we would in general expect the heuristic to be
more precise the closer we get to the leaves: Af-
ter a node X has been expanded we first esti-
mate the expected utility of its children (using
h and the current value for kX). These esti-
mates are then propagated upward in the tree:
If X is a chance node, then the value propagated
to X is ÊU(X) =

∑
Y ∈ch(X) P (Y |past(X))h(Y )

and if X is a decision node then the value
is ÊU(X) = maxY ∈ch(X) h(Y ). By treating

ÊU(X) as an accurate estimate of the expected
utility for X, we calculate a new value for kX

by setting ÊU(X) = h(X):

kX :=
ÊU(X) − αhU (X)d(X)

αc(X)hL(X)
.

Note that kX will always be non-negative, and
that the update is not guaranteed to get us
closer to the true expected utility (we might e.g.
have started off with the “correct” value for kX).

3.2.3 Performing the Search

The search/construction of the coalesced de-
cision tree starts with the tree consisting of a
single root node together with its children (such
a tree stump is always uniquely identifiable).
From this tree structure the method iteratively
expands a node consistent with the UID speci-
fication.

When a node is expanded, its outgoing links
are added to the decision tree as well as any
successor node not already in the tree; the node
to be expanded is always selected among the
triggered nodes/leaves. When a node is added
to the decision tree, a heuristic estimate of the
MEU for that node is calculated. The values
are then propagated upwards, possibly updat-
ing the current partial heuristic strategy.

The choice of which node to expand is non-
deterministic. We have experimented with
three selection schemes: (i) expand the node
X with highest probability P (past(X)) of oc-
curring (decision nodes are given an even prob-
ability distribution), (ii) expand the node X

with highest weight w(X) = P (past(X)) ·h(X),
where h is the heuristic function estimating the
expected utility of node X, and (iii) expand the
node of lowest depth, i.e., perform a breadth
first search. Preliminary experiments suggest
that the latter provides the best results, and
this is therefore the selection scheme used in
the tests documented in Section 4.

4 Experiments

We have performed a series of experiments for
assessing the performance of the proposed algo-
rithm. For comparison we used dynamic pro-
gramming (Jensen and Vomlelova, 2002), and
to test the algorithms we generated a collection
of random UIDs.



4.1 Generation of UIDs

It is easy to come up with artificial UID struc-
tures that, from a specification point of view,
cannot be considered proper models of real-
world decision problems. As an example, con-
sider a UID with a decision node having only
barren nodes (Shachter, 1986) in its future.
Thus, rather than generating completely ran-
dom UIDs (Vomlelova, 2003) we have instead
tried to guide the UID generation by making
perturbations of pre-specified UID templates.

Specifically, we manually constructed four
UID templates from which we sampled 13
UID structures with varying number of deci-
sion nodes, chance nodes, and observable chance
nodes. For each structure we randomly gener-
ated 50 realizations (probability and utility ta-
bles), producing a total of 650 models. Space
restrictions prevent us from including additional
details, but all models (including the templates)
and a description of the sampling algorithm can
be found at www.ia.uned.es/~mluque/UID.

4.2 Evaluation Metrics

The proposed anytime algorithm is intended
for situations, where a DM is required to take
one or more initial decisions but does not have
time to wait for dynamic programming to finish.
On the other hand, after the specified decisions
have been taken we assume that there is suffi-
cient time for dynamic programming to return
an optimal strategy for the remaining decisions.
Here we also assume that simply solving the
UID offline and storing the policies as look-up
tables is prohibitive due to space requirements.

The performance of the algorithm is evalu-
ated according to the following two characteris-
tics. i) The frequency with which the anytime
algorithm returns the correct decision options
(relative to the optimal strategy) for all decision
nodes down to the ith level in the decision tree.
ii) The expected utility of following the strat-
egy prescribed by the anytime algorithm for the
first i levels of decisions, followed by the opti-
mal strategy for the remaining decisions. Both
of these two measures depend on the amount
of computation time used by the anytime al-

gorithm, and to compare the results for differ-
ent models, time is thus specified relative to the
time required for dynamic programming to fin-
ish.

4.3 Experimental Results

The algorithms were implemented in Java 6.0
with the Elvira software package.3 The experi-
ments were performed on an Intel Core 2 com-
puter (2.4 GHz) with 2 GB of memory.

First of all, it is important to emphasize that
all reported values are normalized with the uni-
form strategy as baseline value, i.e., the uniform
strategy and the optimal strategy attains the
values 0 and 1, respectively.

The results obtained by letting the anytime
algorithm run for e.g. 50% of the time re-
quired by dynamic programming are listed in
the second column in Table 1; EU i(t) and
AccFreqDeci(t) correspond to the two mea-
sures described in Section 4.2. In particular,
AccFreqDec1(t) denotes the frequency of se-
lecting the best initial decision (i.e., a branching
point decision). For example, if we assume that
the initial choice is between two decisions, then
the anytime algorithm returns the optimal deci-
sion with a frequency of 0.742 (0.5+0.484 ·0.5).
Similarly, suppose that the expected utility of
following a random policy for the first decision
is 90 and the MEU is 100, then a value of 0.514
for EU1(t) corresponds to an expected utility of
95.14.

From the results we clearly see that the algo-
rithm improves over time w.r.t. all the recorded
characteristics. Additional results can be found
at www.ia.uned.es/~mluque/UID.

3The Elvira program was developed as a collabora-
tive project of several Spanish universities (Elvira Con-
sortium, 2002). The program and its source code can be
downloaded from www.ia.uned.es/~elvira.

http://www.ia.uned.es/~mluque/UID�
http://www.ia.uned.es/~mluque/UID�
http://www.ia.uned.es/~elvira/index-en.html�


25 % 50 % 75 %

EU1(t) 0,442 0,514 0,538

EU2(t) 0,609 0,769 0,865

EU3(t) 0,546 0,703 0,794

AccFreqDec1(t) 0,383 0,484 0,505

AccFreqDec2(t) 0,396 0,503 0,563

AccFreqDec3(t) 0,291 0,381 0,428

Table 1: Results for the anytime algorithm.

Acknowledgements

The first author was supported by the Depart-
ment of Education of Madrid, the European So-
cial Fund and the Spanish Ministry of Educa-
tion and Science (grant TIN-2006-11152). We
would like to thank Marta Vomlelova for giving
us access to her UID implementation.

References

[Bielza et al.1999] C. Bielza, S. Rı́os, and M. Gómez.
1999. Influence diagrams for neonatal jaundice
management. In AIMDM ’99, pages 138–142,
London, UK. Springer-Verlag.

[Demirer and Shenoy2001] R. Demirer and P. P.
Shenoy. 2001. Sequential valuation asymmetric
decision problems. Lecture Notes in Computer
Science, pages 252–265.

[Elvira Consortium2002] The Elvira Consortium.
2002. Elvira: An environment for creating and
using probabilistic graphical models. In PGM’02,
pages 1–11, Cuenca, Spain.

[Howard and Matheson1984] R. A. Howard and J. E.
Matheson. 1984. Influence diagrams. In R. A.
Howard and J. E. Matheson, editors, Readings on
the Principles and Applications of Decision Anal-
ysis, pages 719–762.

[Jensen and Vomlelova2002] F. V. Jensen and
M. Vomlelova. 2002. Unconstrained influence
diagrams. In UAI’02, pages 234–241, San
Francisco, CA. Morgan Kaufmann.

[Jensen et al.1994] F. Jensen, F. V. Jensen, and S. L.
Dittmer. 1994. From influence diagrams to junc-
tion trees. In UAI’94, pages 367–373, San Fran-
cisco, CA. Morgan Kaufmann.

[Madsen and Jensen1999] A. Madsen and F. V.
Jensen. 1999. Lazy evaluation of symmetric
Bayesian decision problems. In UAI’99, pages
382–390, San Francisco, CA. Morgan Kaufmann.

[Nilsson1980] N. J. Nilsson. 1980. Principles of Ar-
tificial Intelligence. Tioga, Palo Alto, CA.

[Olmsted1983] S. M. Olmsted. 1983. On Represent-
ing and Solving Decision Problems. Ph.D. the-
sis, Dept. Engineering-Economic Systems, Stan-
ford University, CA.

[Raiffa and Schlaifer1961] H. Raiffa and R. Schlaifer.
1961. Applied Statistical Decision Theory. MIT
press, Cambridge.

[Shachter1986] R. D. Shachter. 1986. Evaluating in-
fluence diagrams. Operations Research, 34:871–
882.

[Shenoy1992] P. P. Shenoy. 1992. Valuation based
systems for Bayesian decision analysis. Opera-
tions Research, 40:463–484.

[Vomlelova2003] M. Vomlelova. 2003. Unconstrained
influence diagrams - experiments and heuristics.
In WUPES’2003, Hejnice, Czech Republic.



An Independence of Causal Interactions Model for Opposing
Influences

Paul P. Maaskant1 & Marek J. Druzdzel2,3

1 Department of Media and Knowledge Engineering, Delft
University of Technology, 2628 CD Delft, The Netherlands

2 Faculty of Computer Science, Bia lystok Technical
University, Wiejska 45A, 15-351 Bia lystok, Poland

3 Decision Systems Laboratory, School of Information
Sciences and Intelligent Systems Program,

University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

We introduce the DeMorgan gate, an Independence of Causal Interactions (ICI) model
that is capable of modeling opposing influences, i.e., a mixture of positive and negative
influences of parents on a child. The model is a noisy version of a conjunctive normal
form of Boolean functions and is an extension and a combination of the popular Noisy-
OR and Noisy-AND models, preserving their intuitive semantics. We report the results
of a simple experiment testing the usefulness of the proposed model for elicitation of
conditional probability distributions.

1 Introduction

Bayesian networks (BNs) (Pearl, 1988) offer
a sound framework for reasoning in uncertain
problem domains. A Conditional Probability
Table (CPT) in a BN specifies the relation be-
tween a variable and its immediate predecessors
(parents) in the graph. A fundamental problem
of CPTs is their exponential growth in the num-
ber of parent variables. For nodes with more
than a handful of parents, common in practical
models, eliciting the CPT from human experts
is daunting. So is learning it from data, as there
are typically not enough cases to learn every dis-
tribution in a CPT reliably.

Independence of Causal Influences (ICI) mod-
els (see Dı́ez and Druzdzel (2008) for a compre-
hensive review of the existing ICI models), pro-
vide a solution by assuming that parent vari-
ables cause the effect independently of each
other. The benefit of this assumption is such
that the number of required parameters is lin-
ear, rather than exponential, in the number of
parent variables. One of the main practical lim-

itations of the existing ICI models is that they
cannot model opposing influences, i.e., combi-
nations of influences that increase, and decrease
the posterior probability of the child variable.
Existing attempts to address this problem are,
we believe, weak. In this paper, we propose
a new ICI model based on a combination of
OR and AND gates in a Conjunctive Normal
Form (CNF) of a Boolean expression that com-
bines opposing influences, yet retains a clear
parametrization.

A few words about the notation. We will use
uppercase letters to denote random variables
(e.g., X) and lowercase letters to denote their
states (e.g., x). Because all variables in this pa-
per will be Boolean, a variable X will take only
two states, x and x. Bold uppercase letters will
denote sets of random variables (e.g., X) and
bold lowercase letters (e.g., x) will denote value
assignments to sets of random variables. We
will use Pr(X) to denote the probability distri-
bution over a variable X.



2 Foundations

2.1 The Noisy-OR Model

The Noisy-OR model (Pearl, 1988; Henrion,
1989) is a probabilistic extension of the log-
ical OR relation. Its variables, e.g., X, are
binary and can be either present, denoted as
x, or absent, denoted as x. Each present
parent event can independently produce the
child effect. Noisy-OR’s amechanistic property
assumes that if none of the parent variables
X1, ..., Xn are present, then neither is the child
variable Y , i.e.,

Pr(y|x1, . . . , xn) = 1 . (1)

We define the probability that xi produces y as

Pr(y|x1, ..., xi, . . . , xn) = zi . (2)

The ICI assumption allows us to derive the
probability of X producing y as

Pr(y|X) = 1 −
∏

Xi=xi

(1 − zi) .

Repeating this process for all possible
parent configurations gives us the CPT.
Henrion (1989) extended the Noisy-OR model
by introducing a leak probability zL, yielding

Pr(y|X) = 1 − (1 − zL)
∏

Xi=xi

(1 − zi) . (3)

The leak variable zL represents the probability
that the child variable is in its present state,
even when all the parents are absent. An intu-
itive interpretation of leak is that it represents
the effect of unmodeled causes of Y .

2.2 The Amechanistic Property

Amechanistic ICI models (Heckerman and
Breese, 1996) are a subclass of ICI models that
make two additional assumptions: (1) each vari-
able has a typical state, referred to as the distin-
guished state. This is usually the default state
for that variable. (2) If all parent variables are
in their distinguished states, then so is the child
variable. For example, if all possible causes of
coughing are absent, then coughing is absent

as well. In the course of elicitation, we can re-
duce the mental load needed to imagine a causal
influence and estimate its strength by assum-
ing that all other nodes are in the state that
is not active and does not interfere with the
cause that we are focusing on. The parameters
for an amechanistic ICI model can be obtained
by asking simple and clear questions and, ef-
fectively, such a model is particularly suited for
parametrization by human experts.

In the Noisy-OR gate, assumption (2) is cap-
tured by Eq. 1, while Eq. 2 expresses the ques-
tion needed for parameter elicitation. This
enables us to directly elicit the probabilistic
strength of the causal influence of a parent vari-
able Xi on a child variable Y by asking sim-
ple questions, such as “What is the probabil-
ity of coughing if a patient has pneumonia and
no other factors that may cause coughing are
present?” We believe that the unquestionable
popularity of the Noisy-OR model is in part due
to its amechanistic property. Some proposals
for canonical gates do not have the amechanis-
tic property and this, we believe, is their major
weakness at the outset.

3 Causal Interactions

We describe below four fundamental types of
causal interactions between an individual par-
ent X and a child node Y .

Cause This is the most common type of in-
teraction, modeled in the Noisy-OR gate: X is
a causal factor and has a positive influence on
Y . This influence, just as is the case in the
Noisy-OR gate, does not need to be perfect.
For example, smoking is quite likely a causal
factor in lung cancer. Yet, incidence of lung
cancer among smokers, while much larger than
incidence of lung cancer among non-smokers, is
still within a few percent. Hence, the condi-
tional probability of lung cancer given that a
person is a smoker is still fairly low.

The distinguished state of a cause is the state
in which the cause has no effect on the child.
For example, being a non-smoker has no effect
on lung cancer.



Barrier This is a negated counterpart of a
cause: X is a factor that decreases the prob-
ability of Y . For example, regular exercise de-
creases the probability of heart disease. While
it is a well established factor with a negative
influence on heart disease, it is unable by it-
self to prevent heart disease. One way of look-
ing at a barrier is that it is dual to a cause:
Absence of the barrier event is a causal factor
for the child, i.e., x is a cause. One might go
around the very existence of barriers in knowl-
edge engineering by using negated versions of
the variables that represent them. In the exam-
ple above, one might define a variable Lack of
regular exercise, which would behave as a cause
of the variable Heart disease. This, however,
might become cumbersome if Regular exercise
participated in other interactions in a model. It
might happen, for example, that it is a parent
of both Heart disease and Good physical shape.
Because Regular exercise decreases the proba-
bility of one and increases the probability of the
other, barrier, which is a negated cause, is a use-
ful modeling construct.

The distinguished state of a barrier is also the
state in which the barrier has no effect on the
child. For example, exercise may be thought
as not influencing the risk of heart disease and
it is the distinguished state in this interaction.
We should point out here that the concept of a
distinguished state is relative to an interaction
and the same variable can have different distin-
guished states in different interactions that it
participates in.

Requirement X is required for Y to be
present. There are perfect requirements, such as
being a female is a requirement for being preg-
nant but there are also requirements that are in
practice not absolutely necessary. For example,
a sexual intercourse is generally believed to be a
requirement for pregnancy, but it is not a strict
requirement, as pregnancy may be also caused
by artificial insemination.

The distinguished state of a requirement is
the state that is necessary for the effect to take
place at all. For example, being a female is a
requirement for becoming pregnant and it is the

distinguished state in this interaction.

Inhibitor X inhibits Y . For example, rain
may inhibit wild land fire or use of a condom
during intercourse with an infected individual
may inhibit contracting the HPV virus. Like
in the other types of interactions, the parent
may be imperfect in inhibiting the occurrence
of the child. Fire may start even if there is rain
and effectiveness of a condom in protecting from
the HPV virus is only around 70%. Similarly
to the relationship between causes and barriers,
inhibitors are dual to requirements: Absence of
an inhibitor event is a requirement for the child.

The distinguished state of an inhibitor is the
state that has no effect on the child, i.e., the
inhibiting factor being absent. For example,
Rain is an inhibitor of Wild land fire. Its distin-
guished state is No rain, in which case the fire
may happen.

4 The DeMorgan Model

We start with the deterministic version of the
DeMorgan gate and later extend it to accom-
modate noise.

4.1 Deterministic DeMorgan Gate

Promoting Influences Promoting influ-
ences (causes and barriers) are modeled well by
the Noisy-OR gate, which is a noisy version of
the following Boolean formula

Y = X1 ∨ X2 ∨ . . . ∨ Xm , (4)

where Xs stand for causes or barriers. The dis-
tinguished state of Y is absent.

Inhibiting Influences Presence of any in-
hibitor Ui is sufficient to cancel the child effect.
We can express the effect that a set of inhibiting
influences (requirements and inhibitors) have on
Y by the following Boolean function

Y ≡ U1 ∨ U2 ∨ . . . ∨ Un , (5)

where Us stand for requirements and inhibitors.
Eq. 5 is similar to Eq. 4 but now the par-

ents cancel the child event instead of producing
it. Variable Y is absent if at least a single Ui is
present. We assume that the distinguished state



of Us is absent. However, contrary to our previ-
ous example, we assume the distinguished state
of the child Y to be present. This assumption is
based on common sense: We cannot cancel an
event that is not present.

Combining Influences We can combine
promoting and inhibiting influences by first ap-
plying one of De Morgan’s laws to Eq. 5. We
get

Y ≡ U1 ∧ U2 ∧ . . . ∧ Un . (6)

A logical proposition that combines (4) and (6)
can only be true for a particular parent con-
figuration if both (4) and (6) are also true for
that same configuration. This implies that both
equations form a conjunction

Y = (X1 ∨X2 ∨ . . .∨Xm)∧U1 ∧U2 ∧ . . .∧Un .

We now have the logical proposition that we
need in order to define the interaction for the
combined model with Xs and Us and the child
variable Y . Note that the proposition on the
right hand-side of Eq. 4.1 is in the CNF. Because
each of the conjuncts, save one, consists of a
single variable, we can build a simple model to
represent this proposition, using only a single
OR and a single AND gate.

4.2 Modeling Uncertainty

Noise for Promoting Influences Noise for
promoting influences is best modeled by mim-
icking the Noisy-OR gate, i.e., specifying a
causal strength parameter vi for each of the pro-
moting influences and adding a leak parameter
vL. vi is the probability of y given that parent
i is not in its distinguished state and all other
parents are in their distinguished states (please
note that we need to choose a different distin-
guished state for causes and barriers). Eq. 3, the
formula for leaky Noisy-OR gives the probabil-
ity of y as a function of vis and vL (the formula
uses zs instead of vs).

Noise for Inhibiting Influences The dis-
tinguished state of a parent that models an in-
hibiting influence is its absent state, i.e., when
the parent is absent it is certain not to inhibit
the child event, but when present, it will inhibit

the child event with some probability. When a
parent Ui is in its non-distinguished state, we
assign a probability di that it will inhibit the
child event. We include this uncertainty in the
network by adding a noise variable Wi that has
the following behavior

Pr(wi|Ui) =

{

0 if Ui = ui

di if Ui = ui
,

and the child variable Y is equivalent to the
conjunction of variables W 1, . . . ,Wn, as given
by Eq. 6. We have shown by De Morgan’s laws
that the Eq. 5 is the logical equivalent of Eq. 6.
Eq. 3 gives us the probability of Y occurring

Pr(y|U) =

{

∏

ui∈+u
(1 − di) if +u 6= ∅

1 if +u = ∅
.

We define +u to be the subset of U that
contains all parents that are in their non-
distinguished states.

It makes little sense to ask for the effect of
rain on a bonfire, when the latter is absent.
By analogy, we cannot determine di directly if
we assume that the distinguished state of Y is
absent. Therefore, we determine di relative to
an arbitrary set of promoting influences (with a
joint effect v on Y ) or even the leak parameter,
although it seems that elicitation will be more
reliable for larger values of v.1 Suppose we know
the effect of a promoting influence Xi, denoted
as vi, and the effect of both Xi and inhibiting
influence Uj , denoted as qj , i.e.,

p = 1 − (1 − vL)(1 − vi) ,

qj = (1 − (1 − vL)(1 − vi))(1 − dj) .

We have dj = 1 − qj/p.

Derivation of the CPT The total effect of
simultaneous presence of noisy promoting and
inhibiting causes in a leaky noisy DeMorgan

gate can be combined into a CPT as follows:

Pr(y|X,U) = (1−(1−vL)
∏

xi∈+x

(1−vi))
∏

uj∈+u

(1−dj) .

1Thus, there are combinatorially many questions that
we can ask in order to obtain dj , something not unheard
of in probability elicitation.



Figure 1: DeMorgan model example network

5 Knowledge Engineering for the

DeMorgan Gate

A knowledge engineer has to most of all ensure
that a gate elicited can be viewed as DeMor-

gan gate. The conditions that have to be ful-
filled for the DeMorgan gate are similar to
those listed for other canonical gates by Dı́ez
and Druzdzel (2008): Each parent must be able
to cause or to inhibit the child node through
a separate causal mechanism and there may be
no significant interactions among these mecha-
nisms.

Now, for each type of interaction, qi, the pa-
rameter associated with the causal link from a
parent Xi corresponds to the probability of the
effect y happening if all parents but Xi are in
their distinguished states. The leak parameter
vL expresses the probability of y given that all
parents are in their distinguished states.

Consider the following network based on De-

Morgan gate with one cause (Fire Spreads
Quickly), one barrier (Fire Escapes Are Acces-
sible), one requirement (People Are Still In the
Building), and one inhibitor (Fire Is Quickly
Controlled).

We will now give example questions to be
asked of an expert. Please note that there is
a natural discrepancy between what one has to
say formally and what sounds clear to a human.
Each of the questions listed below can be ad-
justed to the needs of particular context, i.e.,
their elements can be rephrased or omitted if
they do not make sense.

The leak parameter “What is the proba-
bility of casualties if the fire does not spread
quickly, fire escapes are not accessible, people
are still in the building, and fire is not quickly
controlled? Please note that casualties may
happen due to other, unmodeled causes.”

Cause “What is the probability of casualties
if the fire spreads quickly, fire escapes are not
accessible, people are still in the building, fire is
not quickly controlled, and no other unmodeled
causal factors are present?”

Barrier “What is the probability of casualties
if the fire does not spread quickly, fire escapes
are accessible, people are still in the building,
fire is not quickly controlled, and no other un-
modeled causal factors are present?”

Requirement “What is the probability of ca-
sualties if the fire does not spread quickly, fire
escapes are not accessible, there are no people in
the building, fire is not quickly controlled, and
no other unmodeled causal factors are present?”
Please note that the possible casualties are due
to the fact that information concerning absence
of people in the building may be false or the
casualties may be that of the fire fighters.

Inhibitor “What is the probability of casual-
ties if the fire does not spread quickly, fire es-
capes are not accessible, there are people in the
building, fire is quickly controlled, and no other
unmodeled causal factors are present?”

6 Empirical Evaluation

To validate the DeMorgan model, we con-
ducted an experiment based on the method-
ology for evaluating probability elicitation
schemes introduced by Wang et al. (2002). Its
main advantage is that it controls for a-priori
domain knowledge on the part of the subjects.
The subjects are first asked to learn an ab-
stract domain, which they have never seen be-
fore (typically an abstract interactive computer
game). Since every subject may have a different
set of experiences in the course of their interac-
tion with the new domain, recording these pro-
vides us with a gold standard of the frequency



observed by the subject. A perfect elicitation
scheme should retrieve these frequencies and the
experimental setup aims at comparing elicita-
tion schemes on how well they do so.

6.1 Subjects

Our subjects were 24 students in a graduate
course Decision Analysis and Decision Support
Systems in the School of Information Sciences,
University of Pittsburgh. The students were
familiar with, although not experts in, deci-
sion analysis, probability theory, and BNs. For
their participation, they received a small course
credit and a handful of M&Ms.

6.2 Experiment Design

The subjects were asked to play a simple, fic-
tional computer game resembling a black box
with four propositional inputs (X1, X2, X3,
and X4) and one propositional output (Y ) with
states Success and Failure. Their task was to
obtain Success at the output by means of se-
lecting a combination of inputs. Subjects were
allowed 160 trials, each trial consisting of three
phases: (1) selecting values for X1 through X4,
(2) pressing a key, and (3) observing the value
of Y . The value of Y was chosen randomly by
means of sampling from a DeMorgan gate, al-
though the subjects were not aware of it. Two
of the inputs (assigned randomly) were causes
and the remaining two inputs were barriers.
Model parameters were randomly chosen for
each of the subject from the intervals [0.5, 0.9]
(causes), [0.3, 0.9] (barriers) and [0.1, 0.3] (the
leak). Each subject faced thus a different prob-
abilistic model driving the game.

Because of a relatively small number of sub-
jects, we used a within-subject design. At
the conclusion of the training phase, the sub-
jects were asked (1) to give the full CPT
(Pr(Y |X1, X2, X3, X4), consisting of 16 entries,
and (2) indicate which inputs were promot-
ing and which were inhibiting influences, assess
their strengths and the leak probability. The
order of the two elicitations was randomized to
compensate for a possible carry-over effect.

6.3 Experiment Results

We used the probability distribution observed
by each subject as the gold standard of what
the subject knew. For each value OBSi of the
observed CPT, we calculated the maximum a-
posteriori estimate given the subject’s 160 ob-
servations, using a Beta prior distribution with
a very small equivalent sample size (in order to
avoid zero probabilities), i.e.,

OBSi =
si + 0.01

ti + 0.02
,

where si denotes the number of successful tri-
als, and ti the total number of trials for input
configuration i.

Of interest to us was the elicitation error, i.e.,
the difference between the observed CPT and
the elicited probability distributions. We mea-
sured the error by the averaged Euclidean and
Hellinger distances (Kokolakis and Nanopoulos,
2001). Because both measures are defined for
single distributions, we averaged errors across
all 16 distributions in the CPT.

The subjects each took between 30 and 45
minutes to complete the experiment. We judged
one of the subjects to be an outlier, and ex-
cluded the subject from further analysis. This
subject likely confused the concept of inhibiting
with promoting, as she reported very low prob-
abilities in cases where she observed very high
probabilities and vice versa.

Figure 2: Raw data (sorted by increasing distance for
the DeMorgan model)

Figure 2 shows raw data, i.e., the Euclidean
distance for each subject: (1) the distance be-



tween the observed CPT and the CPT gener-
ated by the elicited DeMorgan model, sorted
from the smallest to the largest distance, and
(2) the distance between the observed CPT and
the directly elicited CPT. We would like to
point out that the range of distances is lower for
the DeMorgan gate. Table 1 shows the aver-

Measure DeMorgan CPT
Averaged Euclidean Distance 0.2382 0.2566
Weighted Hellinger Distance 0.2481 0.2563

Table 1: Averaged Euclidean and Hellinger distances.

age Euclidean and Hellinger distances across all
subjects. A one-tailed paired t-tests performed
on both distance measures yielded p ≈ 0.14 for
the Euclidean, and p ≈ 0.29 for the Hellinger
distance, showing no significant difference in ac-
curacy at the commonly used α = 0.05 signifi-
cance level. Although the accuracy gain in favor
of the DeMorgan model was not statistically
significant, our results suggest that the CPT
generated by DeMorgan model is at least as
accurate as a directly elicited CPT. This be-
comes a non-trivial advantage when the number
of parent variables is larger. And so, for a family
with 10 parent variables, we have 21 questions
for the DeMorgan model, versus 1,024 ques-
tions needed to elicit the CPT directly.

7 Related Work

Inhibitors are mentioned by Pearl (1988), who
calls them global inhibitors and lays the foun-
dations for both requirements and inhibitors,
as proposed in DeMorgan gate. Pearl stops
short, however, from combining logical OR and
AND gates with negation, which is what De-

Morgan gate does.

Srinivas (1993) generalizes the Noisy-OR
model to multiple states and proposed a model
that is known as the “feeding lines model,” em-
bodying a world of possible functions that tie a
node to its parents. It is quite likely that there
exist functions among all possible that will com-
bine positive and negative influences. Srinivas’
proposal for an extension of Noisy-OR has never
been adopted and we are not aware of any work
extending the “feeding lines model.”

Heckerman and Breese (1994) and later Lu-
cas (2005) discuss the foundations of ICI mod-
els and draw attention to so called decomposable
ICI models. Lucas analyzes in depth canonical
models based on Boolean functions, reminding
that there are 22n

different n-ary Boolean func-
tions and so is the potential number of causal
interactions. The DeMorgan model is decom-
posable, although it does not decompose into
identical functions. It is indeed one of a huge
number of possibilities, but as we argue in this
paper, it may well be one of few that are intu-
itive and potentially readily adopted in practice
ICI models.

A proposal for combining positive and neg-
ative influences has been the CAusal STrength
(CAST) model (Chang et al., 1994), which is an
extension of BNs that is able to model simulta-
neous opposing influences. Although very pop-
ular, particularly in government and military
applications, a major weakness of the CAST
model is its unclear parametrization. Parents
can influence a child variable in both of their
states and do not have a distinguished state,
hence, are not amechanistic.

Lemmer and Gossink’s recursive Noisy-OR
model (Lemmer and Gossink, 2004) deals with
positive and negative influences, although not
in the same model, i.e., a model includes either
all positive or all negative influences.

Finally, Xiang and Jia (Xiang and Jia, 2007)
proposed a general model based on combining
Noisy-AND gates with negation, apparently de-
veloped independently from this proposal. That
model is capable of modeling positive and neg-
ative influences similarly to our proposal.

8 Conclusions

An important property of the DeMorgan

model is that it is able to model any logical
interaction between inputs, when their influ-
ences on the output are independent, i.e., when
they are ICI. In particular, DeMorgan gate
can handle a combination of positive and neg-
ative influences, while preserving both proba-
bilistic soundness and the amechanistic prop-
erty, critical in probability elicitation. Proba-



bilistic soundness ensures that it is mathemat-
ically correct, and propositional logic, that lies
at its foundations, ensures that our model is
meaningful and intuitive for humans.

The results of our experiment indicate that
elicitation of a small DeMorgan model is
at least as accurate as direct elicitation of a
CPT. Yet, the DeMorgan model requires a
number of parameters that is linear, rather
than exponential, in the number of parent
variables. We expect that the DeMorgan

model will show a great advantage over di-
rect elicitation especially for larger models.
We have embedded the DeMorgan model
in SMILE and QGeNIe, a qualitative inter-
face to SMILE, our probabilistic reasoning en-
gine, and made it available to the community
(http://genie.sis.pitt.edu/). QGeNIe is
useful in rapid modeling of problems involv-
ing propositional variables. We are currently
working on extending the DeMorgan model
to multi-valued variables along the lines of the
Noisy-MAX and Noisy-MIN gates.

Acknowledgments

This work has been supported by the Air Force
Office of Scientific Research grant FA9550-06-
1-0243 and by Intel Research. All experi-
mental data were obtained using SMILE, a
Bayesian inference engine developed at the De-
cision Systems Laboratory and available at
http://genie.sis.pitt.edu/. We would like
to thank Adam Zagorecki for stimulating dis-
cussions on the topic of amechanistic ICI mod-
els and help with our experiment. We thank
anonymous reviewers for the PGM–06 for valu-
able suggestion that improved the paper. Ma-
jority of this work was performed while the first
author was at the Decision Systems Laboratory.

References

K.C. Chang, P.E. Lehner, A.H. Levis, Abbas K.
Zaidi, and X. Zhao. 1994. On causal influence
logic. Technical report, George Mason University,
Center of Excellence for C3I.

F. Javier Dı́ez and Marek J. Druzdzel. 2008.
Canonical probabilistic models for knowledge en-

gineering. Unpublished manuscript, available at
http://www.ia.uned.es/∼fjdiez/papers/canonical.html.

David Heckerman and John S. Breese. 1994. A new
look at causal independence. In Proceedings of
the Tenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI–94), pages 286–292,
San Mateo, CA. Morgan Kaufmann Publishers,
Inc.

David Heckerman and John S. Breese. 1996. Causal
independence for probability assessment and in-
ference using Bayesian networks. IEEE, Systems,
Man, and Cybernetics, 26:826–831.

Max Henrion. 1989. Some practical issues in con-
structing belief networks. In L.N. Kanal, T.S.
Levitt, and J.F. Lemmer, editors, Uncertainty in
Artificial Intelligence 3, pages 161–173. Elsevier
Science Publishing Company, Inc., New York, N.
Y.

G. Kokolakis and P.H. Nanopoulos. 2001.
Bayesian multivariate micro-aggregation under
the Hellinger’s distance criterion. Research in Of-
ficial Statistics, 4(1):117–126.

John F. Lemmer and D.E. Gossink. 2004. Recursive
noisy-OR: A rule for estimating complex proba-
bilistic causal interactions. IEEE Transactions on
Systems, Man and Cybernetics – Part B: Cyber-
netics, 34(6):2252–2261.

Peter J.F. Lucas. 2005. Bayesian network model-
ing through qualitative patterns. Artificial Intel-
ligence, 163(2):233–263.

Judea Pearl. 1988. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., San Mateo,
CA.

Sampath Srinivas. 1993. A generalization of the
noisy-OR model. In Proceedings of the Ninth An-
nual Conference on Uncertainty in Artificial In-
telligence (UAI–93), pages 208–215, San Fran-
cisco, CA. Morgan Kaufmann Publishers.

Haiqin Wang, Denver H. Dash, and Marek J.
Druzdzel. 2002. A method for evaluating elici-
tation schemes for probabilistic models. Trans-
actions on Systems, Man, and Cybernetics-Part
B: Cybernetics, 32(1):38–43.

Y. Xiang and N. Jia. 2007. Modeling causal re-
inforcement and undermining for efficient CPT
elicitation. IEEE Transactions on Knowledge and
Data Engineering, 19(12):1708–1718.



New Methods for Marginalization in Lazy Propagation

Anders L Madsen
HUGIN EXPERT A/S, Gasværksvej 5, DK-9000 Aalborg, Denmark

Anders.L.Madsen@hugin.com

Abstract

Even though existing algorithms for belief update in Bayesian networks (BNs) have ex-
ponential time and space complexity, belief update in many real-world BNs is feasible.
However, in some cases the efficiency of belief update may be insufficient. In such cases
minor improvements in efficiency may be important or even necessary to make a task
tractable. This paper introduces two improvements to the message computation in Lazy
Propagation (LP). We introduce one-step lookahead methods for sorting the operations
involved in a variable elimination using Arc-Reversal (AR) and extend LP with the any-
space property. The performance impacts of the methods are assessed empirically.

1 INTRODUCTION

There are two main reasons for the popularity
of BNs (Pearl, 1988), (Cowell et al., 1999), and
(Kjærulff and Madsen, 2008) as a formalism for
modeling and reasoning with uncertainty: 1) a
BN is an efficient and intuitive graphical repre-
sentation of a joint probability distribution and
2) there exists tools implementing efficient algo-
rithms for belief update.

As both exact and approximate belief update
in general are NP-hard (Cooper, 1990b; Dagum
and Luby, 1993), the use of exponential com-
plexity algorithms is justified (unless P=NP).
Even though existing algorithms for belief up-
date have exponential time and space complex-
ity, belief update on a large number of real-
world BNs is feasible. However, in some cases
the efficiency of belief update may be insuffi-
cient, but close to sufficient. In such cases mi-
nor improvements in efficiency may be impor-
tant or even necessary to make a task tractable.
Examples of such cases include analysis at the
portfolio level in financial institutions where a
belief update is performed for each customer. If
the portfolio consists of 100000s of customers,
then the time cost of belief update becomes an
important issue and even a minor improvement
in efficiency can have a large impact on the per-
formance of the portfolio level analysis. In ad-

dition, the importance of belief update perfor-
mance increases as the complexity of real-world
BNs increases.

Most algorithms for exact belief update be-
longs to either the class of query-based or the
class of all-marginals algorithms. The first
class contains, for instance, Belief Propaga-
tion (Pearl, 1988), Arc-Reversal (AR) (Olm-
sted, 1983; Shachter, 1986), Symbolic Prob-
abilistic Inference (SPI) (Shachter et al.,
1990), Recursive Decomposition (RD) (Cooper,
1990a), Variable Elimination (VE) (Cannings
et al., 1978; Zhang and Poole, 1996), Bucket
Elimination (Dechter, 1996a), the Fusion op-
erator (Shenoy, 1997), Query DAGs (Dar-
wiche and Provan, 1997), Recursive Con-
ditioning (RC) (Darwiche, 2000) and Value
Elimination (VU) (Bacchus et al., 2003)
while the latter class contains, for instance,
Lauritzen-Spiegelhalter (Lauritzen and Spiegel-
halter, 1988), HUGIN (Jensen et al., 1990), and
Shenoy-Shafer (Shafer and Shenoy, 1990).

LP (Madsen and Jensen, 1999) combines
query-based and all-marginals algorithms. Mes-
sage passing is performed in a junction tree
where clique and separator potentials are de-
composed into sets of factors and messages are
computed using a (revised) query-based algo-
rithm in an attempt to exploit independence
relations induced by evidence and barren vari-



ables. Recently, Madsen (2006) introduced LP
algorithms where either AR, VE or SPI is used
for message and marginal computation in a vari-
able elimination based approach.

This paper introduces two improvements to
message and marginal computation in LP: one-
step look-ahead methods for sorting the AR op-
erations involved in a variable elimination and a
method to extend LP with the any-space prop-
erty. We also report on the results of an empir-
ical performance analysis.

2 PRELIMINARIES

A BN N = (X,G,P) over variables X consists
of an acyclic, directed graph (DAG) G = (X, E)

and a set of conditional probability distributions
(CPDs) P. It induces a joint probability distri-
bution over X s.t. P(X) =

∏
X∈XP(X |pa(X)).

We consider belief update as the task of chang-
ing beliefs due to changes in the world mani-
fested through observations. It is the task of
computing the posterior marginal P(X | ǫ) for
each X ∈ X. Evidence ǫ = {ǫ1, . . . , ǫn} consists
of a set of variable instantiations. We let ǫX

denote the instantiation of X, i.e., ǫX = {X = x}

and ǫX ∈ ǫ, and let Xǫ denote the set of vari-
ables instantiated by evidence ǫ.

Definition 2.1 [Barren Variable]
A variable X is a barren w.r.t. a set T ⊆ X,
evidence ǫ, and DAG G, if X 6∈ T , X 6∈ Xǫ and X

only has barren descendants in G (if any).

A probability potential (Shafer and Shenoy,
1990) is a non-negative and not-all-zero func-
tion over a set of variables while a probability
distribution is a potential that sums to one. For
probability potential φ with domain dom(φ) =

{X1, . . . , Xn}, we let H(φ) denote the head (i.e.,
the conditioned variables) and T(φ) denote the
tail (i.e., the conditioning variables) of φ.

The domain graph G(Φ) = (X, E) of a set of
probability potentials Φ over variables X is the
graph spanned by X where for each φ an undi-
rected edge is added between each pair of vari-
ables X, Y ∈ H(φ) and a directed edge is added
from each X ∈ T(φ) to each Y ∈ H(φ). We
let dom(Φ) denote the set of domain variables of
potentials in Φ. The notion of barren variables

can be extended to graphs with both directed
and undirected edges (Madsen, 2006).
Definition 2.2 [Query]
A query on a set of probability potentials Φ is
a triple Q = (T,Φ, ǫ) where T ⊆ X is the target.

The set E = dom(Φ) \ T is referred to as the
elimination set. The set of potentials Φ∗ ob-
tained by eliminating dom(Φ) \ T from Φ s.t.∏

φ∈Φ∗ φ = P(T, ǫ1 |ǫ2) where ǫ = ǫ1 ∪ ǫ2 is a
solution to query Q. Notice that a query may
have multiple solutions as a solution is a decom-
position of the joint potential over target T . We
define ΦX ⊆ Φ as ΦX = {φ ∈ Φ : X ∈ dom(φ)}.

2.1 SOLVING QUERIES

Query-based belief update algorithms solve a
single query Q = (T,Φ, ǫ). In the following we
assume that Y is to be eliminated in the pro-
cess of solving Q. AR performs a sequence ρ of
arc-reversal operations to make Y barren prior
to removing its potential from Φ. Let X be a
variable with parent set pa(X) = {Y, X1, . . . , Xn}

and let pa(Y) = {X1, . . . , Xn}. An AR operation
on arc (Y, X) is performed as follows:

P(X |X1, . . . , Xn)

=
∑

Y

P(X |Y, X1, . . . , Xn)P(Y |X1, . . . , Xn), (1)

P(Y |X,X1, . . . , Xn)

=
P(X |Y, X1, . . . , Xn)P(Y |X1, . . . , Xn)

P(X |X1, . . . , Xn)
. (2)

The AR-operation corresponds to arc-reversal
in G(Φ). It is necessary to avoid making cycles
in the process of reversing arcs to eliminate Y.
If pa(X)\{Y} 6= pa(Y), then we perform straight-
forward domain extensions.

Using VE Y is eliminated from Φ by marginal-
ization of Y over the combination of poten-
tials of ΦY and setting Φ∗ = Φ \ ΦY ∪ {φY}

where φY =
∑

Y

∏
φ∈ΦY

φ.
There is a rich literature on any-space algo-

rithms, e.g., (Dechter, 1996b; Darwiche, 2000;
Bacchus et al., 2003). We consider VU and RC.
RC is an any-space algorithm for exact query-
based belief update based on recursive condi-
tioning (Darwiche, 2000). RC is an instanti-
ation of the family of algorithms referred to



as VU (Bacchus et al., 2003). A main dif-
ference is that VU supports a dynamic condi-
tioning order whereas the order is fixed in RC.
RD (Cooper, 1990a), on the other hand, is a
divide-and-conquer method that recursively de-
composes the network and maps the resulting
decomposition into a corresponding equation.

2.2 ALL-MARGINALS

All-marginals-based belief update algorithms
solve a single query Q = ({X},Φ, ǫ) for each X ∈
X. The all-marginals problem is usually solved
by local procedures operating on a secondary
computational structure known as the junction

tree (also known as a join tree and a Markov
tree) representation of the BN (Jensen and
Jensen, 1994). Let T denote a junction tree with
cliques C and separators S. The cliques C are
the nodes of T whereas the separators S anno-
tate the links of T. Each clique C ∈ C represents
a maximal complete subgraph in an undirected
graph1 GT. The link between two neighboring
cliques A and B is annotated with the intersec-
tion S = A ∩ B, where S ∈ S.

Once T is constructed the CPD of each X ∈ X

is associated with a clique C s.t. fa(X) ⊆ C

where fa(X) = {X}∪pa(X). We let ΦC denote the
set of CPDs associated with C ∈ C. Belief up-
date proceeds as a two phase process where in-
formation is passed as messages between cliques
over separators in two steps. Two messages are
passed over each S ∈ S; one message in each di-
rection. Once the message passing process has
completed, the marginal of each X ∈ X is com-
puted from any node in T including X.

Algorithms such as HUGIN, Shenoy-Shafer,
Lauritzen-Spiegelhalter, and LP differ w.r.t. the
representation of clique and separator potentials
and the computation of messages.

3 LAZY PROPAGATION

Message passing proceeds according to the
Shenoy-Shafer scheme: A clique A sends a mes-
sage ΦA→B to its neighbor B when it has re-

1GT is constructed from the moral graph Gm of G by
adding undirected edges until the graph is triangulated.
A graph is triangulated if every cycle of length greater
than three has a chord.

ceived messages from all neighbors (denoted
ne(A)) except B, see Figure 1. A message ΦA→B

is the solution to a query Q = (B,ΦA ∪
⋃

C∈ne(A)\BΦC→A, ǫ) and it is computed as:

ΦA→B =
(

ΦA ∪
⋃

C∈ne(A)\{B}

ΦC→A

)M↓B
,

where M is the marginalization algorithm,
i.e., either AR, VE or SPI. Prior to apply-
ing M to solve Q, potentials for which all head
variables are barren and potentials over vari-
ables which are all separated from B given ǫ

in G(ΦA∪
⋃

C∈ne(A)\BΦC→A) are removed. No-
tice that ΦA→B and ΦC are sets of potentials.
The content of ΦA→B depends on M.

R · · · B S A ...

ΦA→B

Figure 1: ΦA→B is passed from A to B.

The decomposition of potentials and the lazy
elimination of variables enable an efficient ex-
ploitation of independence relations and bar-
ren variables during belief update. LP uses
the structure of T to define a partial order on
the elimination of variables in the computation
of P(X | ǫ) for each X ∈ X. While the do-
main of ΦA→B is defined by the elimination
set E = A\B, the computation of ΦA→B can be
performed using a variety of algorithms, as de-
scribed by Madsen (2006). Evidence is entered
in T by instantiating Xǫ according to ǫ.

4 IMPROVING BELIEF UPDATE

4.1 ARC-REVERSAL SORT

Using AR a variable Y is eliminated by
a sequence ρ of arc-reversal operations fol-
lowed by a barren variable elimination. If
| ch(Y)| > 1, then an arc-reversal order ρ =

((Y, X1), . . . , (Y, X|ch(Y)|)) has to be determined.
Consider the query Q = (T =

{X1, X3, X4, X5},Φ, ∅) where Φ = {P(X1), (P(X2 |

X1), P(X3 | X2, X5), P(X4 | X2), P(X5)}. Elim-
inating X2 using AR involves reversing
arcs (X2, X3) and (X2, X4). Figures 2 and 3
show the calculations for the two possi-
ble orders ρmin = ((X2, X4), (X2, X5)) and



ρmax = ((X2, X5), (X2, X4)), respectively. The
inner circles represent the first arc-reversal
operation while the outer circles represent the
second arc-reversal operation. Even though the
structures of the two graphs are identical, the
solutions are different.

P(X2 |X1) P(X3 |X2, X5)

P(X4 |X2)

∗

∑
X2

/

∗

∑
X2

/

P(X3 |X1, X5)

P(X4 |X1, X3, X5)

Figure 2: maximum fill-in-weight.

The solution illustrated in Figure 2 is
ΦARmax↓T = {P(X1), P(X3 | X1, X5), P(X4 |

X1, X3, X5), P(X5)} while the solution illustrated
in Figure 3 is ΦAR min↓T = {P(X1), P(X3 |

X1, X4, X5), P(X4 | X1), P(X5)}. Notice that the
(unique) solution to Q obtained using VE and
the algorithm of Section IV in (Madsen, 2006)
is ΦVE↓T = {P(X1), P(X3, X4 |X1, X5), P(X5)}.

P(X2 |X1)

P(X3 |X2, X5)

P(X4 |X2)

∗

∑
X2

/

∗

∑
X2

/

P(X4 |X1)

P(X3 |X1, X4, X5)

Figure 3: minimum fill-in-weight.

The elimination of Y by a sequence of AR
operations ρ = ((Y, X1), . . . , (Y, X|ch(Y)|)) will in-
duce a set of new edges. The cost2 of an AR

2Alternative scores may be considered. In this work,

sequence ρ is defined as the sum of the weights
of the new edges induced by ρ.

The objective of considering different AR se-
quences is to minimize the total cost of new
edges introduced by eliminating Y. It is infeasi-
ble to consider all possible sequences as the up-
per limit on the number of possible sequences
is n! where n = | ch(Y)|. Some of the sequences
may be illegal due to the graph acyclicity con-
straint though. The large number of possible
sequences implies that the use of heuristics for
determining the sequence to use is justified. We
define the cost of reversing edge (Y, X) as:

s(Y, X) =
∑

ZX∈pa(X),ZX 6∈pa(Y),ZX 6=Y

‖ZX‖ · ‖Y‖

+
∑

ZY∈pa(Y),ZY 6∈pa(X)

‖ZY‖ · ‖X‖.

The cost is equal to the sum of the weights of
the edges induced by new parents of X and Y.

We introduce two heuristic rules based on the
score s(Y, X): a minimum fill-in-weight rule for
selecting the next edge to reverse when elimi-
nating Y. We refer to AR in combination with
minimum fill-in-weight as ARmin. The rule
where s(Y, X) is maximized is referred to as max-

imum fill-in-weight and ARmax denotes AR in
combination with this rule.

Both maximum fill-in-weight and minimum

fill-in-weight use a one step look-ahead. This
implies that they do not always find the optimal
order (according to the cost function). Finding
an optimal order is similar to finding an opti-
mal triangulation. It is well-known that this
problem is NP-complete, see e.g. (Yannakakis,
1981) or (Arnborg et al., 1987).

4.2 ANY-SPACE

Inspired by the work on RD and RC we extend
LP with the any-space property. The basic idea
is to avoid computing a representation over all
values of φ, if ||dom(φ)|| > δ where δ is a thresh-
old value on the size of potentials. Instead of

we use a score similar to the fill-in-weight score often
used for identifying triangulations using one-step looka-
head node elimination, as this rule has shown a high per-
formance when applied to triangulation, see (Kjærulff,
1993) for more details.



P(x4 |x31) P(x31 |x11)

P(x11 |x2)

P(x4 |x2)

∗

+
x31 x3n

∗

+
x11 x1n

· · ·

· · ·

Figure 4: VE calculation of P(X4 |X2).

maintaining a large (table) representation of φ,
values are recomputed as needed in subsequent
operations. During belief update potential sizes
may increase due to multiplications and de-
crease due to marginalizations. Let φ1 and φ2

be two potentials. If dom(φ1) \ dom(φ2) 6= ∅
or dom(φ2) \ dom(φ1) 6= ∅, then ||dom(φ1 ·
φ2)|| > ||dom(φi)|| for i = 1, 2. This simple
insight drives the proposed scheme. The calcu-
lation of a product

∏
φ or a marginal φ↓T is

delayed if ||dom(
∏

φ)|| > δ or ||dom(φ↓T)|| > δ,
respectively. Only marginalization can enforce
the construction of a potential whereas both a
marginalization and a product may involve de-
layed potentials producing a recursive scheme.
Figure 4 illustrates the approach on:

P(X4 |X2) = ΦVE↓{X2,X4}

=
∑

X1

P(X1 |X2)
∑

X3

P(X3 |X1)P(X4 |X3),

where Φ = {P(X1 | X2), P(X3 | X1), P(X4 | X3)}.
Each entry of P(X4 |X2) is computed by access-
ing and combining the values of its source po-
tentials Φ recursively. The equation becomes a
formula for accessing the values of P(X4 |X2) by
recursive computation. Each time an entry is
accessed, it is computed. No entries are com-
puted when the formula is constructed. This
implies that the calculation of an entry is de-
layed until the entry is accessed as part of the
calculation of another potential.

Even though ||dom(φ)|| > ||dom(φ↓T)||, it
may be that ||dom(φ↓T)|| > δ. In this
case, the marginalization is postponed. No-
tice that a marginalization is always performed

over a combination of at least two potentials.
If ||dom(φ↓T)|| ≤ δ, then φ↓T is computed.

The results of experiments suggest that VE
is the most suited marginalization operation to
apply in the any-space scheme. Notice that nei-
ther RC nor VU is directly applicable as the
marginalization operation in LP.

5 PERFORMANCE EVALUATION

This section presents the results of a prelim-
inary performance evaluation3. The evalua-
tion is performed using a set of real-world
and randomly generated BNs. The set of
real-world networks considered includes Bar-

ley and ship-ship while networks with ||X|| =

100, 125, 150, 200 were generated randomly (ten
networks of each size). For each network
ten different Xǫ were generated randomly for
each ||Xǫ|| = 0, . . . , ||X||. Table 1 (where s(C) =

Table 1: Statistics on test networks.

Network |V | |C| maxC∈C s(C) s(C)

ship-ship 50 35 4, 032, 000 24, 258, 572
Barley 48 36 7, 257, 600 17, 140, 796

net 100 5 100 85 98, 304 311, 593
net 200 5 200 178 15, 925, 248 70, 302, 065

∏
X∈C ||X|| and s(C) =

∑
C∈C s(C)) contains

statistics on some test networks (in the name
net x y x = ||X|| and y is an identifier). The
junction trees have been generated using opti-

mal triangulation (total weight being the opti-
mality criterion) (Jensen, 2007).

This section also presents the results of
an evaluation of the cost of the last and
most expensive division operation involved
in the elimination of a variable by AR.
Ndilikilikesha (1994) introduces operations on
the DAG structure where the need for division
is eliminated. This is achieved by associating a
potential instead of a CPD with each variable.
This implies that barren variable elimination re-
quires marginalization operations and it there-
fore becomes a potentially expensive operation.

3Due to space restrictions, a limited number of graphs
are included for each experiment.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  20  40  60  80  100

T
im

e 
in

 s
ec

o
n

d
s

Number of instantiations (net_100_5)

AR max  
AR min  

Figure 5: Time cost of LARP with sorting.

5.1 ARC-REVERSAL SORT

To assess the performance impact of ρ, we com-
pare the costs of belief update using ARmin
and ARmax. The minimum fill-in-weight rule
selects as the next arc to reverse an arc with low-
est cost while the maximum fill-in-weight rule
selects an arc with highest cost. A performance
comparison between ARmin and ARmax will
give insights into the importance of selecting a
good arc-reversal order.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  20  40  60  80  100

L
ar

g
es

t 
p

o
te

n
ti

al
 s

iz
e 

in
 n

u
m

b
er

s

Number of instantiations (net_100_5)

AR max  
AR min  

Figure 6: Space cost of LARP with sorting.

Figures 5 and 6 show the cost of belief update
in net 100 5. The time cost of ARmin is sig-
nificantly lower than the time cost of ARmax
whereas the reduction in potential size is less
significant and it is most significant for small
subsets of evidence. Only in a few cases there
is a reduction in the largest potential size when
using ARmin compared to using ARmax.

The time cost improvement is not only pro-
duced by a reduction in the largest potential

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  20  40  60  80  100

 M
u

lt
ip

li
ca

ti
o

n
s 

(a
n

d
 d

iv
is

io
n

s)

Number of instantiations (net_100_5)

AR max  
AR min  

Figure 7: Multiplications & divisions, sorting.

size, but also by a reduction in the number
of arithmetic operations performed. Figure 7
shows the cost of belief update in net 100 5

in terms of the number of multiplications and
divisions performed. There is a reduction in
time cost and number of operations even though
there is no reduction in the (average) size of the
largest potential.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  50  100  150  200

T
im

e 
in

 s
ec

o
n

d
s

Number of instantiations (net_200_5)

AR max  
AR min  

Figure 8: Time cost of LARP with sorting.

Figure 8 shows an example where the use of
minimum fill-in-weight not only gives a signifi-
cant reduction in time cost over the use of maxi-

mum fill-in-weight, but the variation of the cost
is also significantly reduced.

We expected the implementation overhead in-
troduced by the sorting algorithm to dominate
the time efficiency improvement (e.g., testing
for potential cycles in the graph), but this was
clearly not the case. The arc-reversal order can
have a significant impact on the time cost of be-
lief update. In conclusion, it may be important



to identify an efficient arc-reversal order.

5.2 ANY-SPACE

The any-space property is achieved by not con-
structing any potential φ with ||dom(φ)|| > δ.
To illustrate the any-space property, we per-
formed a sequence of experiments with differ-
ent δ values. Notice that reducing δ from y to
x only has an impact on performance when at
least one potential φ with x < ||dom(φ)|| ≤ y

is created during belief update.
Figure 9 shows the time cost of belief up-

date in Barley for three different δ values
(maxS∈S s(S) = 907, 200) using VE as the
marginalization algorithm. The time cost in-
creases as δ is reduced.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  5  10  15  20  25  30  35  40  45  50

T
im

e 
in

 s
ec

o
n

d
s

Number of instantiations (Barley)

No limit  
5000000  
1000000  

Figure 9: Time cost for different δ values.

The experiments show that the average
largest potential size has a major variation. The
peaks in the graphs are caused by a few difficult

evidence scenarios4. The combined impact of
these scenarios increases as δ decreases.

Table 2 shows the time cost for belief update
using AR min and VE in Barley given two spe-
cific evidence scenarios as a function of δ. The
time cost has a large variation across evidence
scenarios and the time cost increases as δ de-
creases. Notice that the time costs for two dif-
ferent values of δ are (almost) equal. The reason
is that the largest domain size created during
belief update is the same in both cases.

4In this case the most expensive set of evidence to
propagate consists of four instantiations of leaf variables
with multiple parents which are inserted into four dif-
ferent leaf cliques. This evidence introduces additional
dependence relations.

Table 2: Time cost of belief update given two
different sets of evidence of equal size.

106 2.5 ∗ 106 5 ∗ 106 No limit

AR 333.65 41.84 41.50 3.89
VE 18.57 12.35 12.27 2.45

5 ∗ 103 1.5 ∗ 104 3 ∗ 104 No limit

AR 1.82 1.25 1.25 0.53
VE 2.28 0.96 0.92 0.46

The results of the experiments indicate that
the VE algorithm is better suited than AR for
implementing upper-limit constraints. The AR
algorithm performs additional calculations in
order to maintain as many (conditional) inde-
pendence statements as possible. This seems to
penalize the algorithm under upper-limits con-
straints when compared to VE.

The table indexing for potentials with sizes
larger than δ is näıve compared to the table in-
dexing for potentials with sizes below δ. The
former table indexing is expected to add an ad-
ditional overhead to the time costs.

5.3 DIVISION OPERATION

Using AR as the marginalization operation re-
quires one invocation of Equations 1 and 2 for
each arc reversed except for the last arc where
the invocation of Equation 2 can be skipped as
the variable subsequently will be eliminated as
barren (Madsen, 2006).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50

T
im

e 
in

 s
ec

o
n

d
s

Number of instantiations (ship-ship)

No division  
Division  

Figure 10: Time cost w/w.o. last division.

Figure 10 illustrates the cost of the division
operation in the ship-ship network. It is clear
from the figure that the cost of the division op-
eration is most significant for the case of small



sized evidence sets. The impact of the division
operation is reduced as ||Xǫ|| increases.

6 CONCLUSION

This paper introduces LP as a class of algo-
rithms for computing all-marginals. The ele-
ments of the class differ with respect to the al-
gorithm or algorithms used for message compu-
tation. We have proposed two methods for mes-
sage computation in LP and considered the im-
portance of certain properties of the algorithm.
One method is based on sorting arc-reversal op-
erations according to a complexity score while
the second method is a simple scheme for ex-
tending LP with the any-space property. The
paper includes an experimental evaluation of
the proposed extensions.

Future work includes a more in-depth analy-
sis of the any-space potential of LP in message
computation. This includes the option of re-
considering the calculation of a factor at a later
point in time. For instance, before accessing
the elements of a delayed factor φ recursively, it
may be possible to identify a more efficient elim-
ination and combination order from the source
potentials of φ. Future work also includes an
analysis of methods for selecting between dif-
ferent algorithms for solving a query. This
would produce a propagation scheme where dif-
ferent algorithms may be used to solve different
queries during belief update.

References
S. Arnborg, D. G. Corneil, and A. Proskurowski. 1987. Com-

plexity of finding embeddings in a k-tree. SIAM Journal on
Algebraic and Discrete Methods, 8:277–284.

F. Bacchus, S. Dalmao, and T. Pitassi. 2003. Value Elimination:
Bayesian Inference via Backtracking Search. In Proc. of UAI,
pages 20–28.

C. Cannings, E. A. Thompson, and H. H. Skolnick. 1978. Prob-
ability functions on complex pedigrees. Advances in Applied
Probability, 10:26–61.

G. F. Cooper. 1990a. Bayesian Belief-Network Inference Us-
ing Recursive Decomposition. Technical Report KSL 90-05,
Knowledge Systems Laboratory.

G. F. Cooper. 1990b. The computational complexity of prob-
abilistic inference using Bayesian belief networks. Artificial
Intelligence, 42(2-3):393–405.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegel-
halter. 1999. Probabilistic Networks and Expert Systems.
Springer-Verlag.

P. Dagum and M. Luby. 1993. Approximating probabilistic in-
ference in Bayesian belief netwoks is NP-hard. Artificial In-
telligence, 60:141–153.

A. Darwiche and G. Provan. 1997. Query dags: A pratical
paradigm for implementing belief-network inference. In JAIR,
pages 147–176.

A. Darwiche. 2000. Any-Space Probabilistic Inference. In Proc.
of UAI, pages 133–142.

R. Dechter. 1996a. Bucket elimination: A unifying framework
for probabilistic inference. In Proc. of UAI, pages 211–219.

R. Dechter. 1996b. Topological Parameters for time-space trade-
off. In Proc. of UAI, pages 220–227.

F. V. Jensen and F. Jensen. 1994. Optimal junction Trees. In
Proc. of UAI, pages 360–366.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. 1990. Bayesian
Updating in Causal Probabilistic Networks by Local Compu-
tations. Computational Statistics Quarterly, 4:269–282.

F. Jensen. 2007. HUGIN API Reference Manual. Available
from http://www.hugin.com.

U. B. Kjærulff and A. L. Madsen. 2008. Bayesian Networks and

Influence Diagrams - A Guide to Construction and Analysis.
Springer-Verlag.

U. B. Kjærulff. 1993. Aspects of efficiency improvement in
Bayesian networks. Ph.D. thesis, Department of Computer
Science, Aalborg University, Denmark, April.

S. L. Lauritzen and D. J. Spiegelhalter. 1988. Local computations
with probabilities on graphical structures and their application
to expert systems. Journal of the Royal Statistical Society,
B, 50(2):157–224.

A. L. Madsen and F. V. Jensen. 1999. Lazy propagation: A junc-
tion tree inference algorithm based on lazy evaluation. Arti-
ficial Intelligence, 113(1-2):203–245.

A. L. Madsen. 2006. Variatoins Over the Message Computa-
tion Algorithm of Lazy Propagation. IEEE Transactions on

Systems, Man. and Cybernetics Part B, 36(3):636–648.

P. Ndilikilikesha. 1994. Potential influence diagrams. IJAR,
11(1):251–285.

S. M. Olmsted. 1983. On representing and solving decision
problems. Phd thesis, Department of Engineering-Economic
Systems, Stanford University, Stanford, CA.

J. Pearl. 1988. Probabilistic Reasoning in Intelligence Systems.
Series in Representation and Reasoning. Morgan Kaufmann
Publishers.

R. D. Shachter, B. D’Ambrosio, and B. Del Favero. 1990. Sym-
bolic probabilistic inference in belief networks. In Proc. of 8th
National Conference on AI, pages 126–131.

R. D. Shachter. 1986. Evaluating influence diagrams. Operations
Research, 34(6):871–882.

G. R. Shafer and P. P. Shenoy. 1990. Probability Propagation.
Annals of Mathematics and Artificial Intelligence, 2:327–
351.

P. P. Shenoy. 1997. Binary join trees for computing marginals in
the Shenoy-Shafer architecture. IJAR, 17(2-3):239–263.

M. Yannakakis. 1981. Computing the minimum fill-in is NP-
complete. SIAM Journal on Algebraic and Discrete Methods,
2(1):77–79.

N. L. Zhang and D. Poole. 1996. Exploiting Causal Indepen-
dence in Bayesian Network Inference. Journal of Artificial

Intelligence Research, 5:301–328.



Solving CLQG Influence Diagrams Using Arc-Reversal
Operations in a Strong Junction Tree

Anders L Madsen
HUGIN EXPERT A/S, Gasværksvej 5, DK-9000 Aalborg, Denmark

Anders.L.Madsen@hugin.com

Abstract

This paper presents an architecture for solving conditional linear-quadratic Gaussian
(CLQG) influence diagrams (IDs) by Lazy Propagation (LP). A strong junction tree (SJT)
is used to guide the elimination order whereas the marginalization operation is based on
arc-reversal (AR). The use of AR for marginalization simplifies the implementation and
gives the architecture a number of advantages. The key benefits of using LP in combina-
tion with AR to solve CLQG IDs are illustrated by examples and in experiments. The
results of a preliminary performance evaluation are promising.

1 INTRODUCTION

The ID (Howard and Matheson, 1984) is an
increasingly popular knowledge representation
for decision making under uncertainty. It pro-
vides an intuitive graphical representation of
a decision problem with a minimum of clutter
and confusion for the decision maker and ana-
lyst (Shachter and Peot, 1992).

Some of the most popular algorithms for solv-
ing IDs, e.g., Olmsted (1983), Shachter (1986),
Shenoy (1992), and Jensen et al. (1994), con-
sider the discrete case only. Recently,
an increased interest in IDs with continu-
ous as well as mixed continuous and dis-
crete variables has emerged. Kenley (1986)
and Shachter and Kenley (1989) introduced the
Gaussian ID consisting of continuous vari-
ables only and an architecture for its so-
lution. The architecture assumes a sin-
gle utility function (UF) conditioned on all
variables in the ID. The solution process is
based on AR operations. Later Poland (1994)
introduced an architecture for representing
and solving continuous IDs by approximating
continuous distributions with Gaussian mix-
tures. The solution process of this architec-
ture is also based on AR operations. Later
Madsen and Jensen (2005) introduced Shenoy-
Shafer and LP architectures for solving CLQG

IDs. These two architectures are based on a
new representation of UFs and representations
and operations of Lauritzen and Jensen (2001)
and Shachter and Kenley (1989). At the same
time, Cobb and Shenoy (2004) introduced an
architecture for solving hybrid IDs using mix-
tures of truncated exponentials (MTEs).

The new architecture introduced in this pa-
per extends LP (Madsen, 2006) with represen-
tations for UFs (Madsen and Jensen, 2005) and
operations for eliminating random and decision
variables (DVs) from UFs. It is simpler than
the architecture of Madsen and Jensen (2005).
We refer to the proposed architecture as LARP
as it is based on LP using AR operations (Cow-
ell, 2005; Madsen, 2006) for variable elimina-
tion. We make an empirical analysis of the effi-
ciency of LARP using randomly generated IDs
and different versions of a famous example. In
addition, we compare LARP with the HUGIN
algorithm (Jensen et al., 1994).

2 PRELIMINARIES

2.1 CLQG INFLUENCE DIAGRAM

A CLQG ID N = (X,G,P,F,U) over variables X

consists of a DAG G, a set of conditional prob-
ability distributions P = {P(X| pa(X)) : X ∈ ∆C}

where pa(X) is the set of variables correspond-
ing to the parents of X in G, a set of con-



ditional linear Gaussian (CLG) density func-
tions F = {f(Y | pa(Y)) : Y ∈ ΓC} and a set of
quadratic UFs U where ∆ is the set of discrete
variables s.t. ∆C is the set of discrete random
variables (RVs) and ∆D is the set of discrete
DVs, Γ is the set of continuous variables s.t. ΓC

is the set of continuous RVs and ΓD is the set of
continuous DVs, i.e., X = ∆C ∪ ΓC ∪ ∆D ∪ ΓD.
We denote the set of RVs as XC = ∆C ∪ ΓC

and the set of DVs as XD = ∆D ∪ ΓD s.t.
X = XC ∪ XD. The variables ∆C ∪ ΓC induce
a CLG distribution conditional on ∆D∪ ΓD s.t.
P(∆C|∆D) · f(ΓC|∆, ΓD) equals:

∏

X∈∆C

P(X| pa(X)) ·
∏

Y∈ΓC

f(Y | pa(Y)).

The variables of N induce an expected UF:

EU(X) = P(∆C|∆D) · f(ΓC|∆, ΓD) ·
∑

u∈U

u. (1)

An optimal strategy can be identified by elim-
inating variables from (1) in the reverse time
order. The time order is the order in which
variables are observed s.t. Ii is the set of vari-
ables observed after the ith decision and before
the i + 1th decision.

Let Y ∈ ΓC with I = pa(Y)∩∆ and Z = pa(Y)∩
Γ , then Y has a CLG distribution if:

f(Y |I = i, Z = z) = N(α(i) + β(i)z, σ2(i)), (2)

where the mean value is linear in the values of Z,
while the covariance matrix is independent of Z.
In (2), α(i) is a table of real numbers, β(i) is
a table of |Z|-dimensional row vectors and σ2(i)

is a table of non-negative values.
A quadratic UF has the form u(X = x, I =

i) = xTQ(i)x + R(i)x + S(i) where X is a
|X| × 1-dimensional vector of continuous vari-
ables, I ⊆ ∆, Q(i) := (qjk)|X|×|X|(i) is a table
of |X|× |X| symmetric negative semi-definite ma-
trices, R(i) = (rk)|X|(i) is a table of 1×|X| vectors
and S(i) is a table of constants. Thus, a UF is
represented as a triple [Q,R, S].

We assume the UF to be a negative quadratic
function as a weighted average of quadratic
functions is quadratic. This implies that op-
timization of DVs and elimination of RVs

from (1) have closed form solutions. Notice that
the UFs specified in the model need not be neg-
ative quadratic. It is sufficient if the UF over
which a continuous DV is maximized is nega-
tive quadratic (or constant).

We let G(P∪F∪U) denote the domain graph
spanned by P∪F∪U and CG(X) denote the con-
ditioning variables of X in G where subscript G

is omitted when no confusion is possible.

A RV X in G(P ∪ F ∪ U) is probabilistic
barren w.r.t. T ⊆ X if it is barren w.r.t. T

in G(P ∪ F). Let Di be the ith decision in an
ID. A variable X ∈ Ik>=i is irrelevant for Di

if X ⊥ de(Di) ∩ U| pa(Di) where ⊥ denotes d-
separation and de(Di) are the descendants of Di

while a variable Y ∈ pa(Di) is non-requisite
for Di if X ⊥ U ∩ de(Di)| pa(Di) \ {Y}, see, e.g.,
Nielsen (2001) for more details.

2.2 THE AR OPERATION

The AR operation (Shachter, 1986; Cow-
ell, 2005) changes the direction of an edge
between two variables. Let Xi, Xj ∈ ∆

with C(Xi) = {Z1, . . . , Zn} ⊆ ∆ and C(Xj) =

{Xi, Z1, . . . , Zn} ⊆ ∆ s.t. p(Xj|Xi, Z1, . . . , Zn)

and p(Xi|Z1, . . . , Zn) are the corresponding
probability distributions of Xi and Xj, respec-
tively. The edge (Xi, Xj) is reversed by setting:

p(Xj|Z1, . . . , Zn) =
∑

Xi

p(Xj|Xi, Z1, . . . , Zn)p(Xi|Z1, . . . , Zn),

p(Xi|Xj, Z1, . . . , Zn) =

p(Xj|Xi, Z1, . . . , Zn)p(Xi|Z1, . . . , Zn)

p(Xj|Z1, . . . , Zn)
. (3)

The AR operation can also be applied to a pair
of density functions (Cowell, 2005). Let Yi, Yj ∈
Γ with C(Yj) = {Z1, . . . , Zn} ⊆ Γ and C(Yi) =

{Yj, Z1, . . . , Zn} ⊆ Γ s.t.:

Yi|Yj, Z1, . . . , Zn ∼

N(αYi
+βYj

Yj +

n∑

i=1

βiZi, σ
2
Yi

),

Yj|Z1, . . . , Zn ∼N(αYj
+

n∑

i=1

δiZi, σ
2
Yj

).



The distributions of Yi and Yj after AR are:

Yi|Z1, . . . , Zn ∼

N((αYi
+ βYj

) +

n∑

i=1

(βi + δi)Zi, σ
2
Yi

+ β2
Yj

σ2
Yj

),

Yj|Yi, Z1, . . . , Zn ∼ N

(

αYj
σ2

Yi
+ µ

d
,
σ2

Yj
σ2

Yi

d

)

,

where d = σ2
Yi

+ β2
Yj

σ2
Yj

and µ equals:

−αYi
βYj

σ2
Yj

+βYj
σ2

Yj
Yi+

n∑

i=1

(δiσ
2
Yi

−βiβYj
σ2

Yj
)Zi.

See Cowell (2005) and Madsen (2006) for more
details. If C(Yi) ∩ ∆ = C(Yj) ∩ ∆ = K, then the
formulas are indexed by k.

3 POTENTIALS

Definition 1. A potential πW = (P,F,U)

on W ⊆ X consists of a set of conditional prob-
ability potentials P over subsets of W, a set of
CLG density functions F over subsets of W ∩ Γ

conditional on subsets of W ∩ ∆ and a set of
UFs U over subsets of W.

Elements of P are referred to as factors and
elements of F as density functions. Further-
more, we call the potential πW = (∅, ∅, ∅) vac-
uous and denote it π∅. The domain of P is
dom(P) =

⋃

p∈P dom(p) where dom(p) denotes
the set of variables over which p is defined
(similarly for dom(F) and dom(U)). The do-
main of a potential π = (P,F,U) is defined
as dom(π) = dom(P) ∪ dom(F) ∪ dom(U). Fi-
nally, we define G(π) = G(P ∪ F ∪ U).

Definition 2. The combination of poten-
tials πW1

= (P1,F1,U1) and πW2
= (P2,F2,U2)

denotes the potential on W1 ∪ W2 given by
πW1

⊗ πW2
= (P1 ∪ P2,F1 ∪ F2,U1 ∪ U2).

Potential combination is simply set union.

Definition 3. A projection of πW =

(PW,FW,UW) to a subset V ⊆ W denotes the

potential πV = π
↓V
W = (PV,FV,UV) obtained by

performing a sequence of variable eliminations
of W \ V .

In projection ↓, variables Γ ∩V are eliminated
before ∆ ∩ V in reverse time order.

3.1 MARGINALIZATION

Madsen and Jensen (2005) define the necessary
and sufficient marginalization operations for
solving a CLQG ID. These operations assume
the [Q,R, S]-representation of UFs and the p ·
[A,B,C]-representation of (multivariate) CLG
distributions where p is the discrete potential
and A is a vector of αs, B is a matrix of βs, and
C is a covariance matrix (this representation
is equal to the [p,A,B,C]-representation intro-
duced by Lauritzen and Jensen (2001) except
for the decomposition of the potential into the
discrete p and the continuous [A,B,C] parts).
The main contribution of this paper is that the
proposed solution method considers only uni-
variate CLG distributions, i.e., a density func-
tion has exactly one head variable. This is
a significant simplification over the [A,B,C]-
representation as it simplifies the operations re-
lated to variable elimination and eliminates the
need for complex matrix operations.

Madsen (2006) describes an architecture for
belief update in CLG Bayesian networks using
AR operations to eliminate variables. These
operations are applicable for the elimination of
RVs in the process of solving a CLQG ID.

When solving an ID, variables are eliminated
in the reverse temporal order and continuous
variables are eliminated before discrete vari-
ables. In the process we may take advantage of
irrelevance and non-requisite variables. In the
following subsections we assume X is the vari-
able to eliminate, UX = {u ∈ U : X ∈ dom(u)}

and dom(UX) = {X,Z1, . . . , Zn}. In the process
of eliminating variables it may be necessary to
perform straightforward domain extensions.

3.1.1 Discrete Random Variables

The marginalization of X ∈ ∆C from a po-
tential π = (P, ∅,U) s.t. dom(U) ⊆ ∆ pro-
duces a new potential π∗

dom(π)−{X}
= (P∗, ∅,U∗)

where the components P∗ and U∗ are com-
puted as follows. A sequence of AR opera-
tions to make X probabilistic barren in G(P)

is performed. Let PX denote the resulting set
of factors, the set of UFs U is unchanged by
this operation. Since X is probabilistic bar-
ren only a single factor p ∈ PX has X in its



domain. Let p(X| C(X)) be this potential and
let u(X,C(X)) =

∑
u∈UX

u. Finally, we set:

P∗ = PX \ {p(X| C(X)) ∈ PX},

U∗ = U \ UX ∪ U−X, (4)

where U−X = {
∑

Xp(X| C(X)) · u(X,C(X))} de-
notes the resulting set of UFs (even though
|U−X| = 1). Notice that if UX = ∅, then U∗ = U.
Later the marginalization operation is extended
to produce a set of UFs.

3.1.2 Continuous Random Variables

The marginalization of X ∈ ΓC from a po-
tential π = (P,F,U) produces a new poten-
tial π∗

dom(π)−{X}
= (P,F∗,U∗) where F∗ and U∗

are computed as follows. A sequence of AR op-
erations to make X probabilistic barren in G(P∪
F) is performed. Let FX denote the result-
ing set of density functions, the factors P and
set of UFs U are unchanged by this opera-
tion. Since X is probabilistic barren a sin-
gle density function f ∈ FX has X in its do-
main. Let f(X| C(X)) be this density function
and let u(X,C(X)) =

∑
u∈UX

u. Finally, we set:

F∗ = FX \ {f(X| C(X)) ∈ FX},

U∗ = U \ UX ∪ U−X. (5)

where U−X =
{
(f(X| C(X)) · u(X,C(X)))↓C(X)

}

again denotes the resulting set of UFs
(again |U−X| = 1). Notice that if UX = ∅,
then U∗ = U. Later the marginalization of X ∈
ΓC is revised s.t. it may produce a set of UFs.

The operation (f(X| C(X)) · u(X,C(X)))↓C(X)

produces a UF u(C(X)) = [(q∗
ij), (r

∗
i), S

∗] where:

q∗
ij = qij + qikβj + βiqkj + qkk(βiβj),

r∗i = ri + 2αqki +
(

2qkkα + rk

)

βi,

S∗ = S + qkk

(

α2 + σ2
)

+ rkα,

where subscript k specifies the matrix/vector
entry corresponding to variable X. If I = C(X)∩
∆ 6= ∅, the formulas are indexed by the configu-
ration i of I (similarly for continuous decisions).

3.1.3 Discrete Decision Variables

The marginalization of X ∈ ∆D from a po-
tential π = (∅, ∅,U) s.t. dom(U) ⊆ ∆ produces

a new potential π∗
dom(π)−{X}

= (∅, ∅,U \ UX ∪

{maxD

∑
u∈UX

u}).

An optimal policy δX for X is determined as
the maximizing arguments of

∑
u∈UX

u.

3.1.4 Continuous Decision Variables

The marginalization of X ∈ ΓD from a poten-
tial π = (∅, ∅,U) s.t. dom(U) ⊆ ∆ ∪ Γ produces
a new potential π∗

dom(π)−{X}
= (∅, ∅,U∗). U∗ is

computed as:

U∗ = U \ UX ∪ {(
∑

u∈UX

u)↓{Z1 ,...,Zn}},

where (
∑

u∈UX
u)↓{Z1 ,...,Zn} = [(q∗

ij), (r
∗
i), S

∗],

q∗
ij = qij−

qikqkj

qkk

, r∗i = ri−
rkqki

qkk

, S∗ = S−
r2
k

4qkk

.

An optimal policy δX(z) for X is

δX(z1, . . . , zn) = −
rk + 2

∑n
i=1 qkizi

2qkk

.

A sufficient condition for the marginalization to
be well-defined is qkk < 0 (for all discrete con-
figurations with non-zero probability) as this
implies that the second order polynomial has
a unique maximum with respect to X (Madsen
and Jensen, 2005).

4 STRONG JUNCTION TREE

A SJT T with cliques C and separators S is used
to solve N. Basically, T is used as a computa-
tional caching structure to guide the solution
process, i.e., the order in which variables are
eliminated, as T induce a partial order on the
elimination order. T is constructed by moral-
ization and strong triangulation of G.

4.1 INITIALIZATION

The initialization of T consists of the following
steps: (1) associate π∅ with each clique C ∈ C,
(2) for each X ∈ ∆, Y ∈ Γ , assign P(X| pa(X)) ∈
P, f(Y | pa(Y)) ∈ F to the clique C closest to
strong root R s.t. fa(X), fa(Y) ⊆ C where fa(X) =

pa(X)∪ {X}, fa(Y) = pa(Y)∪ {Y} and (3) for each
UF u ∈ U, assign u to the clique C closest
to R s.t. dom(u) ⊆ C. After initialization each



clique C holds a potential πC = (P,F,U). The
potential πX =

⊗

C∈C πC on T is a decomposi-
tion of the expected UF over X:

(

⋃

X∈∆C

{P(X| pa(X))},
⋃

Y∈ΓC

{f(Y | pa(Y))},
⋃

u∈U

{u}

)

.

4.2 MESSAGE PASSING

The solution process in T proceeds by mes-
sage passing via the separators S. The sepa-
rator S = A∩B between two adjacent cliques A

and B stores the message passed between A

and B. Messages are passed from leaf cliques
toward R by recursively letting each clique A

pass a message to its parent B whenever A has
received a message from each C ∈ adj(A) \ {B}

where adj(C) is the set of cliques adjacent to C.

Hence, a clique A sends a message πA→B

to its parent B when it has received mes-
sages from all its children s.t. πA→B =
(

πA ⊗
(

⊗C∈adj(A)\{B}πC→A

))↓B
where πC→A is

the message passed from C to A.

5 SOLVING A CLQG ID

The solution of a CLQG ID N using LARP pro-
ceeds in two steps: 1) construction and initial-
ization of a SJT representation T of N and 2) a
round of message passing from the leaves of T

to its root R. In the process of eliminating a
DV X from a UF u, an optimal policy δX for X

is recorded as the maximizing arguments of u

as described in Sections 3.1.3 and 3.1.4.

Once the variables of X have been eliminated,
an optimal strategy ∆̂ = {δX : X ∈ XD} has been
identified and EU(∆̂) computed.

Since an ID over discrete variables only is a
special case of a CLQG ID, LARP can also be
used to solve discrete IDs.

5.1 DISTRIBUTIVE LAW

The distributive law of algebra (DL) may be ex-
ploited in the solution process, see e.g., (Madsen
and Jensen, 1999; Dechter, 2000; Pralet et al.,
2006). Consider the example where X ∈ ∆C is
to be eliminated from a sum of UFs:

U(Y, T, Z) =
∑

X

P(X) (U(X, Y, Z) + U(X, T)) .

Using DL the expression is rewritten:

U(Y, Z)+U(T) =
∑

X

P(X)U(X, Y, Z) +
∑

X

P(X)U(X, T).

This use of DL reduces the number of arith-
metic operations in the marginalization of X

and supports the decompositions of a UF into a
set of UFs. This may reduce the total num-
ber of arithmetic operations. In (4) and (5)
U−X is specified as a set of UFs to indicate a
possible use of DL. Figure 1 shows an example
where the application of DL reduces the com-
putational cost significantly.

X1 X2 X3 X4 X5 X6

U1 U2 U3 U4 U5 U6D

Y

Figure 1: Example of DL utilization.

If we assume ‖Y‖ = 100, ‖Xi‖ = 5 and
‖D‖ = 10, then the advantage of applying DL
becomes apparent. The optimal SJT for N con-
sists of a single clique including all variables.
Hence, there is no structure to exploit in the
graph G. The state space size of the largest fac-
tor when DL is not used is 15, 626, 000 whereas
it is 156, 250 when DL is used. In the former
case U−X = {U(X1, . . . , X6,D)} and in the latter
case U−X = {U(X1,D), . . . , U(X6,D)}.

The SPI principle (Shachter et al., 1990) may
be applied to combine UFs pairwise. The vari-
able X may be eliminated at any step of the
process, i.e., X may be eliminated from each
UF separately, from the sum of a subset of UFs
or from the sum of all UFs. The latter is the
traditional approach. Notice that the result of
eliminating X is a set of UFs with zero to n UFs
where n = |UX| (zero only when n = 0).

5.2 DECOMPOSITION

Decomposition of clique and separator poten-
tials facilitates, for instance, the exploitation of
irrelevant variables in the solution process. Fig-
ure 2 shows the jjd network (Jensen et al., 1994)



U1

A

B

D1

C

D

E

F

D2

G

D4

I

H

D3

L

J

K

U3

U4

U2

Figure 2: The jjd network with mixed variables.

and Figure 3 shows a SJT representation (sepa-
rators are not shown while link directions spec-
ify the flow of messages towards the strong root
during the solution process).

BD1EFD

BEDC BCA

FD3H D3HK HKJ

ED2G D2GD4I D4IL

Figure 3: A SJT for jjd.

From Figure 2 and the definition of relevance,
it is clear that RV D is irrelevant for deci-
sions D2, D3 and D4. In the root clique the
elimination process may proceed as:

EU(∆̂) =
∑

B

P(B)max
D1

(

U1(D1)

+
∑

D

P(D|B,D1)(
∑

E

P(E|D)U(E)

+
∑

F

P(F|D)U(F))
)

.

This more efficient calculation violates the
strong elimination order, but it is facilitated
by the decomposition which enables the algo-
rithm to exploit the irrelevance of D, Figure 4
shows G(πBD1EFD).

U1

B

D1

D

E

F

UE

UF

Figure 4: Domain graph for πBD1EFD.

6 COMPARISON

Due to space constraints comparisons are brief.

6.1 JENSEN ET AL

The HUGIN architecture solves an ID by mes-
sage passing in a SJT representation. The ab-
sorption algorithm is derived based on a variable
elimination approach. The initialization process
combines all probability distributions assigned
to a clique to form the initial clique probabil-
ity potential. Similarly, for the initial utility
potential. Messages are passed from the leaf
cliques towards the strong root. Since an ID
is solved by a collect operation from the leaves
to the root, the HUGIN architecture extended
to CLQG IDs reduces to a scheme, which in
principle is equivalent to the Shenoy-Shafer ar-
chitecture (Madsen and Jensen, 2005).

6.2 MADSEN AND JENSEN

Madsen and Jensen (2005) describe Shenoy-
Shafer and LP schemes for solving a CLQG ID
by message passing in a SJT. The two archi-
tectures are based on the [p,A,B,C] CG poten-
tial and the p · [A,B,C] CG potential represen-
tation, respectively. Madsen and Jensen (2005)
assume that appropriate conditioning opera-
tions have been performed as a preprocessing
step before eliminating a continuous RV as CG
potentials, in general, may have multiple head
variables. This may require complex matrix op-
erations. In LARP each regression is uni-variate
due to the use of the AR operation. This elim-
inates the need for complicated combination,
conditioning and matrix operations and it sim-
plifies the implementation of the architecture.

6.3 COBB AND SHENOY

Since the class of CLQG IDs is quite restricted,
MTEs have been considered for solving hybrid
IDs (Cobb and Shenoy, 2004; Cobb and Shenoy,
2007) using approximation. The use of MTEs
implies that there are no constraints on the re-
lation between XΓ and X∆ as long as the distri-
butions of the model can be approximated us-
ing MTEs. The approach requires a multiplica-
tive decomposition of the UF and | pa(X)| ≤ 1



for X ∈ ΓD. These are important limitations.
Also, the numerical stability and the number of
terms in mixtures are major concerns.

7 PERFORMANCE ANALYSIS

7.1 RANDOM NETWORKS

We compare the performance of LARP and
the HUGIN algorithm (Jensen et al., 1994) as
implemented in the HUGIN Decision Engine
(HDE) on a set of randomly generated net-
works. The random networks — generated
using a revised version of the algorithm used
by Vomlelová (2003) — are all discrete as the
HDE does not support CLQG IDs. We include
this performance comparison as LARP can be
used to solve discrete IDs. Table 11 shows the
results of experiments on eight selected net-
works. Networks where both algorithms ran out
of memory and networks that were solved in less
than a few milliseconds were disregarded. In the
table, an N/A specifies that the solution algo-
rithm ran out of memory. The results indicate

Table 1: Statistics on random networks.
Time Space

‖X‖ LARP HDE LARP HDE

20 4.27 N/A 1, 953, 125 N/A
20 0.93 1.25 390, 625 1, 953, 125
20 0.03 0.24 3, 125 390, 625
25 0.13 N/A 15, 625 N/A
25 0.64 1.74 78, 125 1, 953, 125
50 4.67 10.16 1, 048, 576 8, 388, 608
50 24.31 N/A 4, 194, 304 N/A
50 7.22 28.64 1, 048, 576 16, 777, 216

that LARP is most efficient on the networks
solved by both algorithms and that it is able
to solve more complex networks. The HDE per-
forms both a collect and a distribute on the SJT
though, but it has more efficient data structures
and operations. LARP achieves its efficiency by
maintaining decompositions of potentials.

7.2 MIXED NETWORKS

Since the HDE does not support CLQG IDs (in
fact we are not aware of any system implement-
ing CLQG IDs), we assess the performance of

1Networks with |X| ≤ 25 has ||X|| = 5 while networks
with |X| = 50 has ||X|| = 2

LARP by solving a set of CLQG IDs with the
same structure, but different fractions of contin-
uous and discrete variables. For the case of dis-
crete variables only, the network is solved with
both LARP and HDE. This will give a rough
estimate on the performance of LARP.

Table 2 shows statistics on the IDs jjd d,
jjd m and jjd c where s(C) =

∏
X∈∆∩C‖X‖

and s(C) =
∑

C∈C s(C). The structure of the
network is shown in Figure 2 where ‖X‖ = 25

for X ∈ ∆. jjd d has discrete variables only,
jjd m has mixed variables as indicated in Fig-
ure 2 and jjd c has continuous variables only.
In Table 3 the average time cost of the solu-

Table 2: Statistics on jjd d, jjd m and jjd c.
jjd |C| maxC∈C s(C) s(C)

d 9 9, 765, 625 10, 640, 625
m 9 9, 765, 625 10, 188, 826
c 9 1 1

tion process is shown for each network. Only
for jjd d a value is specified for HDE. The per-

Table 3: Average time costs in seconds.
Time Space

jjd HDE LARP HDE LARP

d 3.87 0.53 9, 765, 625 390, 625
m - 0.35 - 390, 625
c - 0.03 - 1

formance of the LARP on the jjd d network is
a factor of seven better than the performance
of HDE. The performance of LARP improves
as the fraction of continuous variables increases.
Each network is solved 25 times and the average
time cost is computed.

7.3 DISTRIBUTE LAW

To illustrate the potential impact of DL during
the solution process we solved the ID of Figure 1
using HDE, LARP and LARP with DL. The
average time costs in seconds (over ten runs) are
2.91, 16.73, and 0.49, respectively. Exploiting
DL produced an improvement of a factor of 34

in the time cost when ‖Y‖ = 100, ‖Xi‖ = 5 and
‖D‖ = 10. This (näıve) example was designed
to illustrate the potential improvement offered
by exploiting DL in the solution process.



A simple heuristic is used to guide the ap-
plication of DL on UFs. The rule is based
on the score sDL(pY,U) =

∑
u∈UY

‖ dom(pY) ∪
dom(u)‖. If the sum of the state spaces is less
than the total state space, i.e., sDL(pY,U) <

‖ dom(pY) ∪ dom(U)‖, then DL is applied.

8 DISCUSSION

The two main reasons for considering AR oper-
ations in a SJT are: 1) the structure of the SJT
serves as an efficient caching structure where
elimination orders are reconsidered dynamically
and 2) the SJT offers an opportunity to dis-
tribute information. The first point is relevant
if the decision problem is solved on-line (for in-
stance, if unexpected observations have become
available or the model is too large to be solved
off-line) while the second point is relevant for
computing probabilities of future decisions, i.e.,
the decision policies are encoded as conditional
probability distributions, which makes it possi-
ble to compute probabilities of future decisions
and events under the encoded strategy (Nilsson
and Jensen, 1998).

If the UFs of the model meet the requirements
of CLQG IDs, then expectation and maximiza-
tion calculations have closed form solutions.
This implies that the ID can be solved. In gen-
eral, a CLQG IDs can be solved in closed form
when all continuous variables can be eliminated
before discrete variables using closed form oper-
ations. Shenoy (2006) describes an approach to
modeling hybrid Bayesian networks using mix-
tures of Gaussian distributions. This approach
can also be applied to approximate continuous
distributions in mixed IDs. The resulting mixed
ID should meet the requirements of a CLQG ID
in order to be solvable with LARP.

Despite a significant difference in the effi-
ciency of table operations LARP is as efficient as
the HDE. The results of the performance eval-
uation indicate a large potential of LARP.

References
B. R. Cobb and P. P. Shenoy. 2004. Decision Making with Hy-

brid Influence Diagrams Using Mixtures of Truncated Expo-
nentials. In Proc. of UAI, pages 85–93.

B. R. Cobb and P. P. Shenoy. 2007. Influence Diagrams with

Continuous Decisions Variables and Non-Gaussian Uncertain-
ties. Decision Analysis, pages 136–155.

R. G.. Cowell. 2005. Local Propagation In Conditional Gaussian
Bayesian Networks. Journal of Machine Learning Research,
6:1517–1550.

R. Dechter. 2000. A New Perspective on Algorithms for Opti-
mizing Policies under Uncertainty. In Artificial Intelligence
Planning Systems, pages 72–81.

R. A. Howard and J. E. Matheson. 1984. Influence Diagrams. In
Readings in Decision Analysis, chapter 38, pages 763–771.

F. Jensen, F. V. Jensen, and S. L. Dittmer. 1994. From Influence
Diagrams to Junction Trees. In Proc. of UAI, pages 367–373.

C. R. Kenley. 1986. Influence Diagram Models with Continuous
Variables. Ph.D. thesis, EES Department, Stanford Univer-
sity.

S. L. Lauritzen and F. Jensen. 2001. Stable Local Computation
with Mixed Gaussian Distributions. Statistics and Comput-
ing, 11(2):191–203.

A. L. Madsen and F. V. Jensen. 1999. Lazy Evaluation of Sym-
metric Bayesian Decision Problems. In Proc. of UAI, pages
382–390.

A.L. Madsen and F. Jensen. 2005. Solving linear-quadratic con-
ditional Gaussian influence diagrams. International Journal
of Approximate Reasoning, 38(3):263–282.

A. L. Madsen. 2006. Variatoins Over the Message Computa-
tion Algorithm of Lazy Propagation. IEEE Transactions on
Systems, Man. and Cybernetics Part B, 36(3):636–648.

T. D. Nielsen. 2001. Decomposition of Influence Diagrams. In
Proc. of ECSQARU, pages 144–155.

D. Nilsson and F. V. Jensen. 1998. Probabilities of future deci-
sions. In Proceedings from the International Conference on
Informational Processing and Management of Uncertainty
in knowledge-based Systems (IPMU), pages 144–1462.

S.M. Olmsted. 1983. On representing and solving decision prob-
lems. Phd thesis, Department of Engineering-Economic Sys-
tems, Stanford University, Stanford, CA.

W. B. Poland. 1994. Decision Analysis with Continuous and
Discrete Variables: A Mixture Distribution Approach. Ph.D.
thesis, Engineering-Economic Systems, Stanford University,
Stanford, CA.

C. Pralet, T. Schiex, and G. Verfaillie. 2006. From Influence
Diagrams to Multioperator Cluster DAGs. In Proc. of UAI,
pages –.

R. D. Shachter and C. R. Kenley. 1989. Gaussian influence dia-
grams. Management Science, 35(5):527–549.

R. D. Shachter and M. A. Peot. 1992. Decision making using
probabilistic inference methods. In Proc. of UAI, pages 276–
283.

R. D. Shachter, B. D’Ambrosio, and B. Del Favero. 1990. Sym-
bolic probabilistic inference in belief networks. In Proc. of 8th
National Conference on AI, pages 126–131.

R. D. Shachter. 1986. Evaluating influence diagrams. Operations
Research, 34(6):871–882.

P. P. Shenoy. 1992. Valuation-Based Systems for Bayesian Deci-
sion Analysis. Operations Research, 40(3):463–484.

P. P. Shenoy. 2006. Inference in Hybrid Bayesian Networks Using
Mixtures of Gaussians. In Proc. of UAI, pages 428–436.

M. Vomlelová. 2003. Unconstrained Influence Diagrams - Exper-
iments and Heuristics. T. R, Faculty of Mathematics, Charles
University.



Computing the Multinomial Stochastic Complexity in Sub-Linear Time

Tommi Mononen and Petri Myllymäki

Helsinki Institute for Information Technology (HIIT), Finland

{firstname}.{lastname}@hiit.fi

Abstract

Stochastic complexity is an objective, information-theoretic criterion for model selection. In this

paper we study the stochastic complexity of multinomial variables, which forms an important

building block for learning probabilistic graphical models in the discrete data setting. The fastest

existing algorithms for computing the multinomial stochastic complexity have the time complex-

ity of O(n), where n is the number of data points, but in this paper we derive sub-linear time

algorithms for this task using a finite precision approach. The main idea here is that in practice

we do not need exact numbers, but finite floating-point precision is sufficient for typical statistical

applications of stochastic complexity. We prove that if we use only finite precision (e.g. double

precision) and precomputed sufficient statistics, we can in fact do the computations in sub-linear

time with respect to data size and have the overall time complexity of O(
√

dn + L), where d is

precision in digits and L is the number of values of the multinomial variable. We present two

fast algorithms based on our results and discuss how these results can be exploited in the task of

learning the structure of a probabilistic graphical model.

1 Introduction

Stochastic complexity (SC) is an information-

theoretic model selection criterion, which can be

seen as a theoretical instantiation of the mini-

mum description length (MDL) principle (Rissa-

nen, 2007; Grünwald, 2007). Intuitively speaking,

the basic idea is that the best model for the data

is the one which results in the shortest description

for the data together with the model. This princi-

ple gives us a non-informative, objective criterion

for model selection, but there are many ways to de-

fine the stochastic complexity formally; one theoret-

ically solid way is to use the normalized maximum

likelihood (NML) distribution. Recent results sug-

gest that this criterion performs very well in the task

of learning Bayesian network structures (Roos et al.,

2008).

In the following, letM denote a parametric prob-

abilistic model, and θ̂(xn) the maximum likelihood
parameters of the model given a matrix of observa-

tions xn. The NML distribution is defined as

PNML(xn | M) =
P (xn | θ̂(xn),M)

∑

yn P (yn | θ̂(yn),M)
, (1)

where in the numerator we have the maximum like-

lihood of our observed data and in the denominator

we have the sum of maximum likelihoods (denoted

in the sequel by C(M, n)) over all the discrete data
sets of size n (Shtarkov, 1987).

Let us define the stochastic complexity as the

negative logarithm of (1):

SC(xn | M) = − log
P (xn | θ̂(xn),M)

C(M, n)
. (2)

The basic model selection task is to compute the

value of this model selection criterion for paramet-

ric models of different complexity and choose the

one for which this value is minimized, given the ob-

served data.

The single multinomial variable model is an im-

portant building block for building more complex

probabilistic graphical models for discrete data. For

this reason we want to able to compute the NML

for multinomial variables as efficiently as possible.

In the following, we simplify our notation and leave

outM: the model is implicitly defined by the num-
ber of values of the multinomial variable, denoted



by L. The numerator is now

P (xn | θ̂(xn), L) =
L
∏

k=1

(

hk

n

)hk

, (3)

where hk is a number of data points assigned to the

kth value. We expect in this paper that sufficient

statistics is known and computing (3) takes there-

fore only time O(L). The denominator is

C(L, n) =
∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hk

n

)hk

,

which is a sum of maximum likelihoods so that the

summation goes over every possible data of length

n.

Although using the definition directly for com-

puting the multinomial normalizing sum in the de-

nominator is not computationally feasible, several

algorithms for doing this inO(n) time have been re-
cently developed (Kontkanen and Myllymäki, 2007;

Mononen and Myllymäki, 2008b). In this paper we

show that our earlier theoretical results presented

in (Mononen and Myllymäki, 2008b) can be used

for constructing algorithms that compute C(L, n) in
sub-linear time with any desired (finite) precision.

We start by briefly reviewing the relevant earlier re-

sults and then show how they can be exploited in

deriving new ultra-fast algorithms.

2 Known Properties of the Normalizing

Sums

In Mononen and Myllymäki (2008b) we proved that

the multinomial normalizing sum can be described

as a confluent hypergeometric function evaluated at

a certain point. We showed that we can write the

hypergeometric presentation also in another simple

form using falling and rising factorial polynomials.

The falling factorial polynomials are of the form

xk = x(x − 1) · · · (x − k + 1), (4)

and the rising factorial polynomials are

xk = x(x + 1) · · · (x + k − 1). (5)

The binomial normalizing sum is then

C(2, n) =

n
∑

k=0

bk =

n
∑

k=0

nk

nk
, (6)

and the general multinomial normalizing sum can

be written as

C(L, n) =

n
∑

k=0

mk =

n
∑

k=0

nk (L − 1)k

nkk!
. (7)

As these forms spin off from hypergeometric forms,

and a hypergeometric series has the property that

there exist a simple ratio of consecutive terms, we

know that also (6) and (7) have this property. We

will introduce these ratios later in sections 3.1 and

4.1 and use them in the computations.

It is known that the binomial normalizing sum

equals to the expectation of the birthday problem

with the mapping: data size is equal to the number

of days (Mononen and Myllymäki, 2008b). We will

use an approximation derived for this expectation

later in our proof.

There is a recurrence formula for computing the

multinomial normalizing sum as the value of the

corresponding binomial normalizing sum is known

(Kontkanen and Myllymäki, 2007):

C(L, n) =C(L − 1, n) +
n · C(L − 2, n)

L − 2
, (8)

and C(1, n) is defined to be 1 for every n. This for-

mula can be effectively used for linear time compu-

tation of multinomial normalizing sums.

3 The Binomial Normalizing Sum

3.1 Properties of the Sum Terms

Let us start by plotting the terms of (6). We can

immediately observe that the first terms of the sum

give the greatest impact and most of the terms are

very small (see Figure 1). All the terms are positive

and getting closer to the zero, because the ratio of

successive terms of (6) is

bk

bk−1
=

n − k + 1

n
. (9)

Now the natural question is, how many terms do we

need, if we want to compute the normalizing sum

and use for example double precision. We study this

question more closely in section 3.2, but in loose

terms the number of needed terms is proportional

to the square root on n, which promises sub-linear

time performance.



k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

0,2

0,4

0,6

0,8

1,0

Figure 1: Magnitude of the first 8000 terms of the
binomial normalizing sum when the data size (n) is

one million.

However, first we have to quantify how to mea-

sure the precision. We measure in the standard way

the error we make when pruning the sum: we com-

pute the tail sum and compare it to the whole sum.

Thus we compute a relative error. However, be-

cause setting the desired relative error directly is

quite cumbersome, we rather compute it in digits:

it much easier just to say that we need e.g. 7 digit

precision. More precisely, we define that for posi-

tive real numbers p and q, where p ≤ q and p, q ≥ 1,
the precision in digits is

⌊

− log10

(

q − p

q

)⌋

. (10)

So if the target q is for example 1.100000 and
the approximation p is 1.099999, the precision is
⌊6.04139⌋. So although only the first digit is the
same, the precision in digits according to the defini-

tion above is 6. But if we round p after the sixth

digit, we get 1.10000. This means that although
the precision in digits does not tell all the time how

many correct digits we have, it is still very close to

what we want. Next we do an upper bound approxi-

mation of the last required term of the binomial nor-

malizing sum for achieving some fixed precision.

3.2 Proof of the Right Bound

There is no known closed form solution for (6). To

compute the precision, we have to compute the sum

starting from some br to all the way to the the term

bn. As said before, we are interested in this tail sum,

because it tells us how big an error we make, if we

stop computing the sum after the term br−1. Al-

though the terms of the sum look simple, they are a

bit tricky to handle, and therefore we perform sev-

eral upper bound approximations for the terms. Up-

per bound approximations are of course required,

because we want to be sure that whatever bound we

get, it must give the promised result. We also move

from the discrete sum to an integral presentation,

because it makes things simpler in this case.

Next we give in a row four propositions needed

for proving the index bound of the binomial sum.

After the propositions we prove the mentioned

bound, which we call the right index bound (in the

multinomial case also the left bound exists).

Proposition 1. We have the following upper bound

approximation for the term bk:

nk

nk
≤
(

1 − k − 1

2n

)k−1

,where 1 ≤ k ≤ n.

Proof. We prove that the ratio of both sides is bigger

than one. Let us look at the ratio:

(

1 − k−1
2n

)k−1

nk

nk

=
n · nk−1

(

n− 1
2
(k−1)

n

)k−1

nk
(11)

=
(n − 1

2 (k − 1))k−1

(n − 1) · · · (n − k + 1)
(12)

=
k
∏

r=2

n − 1
2(k − 1)

n − r + 1
=

k
∏

r=2

ar. (13)

Now we just look at the product of pairwise terms

defined by

arak−r+2 =
(n − 1

2(k − 1))2

(n − r + 1)(n − k + r − 1)
=

Nr

Dr

.

We want to prove that each of these pairwise terms

is bigger than 1. However, we can equivalently sub-
tract the denominator from the numerator and re-

quire the result to be bigger than 0, because both are
always positive in our range. The result is

Nr − Dr =n +
1

4
k2 − rk +

1

2
k + r2

− 2r +
5

4
. (14)

We take the derivate of this difference with respect

to k and get the minimum point k = 2r − 1. Sub-
stituting this in (14), we notice that the result is



n−r+1, which is always bigger than 0 in our range.
This means that also the pairwise terms must be al-

ways bigger than 1, which implies that the proposi-
tion must be true for even number of terms ar.

If we have an odd number of terms ar, then we

have to still prove that the median term is also bigger

than 1. The median term is

a k

2
+1 =

2n − k + 1

2n − k
. (15)

This cannot be smaller than 1, because n≥k≥0.

Proposition 2. The following inequality is true for
k
2n

< 1:

(

1 − k

2n

)k

≤ e−
k
2

2n .

Proof. Take the natural logarithm of both sides of

the inequality and use the known logarithm inequal-

ity ln(1+x) ≤ x, which is valid for all x > −1.

Proposition 3. Because bk is a continuous mono-

tonically decreasing function inside the interval

[0, n], the discrete volume (the sum) corresponds to
the upper Riemann sum with intervals of length one.

Hence we can give the following inequality:

n
∑

k=0

bk ≤ 1 +

∫ n

k=1
bk−1dk.

Proof. Our integral is always bigger than the given

upper sum, because on the right hand side we

shifted our function in such way that every discrete

column is always entirely below the curve. The size

of the first column is 1, which is the first term on the
right hand side.

Proposition 4. The following inequality holds:

erf (x) ≥
√

1 − e−x2
,

when x ≥ 0 and

erf (x) =
2√
π

∫ x

t=0
e−t2dt.

Proof. First suppose x ≥ 0. Let us now modify the
inequality:

erf (x) ≥
√

1 − e−x2
(16)

(erf (x))2 + e−x2 − 1 ≥ 0 (17)

Denote the left hand side by h(x) and take the
derivative of it:

h′(x) =
2e−x2

(2erf (x) − x
√

π)√
π

. (18)

We can see that all the roots in our range are solu-

tions for the equation

2erf (x) − x
√

π = 0, (19)

erf (x) =

√
π

2
x. (20)

As the error function is a convex function between 0
and infinity and the right hand side of (20) is a linear

function, there can be only two solutions. The first

one is x = 0, where h(0) = 0, and the other one
is x ≈ 0.8982. The second solution is a positive
maximum point. As we have

lim
x→∞

h(x) = (1)2 + 0 − 1 = 0, (21)

this means that h(x) must be always positive in the
range, which completes our proof.

Finally we are now ready to introduce our main

theorem giving the right bound approximation:

Theorem 1. Given precision in digits (d)

and data size n, the right index bound

t for the binomial normalizing sums is
⌈

2 +
√

−2n ln(2 · 10−d − 100−d)
⌉

.

Proof. First we approximate the upper bound of the

partial binomial normalizing sum from 0 to r:

r
∑

k=0

nk

nk
≤ 1 +

r
∑

k=1

(

1 − k − 1

2n

)k−1

(22)

≤ 1 +
r
∑

k=1

e−
(k−1)2

2n (23)

≤ 2 +

∫ r

k=2
e−

(k−2)2

2n (24)

= 2 +

√

nπ

2
erf

(

r − 2√
2n

)

= F (r) (25)

Previous inequality steps follow easily from propo-

sitions 1, 2 and 3. Now we can express the precision

in digits (d) with the equation

− log10

(

F (n) − F (r)
√

nπ
2

)

= d, (26)



where the denominator inside the logarithm is a

lower bound approximation for the binomial nor-

malizing sum. For example Laplace’s method gives

for (6) the approximation (Flajolet and Sedgewick,

2005):

C(2, n) =

√

nπ

2
+

2

3
+ O

(

1√
n

)

. (27)

By omitting the constant term, we get our lower

bound approximation for the denominator, which is

valid for all data sizes (exact proof omitted). Thus

we have

− log10





√

nπ
2 −

√

nπ
2 erf

(

r−2√
2n

)

√

nπ
2



 = d (28)

− log10

(

1 − erf
(

r − 2√
2n

))

= d. (29)

We replaced the first error function in (26) with its

supremum value 1 and got (28). If we solve r, we

have

r = 2 +
√

2n · R, (30)

where

R = erf−1(1 − 10−d). (31)

The final task is now to approximate the inverse of

the error function (Winitzky, 2008). We need this

for approximating R to get a nice, clean and com-

putable bound. First we compute the Taylor approx-

imation:

g(x) = ln(1 − erf(x)2) ≈ − 4

π
x2 + O(x4). (32)

We need only the first non-zero term for our pur-

pose. The approximation is then

erf(x) =
√

1 − eg(x) ≈
√

1 − e−
4x2

π , (33)

and it is good enough as our tests later show. This is

not a lower bound approximation, but we need one,

because we invert the approximating function. A

little dirty trick solves our problem. We just change

the multiplier 4 to π (Proposition 4). This new func-

tion can be easily inverted and the result therefore is

erf−1(u) =
√

− ln(1 − u2). (34)

The final step is to set u = 1 − 10−d and we have

the result

R ≈
√

− ln(1 − (1 − 10−d)2) (35)

=
√

− ln(2 · 10−d − 100−d). (36)

We continue approximating R, because for the

time complexity reasons, we need a simplified form

to see the magnitude of this term. We easily see that

√

− ln(2 · 10−d − 100−d) ≤
√

− ln(10−d) (37)

=
√

d ln(10), (38)

and therefore the required number of terms is

O(
√

dn).

The index bound seems to be quite good. In Fig-

ure 2 we have plotted optimal indexes and indexes

given our bound with respect to data size n. We

chose precisions so that they correspond approxi-

mately to single and double precision floating-point

numbers. If n is one million, the index error is about

+250 in both cases. The single precision error is a
bit larger than the double precision error, because

the index bound is getting tighter as precision in-

creases.

4 The Multinomial Normalizing Sum

4.1 Properties of the Sum Terms

As we already saw, the ratio of the terms of the bino-

mial normalizing sum is a simple rational function.

In the multinomial case the ratio is the function

mk

mk−1
=

(n − k + 1)(k + L − 2)

nk
. (39)

Let us look at the terms of the multinomial normal-

izing sum. Figure 3 suggest that there is the biggest

term and if we look at the term function, we see that

it is unimodal. The next theorem and its proof give

formal justifications for these claims.

Theorem 2. The index of the biggest term

of the multinomial normalizing sum is
⌊

1
2

(

3 − L +
√

L2 + (4n − 2)L − 8n + 1
)⌋

.



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  200000  400000  600000  800000  1e+06

ri
g

h
t 

b
o

u
n

d

data size

Figure 2: Terms needed for 16 (above) and 7 digit

precisions with given data size. Actual approxima-

tions are shown as thick solid line. Thin dotted lines

represent optimal index values.

Proof. We have to solve the equation

mk

mk−1
= 1 (40)

with respect to k. In other words, we are interested

in values of real-valued k, where two consecutive

sum terms have the same value. This requires solv-

ing roots of second order polynomial with respect to

k. The other root is always negative and therefore

is not in our range; let us denote the positive root

by r. We are allowed to take the floor, because we

know that the peak is between continuous index val-

ues r − 1 and r. Outside this range all the sum term

values are smaller than inside the range. Inside this

range there are one or two integer points. If only

one, then it is ⌊r⌋. If there are two integer indexes,
then r−1 and r must be these and they both give the

same maximum value and thus ⌊r⌋ gives the other
of the two maximum values.

This proved at the same time that the sum terms

are getting bigger until they reach the peak, after

which they start getting smaller. This unimodality

gives us a great opportunity to construct simple and

efficient algorithms.

4.2 About the Index Bounds

We can guess from the 15-nomial in Figure 3 that

if we want to compute the sum in a fixed precision,

we actually have to compute the sum terms from

some s ≥ 0 to some t ≤ n. This means that the

index of the first required term can be bigger than 0.

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

100

200

300

400

500

600

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

1#1033

2#1033

3#1033

4#1033

Figure 3: Magnitude of the first 8000 terms of the
trinomial (left) and the 15-nomial (right) normaliz-

ing sums when data size (n) is one million.

However, we have to compute the factorials start-

ing from 0 (to avoid any approximation), so we still
have to start from index 0. Our empirical tests also
show that we have to compute a lot more terms than

in the binomial case. The effect is visible also by

comparing figures 1 and 3. However, we can use

(8) for computing the multinomial normalizing sum

when the value of the binomial normalizing sum is

known. This recurrence formula method seems to

be much more efficient and therefore it is unneces-

sary to prove bounds in the multinomial case.

5 Sub-Linear Algorithms

First we present a simple algorithm (Algorithm 1),

which is validated directly by unimodality. The ba-

sic idea is that the algorithm can sum the terms of

a multinomial sum until the sum does not change

anymore. Terms of the left slope always change the

sum because each term is bigger than the previous

one. After the peak, terms are monotonically getting

smaller, and we know that the terms are never get-

ting bigger anymore. Therefore the algorithm can

stop after the sum has converged. All terms in the

tail are so small and decaying so rapidly, that they

cannot have a significant effect on the finite sum

(we will return to this subject after the second al-

gorithm). A precision of the result is determined by

the precision of the used floating-point numbers.

Notice that the algorithm is using the recurrence

mk =
(n − k + 1)(k + L − 2)

nk
· mk−1 (41)

while computing the sum terms. This way we can

avoid huge factorial values and also floating-point



Compute_Multinomial(L,n){

double sum = 1, previous_sum = -1, m = 1;

int k = 1;

for k from 1 to n by 1{

m = (k+L-2) * (n-k+1) / (n*k) * m;

sum = sum + m;

if(sum is same as previous_sum){

return sum;

}

previous_sum = sum;

}

return sum;

}

Algorithm 1: A simple algorithm for computing

the multinomial normalizing sum.

errors seem to be much lower. However the time

complexity is not proved for this algorithm, as we

did not compute the index bounds in the multino-

mial case. In addition, we cannot set the digit pre-

cision freely. For these reasons we present a second

algorithm, which also seems to be twice as fast as

the first one.

The intuitive idea of Algorithm 2 is to first com-

pute the index bound, and then compute the bi-

nomial normalizing sum using the ratio of succes-

sive terms. After this, the algorithm uses the recur-

rence formula to compute the wanted multinomial

normalizing sum. Variable bound is not directly

computable as presented in the pseudocode, but we

can use some standard logarithmic manipulation to

avoid underflow. The time complexity of this sec-

ond algorithm is O(
√

dn + L).

Now we can revise the question about the tail

sum. Terms below the index bound do not affect

the sum, but the first algorithm actually stops in the

binomial case before the right bound is reached, be-

cause single terms do not change the sum. But if we

take a sum starting from the stopping point all the

way to the index bound, we can notice that this tail

sum can affect the original sum. In our empirical

tests we found out that the effect seems to be only

on the few last digits, which is of the same magni-

tude as the floating point errors of our algorithms.

In Figure 4 we can see the average decay of the

last digits with respect to data size. The variance

is small between different numbers of same magni-

tude, so the figure gives a realistic impression. In the

end we decided to keep the algorithms simple, be-

Compute_Multinomial_With_Recurrence(L,n){

double sum = 1, b = 1, old_sum, new_sum;

int k,j;

int bound = ceil( 2 + sqrt( -2*n*ln( 2*10ˆ(-d)

-100ˆ(-d) ) ) );

for k from 1 to bound by 1{

b = (n-k+1) / n * b;

sum = sum + b;

}

old_sum = 1;

for j from 3 to L by 1{

new_sum = sum + (n * old_sum) / (j-2);

old_sum = sum;

sum = new_sum;

}

return sum;

}

Algorithm 2: A faster algorithm for computing the

multinomial normalizing sum.

cause such small errors in the criterion hardly have

any effect on the actual model selection task.

There are two operations that in fact increase pre-

cision. First we found out that the recurrence for-

mula in Algorithm 2 tends to increase precision of

those terms with an odd number of outcomes. Sec-

ond we still have to take a logarithm of the normal-

izing sum, when computing actual stochastic com-

plexity. The effect of the latter operation seem to be

about one digit.

Precise values can be achieved using a simple

trick: use a floating-point precision that is higher

than the precision d, and crop the tail digits (e.g.

quad precision for triple precision).

6 Conclusions

Stochastic complexity is an elegant, information-

theoretic criterion for learning probabilistic graph-

ical model structures. Although probabilistic in na-

ture, it is fully objective and does not involve any

hyperparameters which may be introduce problems

in learning (Silander et al., 2007).

The fastest previously known algorithms for

computing the multinomial stochastic complexity

are O(n)-algorithms. In this paper we showed
that our previous hypergeometric representation of

multinomial normalizing sums can be used for de-

riving sub-linear algorithms.

As the multinomial variable is an important build-

ing block in many more complex model classes,

the results are directly applicable to model selec-



 16

 15

 14

 13

 12

 11

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 12 11 10 9 8 7 6 5 4 3 2 1

A
v
e
ra

g
e
 p

re
c
is

io
n
 i
n
 d

ig
it
s

10-logarithm of data size

Figure 4: Average precision in the binomial normal-

izing sum with respect to data size using double pre-

cision floating-point numbers and Algorithm 2.

tion tasks in these cases as well. However, it should

be noted that if the learning criterion is defined

via the standard normalized maximum likelihood,

the savings in the overall computational complex-

ity are not necessarily very significant: for exam-

ple, in the Naive Bayes case (classification or clus-

tering tasks if the root node is hidden), the learn-

ing criterion involves a product of multinomial nor-

malizing sums corresponding to the predictor vari-

ables, and these can be now computed in sub-linear

time using the results above. Nevertheless, the real

bottleneck of the computation process is a convolu-

tion operation, which still takes at leastO(n2 log L)
floating-point operations to compute (Mononen and

Myllymäki, 2007). Similarly, when learning tree-

structured Bayesian networks (Mononen and Myl-

lymäki, 2008a), we can speed-up some parts of the

computation, but not all.

On the other hand, there now exists a slightly

different way to define the stochastic complex-

ity, based on the factorized NML (fNML) crite-

rion (Roos et al., 2008). The fNML criterion can be

used in the Naive Bayes or in the Bayesian tree case,

or even for learning Bayesian networks (DAGs) in

general. In this case, the learning criterion factor-

izes into a product of multinomials, which means

that the speed-up offered by our sub-linear algo-

rithm is more apparent.

Acknowledgments

This work was supported in part by the Academy

of Finland under the project Civi and by the Finnish

Funding Agency for Technology and Innovation un-

der the projects Kukot and PMMA. In addition, this

work was supported in part by the IST Programme

of the European Community, under the PASCAL

Network of Excellence.

References

P. Flajolet and R. Sedgewick. 2005. Analytic Combina-
torics. Unpublished.

P. Grünwald. 2007. The Minimum Description Length
Principle. MIT Press.

P. Kontkanen and P. Myllymäki. 2007. A linear-time
algorithm for computing the multinomial stochas-
tic complexity. Information Processing Letters,
103(6):227–233.

T. Mononen and P. Myllymäki. 2007. Fast NML com-
putation for Naive Bayes models. In V. Corruble,
M. Takeda, and E. Suzuki, editors, Proceedings of the
10th International Conference on Discovery Science,
October.

T. Mononen and P. Myllymäki. 2008a. Computing the
NML for Bayesian forests via matrices and generating
polynomials. In Proceedings of the IEEE Information
Theory Workshop, Porto, Portugal, May.

T. Mononen and P. Myllymäki. 2008b. On the multi-
nomial stochastic complexity and its connection to
the birthday problem. In Proceedings of the Interna-
tional Conference on Information Theory and Statisti-
cal Learning, Las Vegas, NV, July.

J. Rissanen. 2007. Information and Complexity in Sta-
tistical Modeling. Springer.

T. Roos, T. Silander, P. Kontkanen, and Myllymäki P.
2008. Bayesian network structure learning using fac-
torized NML universal models. In Proceedings of the
Information Theory and Applications Workshop, San
Diego, CA, January.

Yu.M. Shtarkov. 1987. Universal sequential coding of
single messages. Problems of Information Transmis-
sion, 23:3–17.

T. Silander, P. Kontkanen, and P. Myllymäki. 2007. On
sensitivity of the MAP Bayesian network structure to
the equivalent sample size parameter. In R. Parr and
L. van der Gaag, editors, Proceedings of the 23rd Con-
ference on Uncertainty in Artificial Intelligence, pages
360–367. AUAI Press.

S. Winitzky. 2008. A handy approximation for the error
function and its inverse. Unpublished.



Structural-EM for Learning PDG Models from Incomplete Data

Jens D. Nielsen
Computer Science Dept.

University of Castilla-La Mancha
Albacete, Spain

dalgaard@dsi.uclm.es

Rafael Ruḿı Antonio Salmerón
Statistic and Applied Mathematics Dept.

University of Almerı́a
Almerı́a, Spain

{rrumi|antonio.salmeron }@ual.es

Abstract

Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode
some context specific independencies that cannot always be efficiently captured by other popular
models, such as Bayesian Networks. Furthermore, inferencecan be carried out efficiently over
a PDG, in time linear in the size of the model. The problem of learning PDGs from data has
been studied in the literature, but only for the case of complete data. In this paper we propose an
algorithm for learning PDGs in the presence of missing data.The proposed method is based on
the EM algorithm for estimating the structure of the model aswell as the parameters. We test our
proposal on artificially generated data with different rates of missing cells, showing a reasonable
performance.

1 Introduction

The Probabilistic Decision Graph (PDG) model was
first introduced by Bozga and Maler (1999), and
was originally proposed as an efficient represen-
tation of probabilistic transition systems. In this
study, we consider the more generalised version of
PDGs proposed by Jaeger (2004).

PDGs constitute a class of probabilistic graphical
models that can represent some context specific in-
dependencies that can not efficiently be captured by
Bayesian network (BN) models. Also, probabilis-
tic inference can be carried out directly in the PDG
structure and has a time complexity linear in the size
of the PDG model. This makes learning of PDGs es-
pecially interesting, as we are learning directly the
inference structure, which is in contrast to the usual
scenario when learning general BN models.

The performance of the PDG model w.r.t. general
probability estimation has previously been studied
and results suggest that the model in general per-
forms competitively when compared to BN or Naı̈ve
BN models (Nielsen and Jaeger, 2006). The PDG
model has also been successfully applied to super-
vised classification problems (Nielsen et al., 2007).

In this paper we are concerned with the estima-
tion of PDGs from data. The problem has been ad-

dressed by Jaeger et al. (2006), where an algorithm
based on the optimisation of a score is proposed for
learning from complete data. However, the task of
learning PDGs in the presence of missing data has
not yet been explored in the literature. The diffi-
culty arises in the computation of the score for a
model given the database with missing values. A
similar problem is found in the case of learning BNs
from incomplete databases. Friedman (1997) ad-
dressed this problem by proposing an algorithm for
estimating the structure of a BN model based on the
Expectation-Maximisation (EM) principle (Demp-
ster et al., 1977; Lauritzen, 1995).

We propose an algorithm for learning PDGs in-
spired by the proposal of Friedman (1997), based
on the EM principle. Both the structure and the pa-
rameters are re-adjusted in each iteration of the al-
gorithm. That is, the adjustments made to the struc-
ture are guided by the expected increase in some
score metric, while the adjustments made to the pa-
rameters are guided by the expected likelihood of a
completed version of the incomplete data.

2 Background and Notation

We will denote random variables by uppercase let-
ters, e.g.X, and sets with boldface uppercase let-

1



ters, e.g.X. WhenXi is a discrete categorical ran-
dom variable, we will by lowercase letterxi,j refer
to thej’th state ofXi under some ordering. We will
by R(Xi) refer to the set of possible states ofXi,
and byR(X) = ×Xi∈XR(Xi) whenX is a set of
variables. We will useri as a shorthand for|R(Xi)|.
By lowercase bold letters we refer to joint states of
sets of variables, e.g.x ∈ R(X). WhenXi ∈ X

andx ∈ R(X) we denotex[Xi] the projection ofx
onto coordinateXi.

Let G = 〈V,E〉 be a directed graph structure
with set of nodesV = {V1, . . . , Vn} and set of
directed edgesE ⊂ V × V. We will then by
chG(Vi) and paG(Vi) refer the set of children of
Vi and parents ofVi respectively in structureG,
hencechG(Vi) = {Vj ∈ V : (Vi, Vj) ∈ E} and
paG(Vi) = {Vj ∈ V : (Vj, Vi) ∈ E}. A tree is a di-
rected acyclic graph where one unique nodeVr ∈ V

is designated root and has no parentspaG(Vr) = ∅
while all other nodes have exactly one parent. A
forest structure is a set of such trees.

2.1 The Probabilistic Decision Graph Model

A PDG encodes a joint probability distribution
over a set of categorical random variablesX =
{X1, . . . ,Xn} by a factorisation defined by a struc-
ture over a set of local distributions.

Definition 2.1 (The PDG Structure). LetF be a for-
est structure overX = {X1, . . . ,Xn}. A PDG-
structureG = 〈V,E〉 for X w.r.t. F is a set of
rootedacyclic directed graphs over nodesV, such
that:

1. Each nodeν ∈ V represents a uniqueXi ∈ X

and allXi ∈ X are represented by at least one
nodeν ∈ V. We will byνi,j refer to thej’th
node representingXi under some ordering of
the set of nodes representingXi.

2. For each nodeνi,j , each possible statexi,h of
Xi and each successorXk ∈ chF (Xi) there
exists exactlyoneedge(νi,j, νk,l) ∈ E with la-
bel xi,h, whereνk,l is some node representing
Xk.

Let Xk ∈ chF (Xi). By succ(νi,j,Xk, xi,h) we
refer to the unique nodeνk,l representingXk that is
reached fromνi,j by following the edge with label
xi,h.

Example 2.1. A forest F over binary variables
X = {X0, . . . ,X7} can be seen in Figure 1(a),
and a PDG structure overX w.r.t. F in Figure
1(b). The labelling of nodes in the PDG-structure
is indicated in subscripts and (redundant) by the
dashed boxes, e.g., the nodes representingX2 are
{ν2,0, ν2,1}. Dashed edges correspond to edges la-
belled 0 and solid edges correspond to edges la-
belled 1, for instancesucc(ν5,0,X6, 0) = ν6,1.

A PDG structure is instantiated by assigning to
every node a local probability distribution over the
variable that it represents. By a PDG model over
discrete random variablesX = {X1, . . . ,Xn} we
refer to a pairG = 〈G,Θ〉 whereG is a PDG struc-
ture overX andΘ is an instantiation ofG. We de-
note bypνi,j the local distribution assigned to node
νi,j, and byp

νi,j
xi,h

the probability for statexi,h in lo-
cal distributionpνi,j . The semantics of the local dis-
tribution pνi,j is defined by the path(s) leading to
the nodeνi,j from the root, that is, howνi,j can be
reached. Let G be a PDG structure over variables
X w.r.t. forestF . A nodeνi,j in G is reachedby
x ∈ R(X) if

• νi,j is a root inG, or

• Xi ∈ chF (Xk), νk,l is reached byx andνi,j =
succ(νk,l,Xi,x[Xk]).

By reachG(i,x) we denote the unique node repre-
sentingXi reached byx in PDG-structureG.

A PDG modelG = 〈G,Θ〉 over variablesX rep-
resents a joint distributionP G by the following fac-
torisation:

P G(x) =
∏

Xi∈X

p
reachG(i,x)
x[Xi]

. (1)

Example 2.2. To instantiate the PDG structure in
Fig. 1(b), we assign a local distribution to each
node in the structure with the probabilistic interpre-
tation given in Fig. 1(c). We can read some context
specific independencies of this table, e.g.X6 is in-
dependent ofX5 only in the contextX4 = 0.

2.2 Selecting PDG models using complete data

For assessing models in the presence of observed
data, we can use a penalised likelihood score func-
tion. Let G be a PDG model over variablesX =

2



X0

X1

X3

X2

X4

X5

X6 X7

(a)

X0 ν0,0

X1 ν1,0 ν1,1 X2 ν2,0 ν2,1

X3 ν3,0 ν3,1 ν3,2

X4 ν4,0

X5 ν5,0 ν5,1

X6 ν6,0 ν6,1 X7 ν7,0 ν7,1

(b)

pν0,0 = P (X0) pν3,0 = P (X3|X0 = 0, X1 = 1) pν5,1 = P (X5|X4 = 0)
pν1,0 = P (X1|X0 = 0) pν3,1 = P (X3|X1 = 0) pν6,0 = P (X6|X4 = 1, X5 = 1)
pν1,1 = P (X1|X0 = 1) pν3,2 = P (X3|X0 = 1, X1 = 1) pν6,1 = P (X6|X4 = 0 ∨ {X4 = 1, X5 = 0})
pν2,0 = P (X2|X0 = 0) pν4,0 = P (X4) pν7,0 = P (X7|X4 = X5)
pν2,1 = P (X2|X0 = 1) pν5,0 = P (X5|X4 = 1) pν7,0 = P (X7|X4 6= X5)

(c)

Figure 1: A forestF over binary variablesX = {X0, . . . ,X7} is shown in (a), and a PDG-structure over
X w.r.t. variable forestF is shown in (b). In the PDG-structure in (b), solid edges are labelled with value 1
and dashed edges are labelled with value 0. In (c), we have indicated the probabilistic interpretation of the
parameters for each node in the PDG structure of (b).

{X1, . . . ,Xn} and letD be a set ofN complete
observations ofX, then we define a general score
function as:

Sλ(D,G) = (1 − λ) · L(D,G) − λ · size(G) , (2)

where0 < λ < 1, size(G) is some measure of com-
plexity of G andL(D,G) is the log-likelihood ofD
givenG. A typical definition ofsize(G) is the num-
ber of free parameters in modelG. Using the follow-
ing notationD = {Xk

i : 1 ≤ i ≤ n, 1 ≤ k ≤ N},
the log-likelihoodL(D,G) is:

L(D,G) = log
N
∏

k=1

P G(Xk
1 , . . . ,Xk

n)

=

N
∑

k=1

log P G(Xk
1 , . . . ,Xk

n)

=

n
∑

i=1

ri
∑

h=1

vi
∑

j=1

#D(xi,h, νi,j) log p
νi,j
xi,h

, (3)

wherevi is the number of nodes representingXi and
#D(E) is the count of instances inD satisfying re-
quirementE. For example, in Eq. (3)#D(xi,h, νi,j)
is the count of data items inD where variableXi is
observed in statexi,h and where theνi,j is reached.

3 Learning from Incomplete Data

Assume incomplete data, that isD = DO ∪ DM ,
whereDO is the elements ofD containing a value

andDM = D \DO. We can compute the expected
log likelihood ofD in modelG (over variablesX),
given some distributionP ∗ overDM as:

E[L(D,G)|DO , P ∗] =
n
∑

i=1

ri
∑

h=1

vi
∑

j=1

E[#D(xi,h, νi,j)] log p
νi,j
xi,h

, (4)

where the second expectation also is with respect to
DO andP ∗. In a structural EM algorithm like the
one proposed by Friedman (1997), we optimise the
expected likelihood instead of directly optimising
the likelihood which in the presence of incomplete
data no longer decomposes. Decomposability of the
likelihood is important for model selection in which
the search procedure in each step evaluates candi-
date models from a neighbourhood that is generated
from a current model by local transformation. We
define the expected score as a functionQ:

Q(G,D|G∗) =

(1 − λ)E[L(D,G)|DO ,G∗] − λsize(G) . (5)

In Eq. (5) we use the current modelG∗ as the refer-
ence distributionP ∗. The structural EM procedure
can now be stated as in Algorithm 1.

First, in line 5 of Alg. 1 we basically need to find
MAP parameters forG. Exact methods are usu-
ally intractable, so normally some approximation

3



Algorithm 1 The structural EM procedure
1: procedure SEM(D)
2: LetG0 = 〈G0,Θ0〉 be the initial model.
3: n← 0
4: repeat
5: Θn+1 ← argmax

Legal Θ

Q(〈Gn,Θ〉,D|DO,Gn)

6: Gn+1 ← argmax
G∈N (Gn)

Q(〈G, ·〉, D|DO, 〈Gn,Θn+1〉)

7: Gn+1 ← 〈Gn+1,Θn+1〉
8: n← n + 1
9: until Q(Gn,D|Gn−1) ≤ Q(Gn−1,D|DO, Gn−1)

10: return Gn−1

method is employed. Originally, Friedman (1997)
proposed to use a standard EM approach in this step
while Peña et al. (2000) propose as a more compu-
tationally efficient alternative to use thebranch and
boundprocedure of Ramoni and Sebastiani (1997).
However, the choice of approach in this step is not
crucial to the following discussion in Sec. 4.

Second, in line 6 of Alg. 1, the functionN (·) is
the neighbourhood generating function. We will de-
fine simple split and merge operations that imple-
ment structural modifications for generating neigh-
bours from a current PDG modelG. We will show
how to compute the expectations needed to evaluate
the expected score of a neighbour.

4 SEM for PDG Models

In this section we will explain how Alg. 1 can be ap-
plied to PDG models. First, for constructing an ini-
tial model we need a forest structure over the vari-
ables in the domain. We accomplish this using the
algorithm of Chow and Liu (1968) that induces a
maximum weight spanning tree using mutual infor-
mation as the edge weights. In Sec. 5 we explain
how to compute mutual information from incom-
plete data.

Inducing the initial tree by finding a maximum
weight spanning tree using mutual information as
edge-weights, is different from previously proposed
approaches for inducing variable forests/trees. In
(Jaeger et al., 2006) aχ2 test for conditional in-
dependence is used to assign marginally indepen-
dent variables in different trees and conditionally
independent variables in different sub-trees. In this
study we use the above mentioned mutual informa-
tion based method as it is less data-intensive com-
pared to repeatedχ2 tests.

Assuming that we have the initial tree structure
F over the variables, we initialise a PDG model
as follows: for every variableXi ∈ X with
paF (Xi) = Xk, we createvi = rk new nodes
{νi,1, νi,2, . . . , νi,vi

} representingXi. We then con-
nect every nodeνk,j representingXk such that
succ(νk,j,Xi, xk,z) = νi,z. That is, for statexk,z of
variableXk the nodeνi,z is always reached. Con-
structing the initial PDG model in this way allows
every variable to be modelled as marginally depen-
dent on its parent and its set of children inF .

Finally, we use a random parametrisationΘ0 of
the initial structureG0.

4.1 The Neighbourhood of a Model

In this subsection we explain how the neighbour-
hood N (G) of a PDG structureG is generated.
We include operations that work on the PDG struc-
ture only, and leave the structure over the variables
fixed. Operations that change the structure over the
variables (e.g. operations that swap the position of
two variables) are problematic as they potentially
require the creation of a lot of new node connec-
tions. Offhand, it is not intuitive to us how to best do
this in general, and therefore we choose to focus on
the following two less dramatic structural changes
that have both previously been used by Jaeger et al.
(2006) for learning in the case of complete data1.

Merging Nodes The merge operator takes a pair
of nodes{νi,a, νi,b} representing the same variable
Xi. The nodesνi,a andνi,b are selected such that
succ(νi,a,Xj , xi,h) = succ(νi,b,Xj , xi,h) for any
statexi,h ∈ R(Xi) and childXj ∈ chF (Xi) in the
variable forestF . The merge operation then sim-
ply consists in replacing nodesνi,a andνi,b with a
new nodeνi,c, whereνi,c has as children exactly the
children ofνi,a (or νi,b) and as parents inherits the
union of parents ofνi,a and parents ofνi,b.

Splitting Nodes The splitting operator takes as in-
put a single nodeνi,j with m parents where2 ≤ m,
and replacesνi,j with m new nodes all representing
Xi. Each new node inherits all the children ofνi,j,

1Jaeger et al. (2006) use an additional third operator that
redirects edges. We leave this operator out of the algorithm
for simplicity. Furthermore, for a given tree structure over the
variables, any PDG structure can be reached from any other
PDG structure using only merge and split operations.

4



and exactly one unique parent ofνi,j .

4.2 Scoring a Neighbour Model

In this section we detail how to compute the score
Q(〈G′, ·〉,D|DO , 〈G,Θ〉) of a neighbourG′ ∈
N (G) generated by merging two nodes or splitting
a node. In fact, we will not compute the full ex-
pected score, but only the terms that are different.

4.2.1 Scoring a Merge Operation

Assume PDGG′ is constructed from PDGG =
〈G,Θ〉 by merging nodesνi,a, νi,b ∈ Vi in struc-
ture G. Let the nodeνi,c be the one replac-
ing νi,a and νi,b in G′, and assume that we have
computed (and stored) all expected counts of the
form E[#D(xi,h, νi,j)|DO,G]. Then, computing
the expected counts for modelG′ under distribu-
tion P G reduces to computing expected counts for
νi,c, which can be done efficiently from expecta-
tions#D(xi,h, νi,a) and#D(xi,h, νi,b), that is :

E[#D(xi,h, νi,c)|DO,G] =

E[#D(xi,h, νi,a)|DO,G]+E[#D(xi,h, νi,b)|DO,G] .

Hence, computing the difference in expected
score ∆Qmerge(νi,a, νi,b) = Q(G′,D|DO,G) −
Q(G,D|DO,G) reduces to computing the differ-
ence between the terms of the expected score in-
volving nodesνi,a andνi,b and the new nodeνi,c:

∆Qmerge(νi,a, νi,b) = Q(G′,D|G) − Q(G,D|G)

= (1 − λ)

(

ri
∑

h=1

E[L
νi,c

h − L
νi,a

h − L
νi,b

h |DO,G]

)

+ λ · (ri − 1) (6)

whereνi,c is the node resulting from mergingνi,a

andνi,b, andL
νi,j

h is the term in the log-likelihood
corresponding to nodeνi,j and thehth state ofXi.
The expectation in (6) obviously can be computed
term by term, and we see thatE[L

νi,c

h |DO,G] =
E[#D(xi,h, νi,c)|DO,G] log E[p

νi,c
xi,h

|DO,G], where
the expectationE[p

νi,c
xi,h

|DO,G] is computed as the

fraction E[#D(xi,h,νi,c)|DO,G]
E[#D(νi,c)|DO ,G] . The count#D(νi,a)

is just
∑ri

h=1 #D(xi,h, νi,a).
The expectationsE[#D(xi,h, νi,j)|DO,G] for

any statexi,h ∈ R(Xi) and nodeνi,j ∈ Vi are
exactly the expectations we would compute in the

parametric EM step in line 5 of Alg. 1. Therefore,
these counts have already been computed for struc-
tureGn in line 5 of Alg. 1, and can easily be made
available at no extra cost.

4.2.2 Scoring a Split Operation

Let inc(νi,j) be the set of edges incoming toνi,j

in PDG structureG = 〈V,E〉, that is inc(νi,j) =
{(νk,z, νi,j) ∈ E}. By luνi,j

we will denote theu’th
element ofinc(νi,j) under some ordering. Withνu

i,j

we denote the node replacingνi,j for its uth incom-
ing edge. Nodeνi,j is representing variableXi and
let the parent ofXi in the variable forest beXk,
hence by the definition of PDG structure, all par-
ent nodes ofνi,j represent variableXk. The ex-
pected countsE[#D(νu

i,j , xi,h)|DO,G] for the node
νu

i,j whereluνi,j
= (νk,z, νi,j) is labelled with state

xk,g is then:

E[#D(νu
i,j, xi,h)|DO,G] =

E[#D(νk,z, xk,g, xi,h)|DO,G] . (7)

The expectation in Eq. (7) can not be recon-
structed from expected counts already computed for
G in the structural parametric EM step of Alg. 1
(line 5) as was the case for the counts needed to
evaluate a merge operation. However, anticipating
that we will need such counts, we can store them
during the computation of expectations in line 5
of Alg. 1. Assume that we have these expected
counts available for structureG under the distribu-
tion defined by the PDG modelG = 〈G,Θ〉. We
can then compute the difference∆Qsplit (νi,j) =
Q(G′,D|G) − Q(G,D|G) for PDG modelG′ with
structureG′ generated by splitting nodeνi,j in struc-
tureG, as follows:

∆Qsplit(νi,j) = Q(G′,D|G) − Q(G,D|G)

= (1 − λ)

[

ri
∑

h=1

(

m
∑

u=1

E[L
νu

i,j

h |DO,G]

)

−

E[L
νi,j

h |DO,G]

]

− λ(|inc(νi,j)| − 1)(ri − 1) ,

(8)

where the log-likelihood termsL·
· are as described

in Sec. 4.2.1. Further, it is clear that we can not split
a root node as it is without parents.

5



4.3 Computing the Expectations

In order to compute the expected counts in sections
4.2.1 and 4.2.2, it is necessary to calculate probabil-
ities of the formP G({ν is reached∧Xi = xi}|Y =
y) for all Xi ∈ X andν ∈ Vi, whereG is a PDG
over variablesX andy is a joint observation of vari-
ablesY ⊂ X.

The computation of such probabilities can be
done efficiently using the algorithm described by
Jaeger (2004), which carries out the inference in
time linear in the size of the PDG model. Broadly
speaking, the desired probability is computed by
first restricting the PDGG toY = y. Then, for each
node in the structure we compute parts of the prod-
uct in (1) corresponding to incoming edges and out-
going edges. And, finally using these intermediate
results stored in each node we can compute the de-
sired conditional probabilities. We refer the reader
to (Jaeger, 2004, Section 4) for details on PDG in-
ference.

5 Estimating the Mutual Information with
Missing Data

The mutual information between two random vari-
ablesX andY is defined as:

I(X,Y ) =

|R(X)|
∑

i=1

|R(Y )|
∑

j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
.

(9)
As the joint distribution ofX andY is unknown,

we need to estimate the mutual information from
data. Assume we have a databaseD probably
containing missing data. We require estimates for
θij = p(xi, yj), θi. = p(xi) andθ.j = p(yj) for i =
1, . . . , |R(X)| andj = 1, . . . , |R(Y )|. Actually, we

only need to estimateθij , sinceθi. =
∑|R(Y )|

j=1 θij

andθ.j =
∑|R(X)|

i=1 θij.
SinceD may contain missing data, we can use

the EM algorithm to estimate the required parame-
ters. The detailed procedure is given in Alg. 2.

Notice that steps 5 and 9 in algorithm 2 corre-
spond, respectively, to the E and M steps of algo-
rithm EM.

The valueEij computed in line 7 of Alg. 2 is
the expected number of records inD where X

takes itsi-th value andY takes itsj-th value. It
is computed by exploring all the recordsd ∈ D

Algorithm 2 EM for estimating the mutual infor-
mation
1: procedure EM MutualInformation(D)
2: Let Θ0 = {θij , i = 1, . . . , |R(X)|, j =

1, . . . , |R(Y )|} be a random parametrisation ofp(x, y).
3: n← 0.
4: repeat
5: for all i = 1, . . . , |R(X)| do
6: for all j = 1, . . . , |R(Y )| do
7: Eij ← E [#D(X = xi, Y = yj)|Θ

n]

8: Θn+1 ← ∅
9: for all i = 1, . . . , |R(X)| do

10: for all j = 1, . . . , |R(Y )| do
11: θn+1

ij ←
Eij

P|R(X)|
k=1

P|R(Y )|
l=1

Ekl

12: Θn+1 ← Θn+1 ∪ {θn+1
ij }

13: n← n + 1.
14: until L(D|Θn) ≤ L(D|Θn−1).
15: EstimateI(X, Y ) as:

Î(X, Y ) =

|R(X)|
X

i=1

|R(Y )|
X

j=1

θ
n
ij log

θn
ij

θn
i.θ

n
.j

.

16: return Î(X, Y ).

and calculating, for each record, the probability
P {X = xi, Y = yj|d,Θn}. That is, we compute:

E [#D(X = xi, Y = yj)|Θ
n] =

∑

d∈D

P {X = xi, Y = yj|d,Θn} . (10)

The probability in Eq. (10) will be equal to 0 if
the record has a value different to(xi, yj) and equal
to 1 if the record is exactly equal to(xi, yj). If some
of the cells in the record is missing, the probability
is computed using the current estimatesΘn.

6 Experiments

In order to test Alg. 1 we have performed exper-
iments over different synthetic databases sampled
from PDG models with 10, 20 and 40 variables gen-
erated at random2. We will refer to these models
as rnd10, rnd20 and rnd40 respectively. From each
PDG model, we constructed four databases contain-
ing 250, 500, 1000 and 2000 complete samples.

For each database, we have considered differ-
ent rates of missing values, ranging from5% to
30%. For each rate of missing values we generated

2The PDG models were generated at random with the re-
striction that they consist of a single variable tree.

6



-8

-7.9

-7.8

-7.7

-7.6

-7.5

-7.4

 0  0.05  0.1  0.15  0.2  0.25  0.3

Lo
g 

lik
el

ih
oo

d,
 v

al
id

at
io

n 
da

ta

Proportion of missing cells

rnd10

250
500

1000
2000

(a) L(Dval, rnd10) = −6.85

-18.6

-18.4

-18.2

-18

-17.8

-17.6

-17.4

-17.2

-17

-16.8

 0  0.05  0.1  0.15  0.2  0.25  0.3

Lo
g 

lik
el

ih
oo

d,
 v

al
id

at
io

n 
da

ta

Proportion of missing cells

rnd20

250
500

1000
2000

(b) L(Dval, rnd20) = −14.98

-37

-36.5

-36

-35.5

-35

-34.5

-34

 0  0.05  0.1  0.15  0.2  0.25  0.3

Lo
g 

lik
el

ih
oo

d,
 v

al
id

at
io

n 
da

ta

Proportion of missing cells

rnd40

250
500

1000
2000

(c) L(Dval, rnd40) = −32.10

Figure 2: Mean and standard deviation of log-likelihood of avalidation set of 10000 complete samples
computed in the models leant from datasets sampled from model rnd10 (a), rnd20 (b) and rnd40 (c). The
log-likelihood of the generating models are indicated beneath the plots.

50 databases from the original (complete) database
by randomly erasing the value in a fraction of the
cells according to the rate of missing values. The
learning algorithm was then executed on each of
the 50 databases measuring the quality of the learnt
model as the log-likelihood of a separate validation
database containing 10000 complete samples.

As score function we used theSλ function of
equation (2) withλ adjusted according to the size
of the database to give a tradeoff between size and
likelihood equivalent to the one imposed by the BIC
score3. Finally, in order to speed up the algorithm,
we put a limit of 10 iterations in each parametric
EM4 and 100 iterations in structural EM (the loop
of Alg. 1).

6.1 Results

In Fig. 2(a-c) we show plots of mean and standard
deviations of the log-likelihood of models learnt in
the experiments described above.

First, the plots of Fig. 2 in general show the ex-
pected behaviour as mean likelihood generally de-
creases as a result of increasing the proportion of
missing cells in the training data, while standard de-
viation increases. We note, also as expected, that
the experiments on the larger data sets reach higher
likelihood on the validation data and also show a
more stable performance with less increase in stan-
dard deviation as the rate of missing values is in-
creased.

3Settingλ =
“

2N
log(N)

+ 1
”−1

whereN is the number of

observations yields BIC tradeoff.
4We run a 100 iterations parametric EM to optimise the pa-

rameters of the final model.

Second, in the experiment using 2000 samples
from the rnd10 model (Fig. 2(a)) we observe an in-
crease in likelihood up until a rate of 10% missing
values. This behaviour may be caused by the algo-
rithm over-fitting to the complete (rate 0% missing
values) training data, while the introduction of some
missing values helps the algorithm learn a less spe-
cific model with better ability to generalise. How-
ever, we only observe this behaviour for that specific
data set which is somewhat unexpected assuming
our explanation is valid.

Lastly, the initial tree structure is created using
the classical algorithm of Chow and Liu (1968) as
explained in Sect. 4. This initial model is itself a
very commonly used model in probability estima-
tion due to its simple restricted syntax and conse-
quently efficient learning and inference. We there-
fore compare the quality of our final model to this
initial model. From each experiment with miss-
ing data (72 total) we measured the likelihood of
the validation data in the initial model as well as
in the final PDG model. Using a Wilcoxon signed
rank test for paired samples with significance level
0.05, we found significantly lower likelihood of the
PDG model in 2 cases, no significant difference in 5
cases while in 65 cases we found significant better
likelihood of the PDG model. The PDG performed
significantly worse when using 500 samples of the
rnd10 model with 25% and 30% missing cells, and
no significant difference could be established for the
experiments using the 250 samples of rnd10 with
30% missing, the 500 samples of rnd10 with 20%
missing, the 250 samples of rnd20 with 30% miss-
ing, the 500 samples of rnd20 with 30% missing and

7



the 500 samples of rnd40 with 30% missing.

7 Concluding Remarks

In this paper we have proposed an algorithm for
learning PDG models in the presence of missing
data. Our proposal was inspired by previous work
on learning BN models from incomplete data by
Friedman (1997). We have tested our proposal on
synthetic data sampled from randomly constructed
PDG models. The experiments show that the algo-
rithm performs well and behaves well even when
the rate of missing cells are increased. Statistical
tests shows significant improvement in quality over
the initial Markov tree models in 65 out of the 72
experiments with incomplete data.

The algorithm introduced here can be extended in
various ways. For instance, the use of other scores
could be considered. Also, a Bayesian approach
could be followed as in (Friedman, 1998).

We have only focused on the scenario where data
is missing completely at random (MCAR). MCAR
is the most general setting, and when data is truly
MCAR, one could employ simpler and more ef-
ficient approaches to learning, such as available-
case-analysis. We plan to investigate simpler and
less general approaches in the future. Future stud-
ies also include the extension of the current algo-
rithm to handle scenarios where unobserved vari-
ables are known to influence the observed data. Fi-
nally, a more exhaustive comparative analysis in-
cluding other inference efficient graphical models
(such as Naı̈ve Bayes models) will be the focus of
the next stage of this study.

Acknowledgements

This work has been supported by the Spanish Min-
istry of Education and Science, through projects
TIN2007-67418-C03-01,02.

References

Bozga, M. and Maler, O. (1999). On the representa-
tion of probabilities over structured domains. In
Proceedings of the 11th International Conference
on Computer Aided Verification, pages 261–273.
Springer.

Chow, C. K. and Liu, C. N. (1968). Approximat-
ing discrete probability distributions with depen-

dence trees.IEEE Transactions on Information
Theory, 14(3):462–467.

Dempster, A. P., Laird, N. M., and Rubin, D. (1977).
Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statis-
tical Society, Series B, 39(1):1–38.

Friedman, N. (1997). Learning belief networks in
the presence of missing values and hidden vari-
ables. InProceedings of the Fourteenth Interna-
tional Conference on Machine Learning.

Friedman, N. (1998). The Bayesian structural EM
algorithm. InProceedings of the UAI’98 Confer-
ence.

Jaeger, M. (2004). Probabilistic decision graphs
- combining verification and AI techniques for
probabilistic inference. International Journal
of Uncertainty, Fuzziness and Knowledge-Based
Systems, 12:19–42.

Jaeger, M., Nielsen, J. D., and Silander, T. (2006).
Learning probabilistic decision graphs.Interna-
tional Journal of Approximate Reasoning, 42(1-
2):84–100.

Lauritzen, S. L. (1995). The EM algorithm
for graphical association models with missing
data. Computational Statistics and Data Analy-
sis, 19:191–201.

Nielsen, J. D. and Jaeger, M. (2006). An empirical
study of efficiency and accuracy of probabilistic
graphical models. InProceedings of the Third
European Workshop on Probabilistic Graphical
Models, pages 215–222.

Nielsen, J. D., Rumı́, R., and Salmerón, A.
(2007). El clasificador grafo de decisión prob-
abiĺıstico. Presented at: XXX Congreso Na-
cional de Estadı́stica e Investigación Opera-
tiva. http://www.ual.es/ ˜ dalgaard/
publications/seio07.pdf .

Peña, J. M., Lozano, J. A., and Larrañaga, P. (2000).
An improved Bayesian structural EM algorithm
for learning Bayesian networks for clustering.
Pattern Recognition Letters, 21:779–786.

Ramoni, M. and Sebastiani, P. (1997). Learning
Bayesian networks from incomplete databases.
Technical Report KMI-TR-43, Knowledge Me-
dia Institute, The Open University.

8



Logical Properties of Stable Conditional Independence

Mathias Niepert and Dirk Van Gucht
Department of Computer Science

Indiana University
Bloomington, IN, USA

Abstract

We utilize recent results concerning a complete axiomatization of stable conditional inde-
pendence (CI) relative to discrete probability measures to derive perfect model properties
of stable CI structures. We show that stable CI can be interpreted as a generalization of
undirected graphical models and establish a connection between sets of stable CI state-
ments and propositional formulae in conjunctive normal form. Consequently, we derive
that the implication problem for stable CI is coNP-complete. Finally, we show that SAT
solvers can be employed to efficiently decide the implication problem and to compute non-
redundant representations of stable CI, even for instances involving hundreds of variables.

1 Introduction

The importance of stable conditional indepen-
dence for reducing the complexity of representa-
tion of conditional independence structures has
recently been established (de Waal and van der
Gaag, 2004). Stable CI is an alternative to
graphical models in representing and reasoning
with conditional independence. A good under-
standing of its logical and algorithmic proper-
ties could lead to new theoretical insights and
applications in the field of uncertain reasoning
and data mining. While several results regard-
ing the characteristics of stable CI structures
exist (Matúš, 1992)(de Waal and van der Gaag,
2004)(de Waal and van der Gaag, 2005), no
study has investigated its logical properties as
it was done for general CI and graphical mod-
els relative to the class of discrete probability
measures (Geiger and Pearl, 1993). We use
recent results concerning a complete axiomati-
zation of stable CI relative to discrete proba-
bility measures (Niepert et al., 2008) to show
that (1) stable CI has perfect models relative to
discrete probability measures, (2) for some sets
of stable CI statements there exists no perfect
model relative to binary probability measures,
and (3) the number of distinct stable CI struc-
tures grows at least double exponentially with

the number of statistical variables. We also de-
rive that stable CI structures can be interpreted
as a generalization of undirected graphical mod-
els: for every UG model there exists a stable CI
structure, and if a discrete probability measure
is (perfectly) Markovian w.r.t. the UG model,
then it satisfies (exactly) all the CI statements
of the stable CI structure. We establish a di-
rect connection between sets of stable CI state-
ments and propositional formulae in conjunctive
normal form and use this connection to show
that the implication problem for stable condi-
tional independence is coNP-complete. Finally,
we show that existing SAT solvers can be em-
ployed to efficiently decide the implication prob-
lem and to compute non-redundant representa-
tions of stable CI, even for instances involving
hundreds of variables.

2 Preliminaries

Definition 1. Throughout this paper, S will be
a finite, implicit set of attributes (discrete sta-
tistical variables). The expression I(A,B|C),
with A, B, and C pairwise disjoint subsets of S,
is called a conditional independence (CI) state-
ment. If ABC = S, we say that I(A,B|C) is
saturated. If A = ∅ or B = ∅ or both, we say
that I(A,B|C) is trivial.



A1: I(A,B|C) → I(B,A|C)
A2: I(A,BD|C) → I(A,D|C)
A3: I(A,B|CD) ∧ I(A,D|C) → I(A,BD|C)
A4: I(A,B|C) → I(A,B|CD)
A5: I(A,B|C) ∧ I(D,E|AC) ∧ I(D,E|BC)

→ I(D,E|C)

Figure 1: The inference rules of system A.

The set of inference rules in Figure 1 will be
denoted by A. The symmetry (A1), decomposi-
tion (A2), and contraction (A3) rules are part of
the semi-graphoid axioms (Pearl, 1988). Strong
union (A4) and strong contraction (A5) are ad-
ditional inference rules. The derivability of a CI
statement c from a set of CI statements C un-
der the inference rules of system A is denoted
by C ⊢ c. The closure of C under A, denoted
C+, is the set {c | C ⊢ c}. Even though trivial-
ity is a sound inference rule, we will not mention
it explicitly in the rest of the paper. Trivial CI
statements are assumed to be implicitly present.

Definition 2. A probability model over S =
{s1, . . . , sn} is a pair (dom,P ), where dom is a
domain mapping that maps each si to a finite
domain dom(si) and P is a probability measure
having dom(s1) × · · · × dom(sn) as its sample
space. For A = {a1, . . . , ak} ⊆ S we will say
that a is a domain vector of A if a ∈ dom(a1)×
· · · × dom(ak). If dom(si) = {0, 1} we say that
the probability model is binary.

In what follows, we will only refer to proba-
bility measures, keeping their underlying prob-
ability models implicit. The class of discrete
probability measures will be denoted by P and
the class of binary probability measures by B.

Definition 3. Let I(A,B|C) be a CI statement
and let P be a probability measure. We say
that P satisfies I(A,B|C) if for every domain
vector a, b, and c of A, B, and C, respectively,
P (c)P (a,b, c) = P (a, c)P (b, c).

Relative to the notion of satisfaction we can
now define the conditional independence impli-
cation problem.

Definition 4 (Probabilistic CI implication
problem). Let C be a set of CI statements, let
c be a CI statement, and let P be the class of

discrete probability measures. We say that C
implies c relative to P, and write C |= c, if each
measure P ∈ P that satisfies the CI statements
in C also satisfies the CI statement c. The set
{c | C |= c} will be denoted by C∗.

A powerful tool in deriving results about the
CI implication problem is the association of
semi-lattices with CI statements (Niepert et al.,
2008). Given subsets A and B of S we write
[A,B] for the lattice {U | A ⊆ U ⊆ B}.

Definition 5. Let I(A,B|C) be a CI state-
ment. The semi-lattice of I(A,B|C) is defined
by L(A,B|C) = [C,S] − ([A,S] ∪ [B,S]).

Example 1. Let S = {a, b, c, d} and let I(a, b|c)
be a CI statement. The semi-lattice of this
statement is {c, cd}.

We will often write L(c) to denote the semi-
lattice of a CI statement c and L(C) to denote
the union of semi-lattices,

⋃

c′∈C L(c′), of a set
of CI statements C.

3 Stable Conditional Independence

When novel information is available to a prob-
abilistic system, the set of associated, relevant
CI statements changes dynamically. However,
some of the CI statements will continue to hold.
Stable CI can be thought of as a subclass of
general CI: every set of stable CI statements is
a set of CI statements. Some of the properties
of stable CI were first investigated by Matúš
(Matúš, 1992) who named it ascending condi-
tional independence and later by de Waal and
van der Gaag (de Waal and van der Gaag, 2004)
who introduced the term stable conditional in-
dependence. Every set of CI statements can be
partitioned into its stable and unstable part. In
this section we recall an axiomatization of sta-
ble CI using inference rules and its relation to
the lattice-inclusion property. We will use these
results to show that stable CI has perfect mod-
els w.r.t. discrete probability measures, but not
w.r.t. binary probability measures.

Definition 6. Let C be a set of CI statements,
and let CSG+ be the semi-graphoid closure of
C. Then I(A,B|C) is said to be stable in C if
I(A,B|C ′) ∈ CSG+ for all sets C ′ with C ⊆
C ′ ⊆ S.



Definition 7. A stable CI structure is a set
of stable conditional independence statements
C such that C = C∗.

In the remainder of the paper, a set of stable
CI statements will be any set of CI statements
that are implicitly known to be stable. Hence,
a set of stable CI statements C can be different
from C∗. We approach stable CI as a structural
representation of conditional independence
much like graphical models are possible repre-
sentations of conditional independence. Now,
let us turn to a crucial result for stable condi-
tional independence. The inference system A
was shown to be sound and complete for stable
conditional independence (Niepert et al., 2008).

Theorem 1. Let C be a set of stable CI state-
ments and let c be a CI statement. Then the
following statements are equivalent:

(a) C |= c;

(b) C ⊢ c; and

(c) L(C) ⊇ L(c).

Example 2. Let S = {a, b, d, e}, let
C = {I(a, b|∅), I(d, e|a), I(d, e|b)} be a set
of stable CI statements, and let c = I(d, e|∅).
We know by strong contraction that C ⊢ c
and, therefore, C |= c by Theorem 1. Now,
L(C) = {∅, d, e, de} ∪ {a, ab} ∪ {b, ab} =
{∅, a, b, d, e, ab, de} ⊇ {∅, a, b, ab} = L(c).

Definition 8. Let C be a set of CI statements.
A probability measure is a perfect model for C
if it satisfies precisely the statements C∗, that
is, all the statements that are implied by C and
none other.

The next result follows from the existence of
discrete perfect models with respect to CI state-
ments (Geiger and Pearl, 1993), a result which
was later strengthened by (Peña et al., 2006).

Proposition 1. For every set of stable CI
statements C there exists a discrete probability
measure P such that P satisfies exactly the
statements in C∗ and none other, that is, P is
a perfect model for C.

The previous result does not hold for the class
of binary probability measures and it follows

that stable CI shares the perfect model prop-
erties with general CI.

Proposition 2. There exists a set of stable
CI statements C for which no binary probabil-
ity model is perfect.

Proof. Let S = {a, b, c} and let C =
{I(a, b|∅), I(a, b|c)}. Clearly, C is a set of sta-
ble CI statements. By Theorem 1(c) neither
I(a, c|∅) nor I(b, c|∅) are implied by C. From
(Geiger and Pearl, 1993) we know that every
binary probability measure that satisfies the
elements in C also satisfies either I(a, c|∅) or
I(b, c|∅). Thus, no binary probability measure
is perfect for C.

4 Graphical Models and Stable CI

Our goal is to relate stable CI to graphical mod-
els and more specifically undirected graphical
models. Ultimately, we will show that stable CI
can be seen as a generalization of undirected
graphical models. The following theorem es-
tablishes that the CI statements present in a
Markov network form a stable CI structure.

Theorem 2. Let G be a Markov network (i.e.,
an undirected graphical model) and let C(G) be
the set of all CI statements encoded in G. Then
C(G) is a stable CI structure.

Proof. It is well-known that strong union is a
sound inference rule for separation in undirected
graphs (Pearl, 1988). In addition, it can be ver-
ified that the inference rule strong contraction
is sound for undirected graph separation. Thus,
inference system A is sound for separation in
undirected graphs and the statement of the the-
orem follows.

Corollary 1. For every Markov network G
there exists a stable CI structure C and every
discrete probability measure that is (perfectly)
Markovian w.r.t. G satisfies the elements in C
(and none other).

This shows that stable conditional indepen-
dence can be interpreted as a generalization of
Markov networks. In what follows, we inves-
tigate how much broader this representation is
compared to graphical models in general. First,



general CI structures 

stable CI structures 

undirected graphical models 

saturated CI structures 

Figure 2: Inclusion relationships between dif-
ferent representations of conditional indepen-
dence. Every undirected graphical model is a
stable CI structure. Every saturated CI state-
ments is trivially a stable CI statement.

we provide an example which demonstrates that
there exists a stable CI structure that cannot be
represented with a Markov network.

Example 3. Let S = {a, b, c, d} and let C =
{I(a, b|cd), I(a, d|bc)} be a set of stable CI state-
ments. Note that by Theorem 1(c) no other
CI statements are implied by C and hence, C is
a stable CI structure. However, every Markov
network that represents these two CI statements
also represents the CI statement I(a, bd|c) by
the inference rule intersection which is sound for
separation in undirected graphs (Pearl, 1988).
Thus, the class of all CI structures induced by
the class of Markov networks is a strict subclass
of the class of stable CI structures.

Figure 2 depicts some relationships between
different representations of conditional indepen-
dence.

Proposition 3. Let S be a finite set and let
xi =

(|S|
i

)(

i
2

)

. The number of distinct stable CI
structures over S is at least

dS =def

|S|
∑

i=2

(2xi − 1).

Proof. We sketch the proof. Let S be a finite
set, let V ⊆ S with |V | = |S| − 2, and let
U ⊆ V . For every lattice [U, V ] there exists
a stable CI structure C such that L(C) = [U, V ].

Let ℓ = |S| − i for 2 ≤ i ≤ |S|. Now, we

have 2(
|S|
i
)(i

2
) − 1 distinct combinations of lat-

tices of the form [U, V ] with |U | = ℓ and each of
these combinations represents a distinct stable
CI structure by Theorem 1.

Example 4. For |S| = 3 there are 8 UG, 22 dis-
crete (Studený, 2005), and 14 stable discrete CI
structures. For |S| = 4 there are 64 UG (Stu-
dený, 2005), 18478 discrete (Šimeček, 2006),
and at least 4221 distinct stable CI structures.
For |S| = 5 there are at least 2147485692 dis-
tinct stable CI structures, which is also a lower
bound for the number of discrete CI structures.

As a consequence of Proposition 3 the num-
ber of stable CI structures grows double expo-
nentially with the size of S.

5 Complexity of the Stable CI

Implication Problem

In this section we will investigate the computa-
tional complexity of an important decision prob-
lems related to stable CI. Given a set of stable
CI statements C and a CI statement c. Decide
whether c is implied by C. We will prove this
decision problem to be coNP-complete. How-
ever, we will later show that a simple reduction
to UNSAT exists. This allows one to make use
of the many available SAT solvers and we will
show experimentally that the problem can be
decided very efficiently, even for instances in-
volving hundreds of variables. We start with
the formal definition of the decision problem.

Definition 9. Let C be a set of stable CI
statements and let c be a CI statement.
STABLE-IMPLICATION is the problem of decid-
ing whether c is implied by C, or, equivalently,
whether the statement C |= c holds.

Lemma 1. STABLE-IMPLICATION is in coNP.

Proof. We show that the complement is in NP.
Since C 2 c if and only if L(C) + L(c) it is suf-
ficient to find a U ∈ L(c) with U /∈ L(C). This
set can be guessed and then verified in polyno-
mial time by checking for all I(A,B|C) ∈ C if
(U + C) ∨ (U ⊇ A) ∨ (U ⊇ B).



We will now establish the correspondence be-
tween sets of stable CI statements and propo-
sitional formulae in conjunctive normal form,
where a set of stable CI statement corresponds
to a clause in the CNF formula and vice versa.

Definition 10. 3-CNFV is the set of all proposi-
tional formulae in conjunctive normal form with
clauses of the form x∨y, ¬x∨y∨z, ¬x∨¬y∨z,
and ¬x ∨ ¬y ∨ ¬z.

Proposition 4. Let T be a set of propositional
variables and let Φ ∈ 3-CNFV(T ). Deciding
whether Φ is satisfiable is NP-complete.

Proof. This can be verified by a reduction from
standard 3-CNF-SAT: the set of clauses we use
in our construction are the clauses that occur
in standard 3-CNF formulae except that every
clause x∨y∨z will be replaced by (x∨y∨¬w)∧
(z ∨w), where w is a new variable. This reduc-
tion is possible in polynomial time and preserves
satisfiability.

Corollary 2. Let T be a set of propositional
variables and let Φ ∈ 3-CNFV(T ). Deciding
whether Φ is a contradiction is coNP-complete.

Definition 11. Let T be a set of propositional
variables and let X be a subset of T . The
minterm associated with X, denoted X, is the
formula

∧

a∈X a∧
∧

b∈X ¬b. Let Φ be a proposi-
tional formula over T . The minset of Φ, denoted
minset(Φ), is the set {X | X |=prop Φ} where
|=prop is the logical implication relation for
propositional logic. The negative minset of Φ,
denoted negminset(Φ), is the set minset(¬Φ).

Definition 12. Let T = {t1, ..., tn} be a set of
propositional variables, let Φ ∈ 3-CNFV(T ), let
C(Φ) be the set of clauses in Φ, let S = T ∪{r, s}
with r /∈ T and s /∈ T , and let T (S) be the set
of all non-trivial CI statements over S. Then
f : 3-CNFV(T ) → 2T (S) is defined as follows:

• f(Φ) =
⋃

c∈C(Φ) f(c); with

• f(ti) = {I(ti, x|∅) | x ∈ S − {ti}}

• f(¬ti) = {I(x, y|ti) | x, y ∈ S−{ti}, x 6= y}

• f(ti ∨ tj) = {I(ti, tj |∅)}

• f(¬ti ∨ tj) = {I(tj , x|ti) | x ∈ S − {ti, tj}}

• f(¬ti ∨ ¬tj) = {I(x, y|{ti, tj}) | x, y ∈ S −
{ti, tj}, x 6= y}

• f(¬ti ∨ tj ∨ tk) = {I(tj , tk|ti)}

• f(¬ti ∨ ¬tj ∨ tk) = {I(tk, x|{ti, tj}) | x ∈
S − {ti, tj , tk}}

• f(¬ti ∨ ¬tj ∨ ¬tk) = {I(x, y|{ti, tj , tk}) |
x, y ∈ S − {ti, tj, tk}, x 6= y}

Notice that the mapping f can be computed
in polynomial time in the size of Φ and the num-
ber of variables involved. Furthermore, note
that for any clause c ∈ C(Φ) and for any U ⊆ T
we have U ∈ L(f(c)) if and only if U |=prop ¬c.

Example 5. Let T = {a, b, c}, let
S = T ∪{d, e}, and let Φ = (a∨c)∧(¬a∨¬b∨c).
Then f(Φ) = f(a ∨ c) ∪ f(¬a ∨ ¬b ∨ c) =
{I(a, c|∅)} ∪ {I(c, d|ab), I(c, e|ab)} =
{I(a, c|∅), I(c, d|ab), I(c, e|ab)} with
L(f(Φ)) = {∅, b, d, e, bd, be, bde, ab, abd, abe}
and negminset(Φ) = {∅, b, ab}.

Lemma 2. Let T be a set of propositional vari-
ables, let S = T ∪ {r, s} with r /∈ T , s /∈ T ,
let f be the function from Definition 12, and let
Φ ∈ 3-CNFV(T ). Then we have the following:

(1) negminset(Φ) ⊆ L(f(Φ)); and

(2) Φ is a contradiction if and only if
L(I(r, s|∅)) ⊆ L(f(Φ)).

Proof. To show (1) let U ∈ negminset(Φ).
Then there exists a clause c in C(Φ) such that
U |=prop ¬c. But then for I(x, y|U ′) ∈ f(c) it
must be U ⊇ U ′, x /∈ U and y /∈ U since oth-
erwise U |=prop c. It follows that U ∈ L(f(c))
and therefore U ∈ L(f(Φ)).

To show (2) let Φ be a contradiction. No-
tice that Φ is a contradiction if and only if
negminset(Φ) = 2T . Now, L(I(r, s|∅)) = 2T =
negminset(Φ) ⊆ L(f(Φ)), where the last inclu-
sion follows from (1).

To show the other direction of (2) let
L(I(r, s|∅)) = 2T ⊆ L(f(Φ)). Assume that Φ
is not a contradiction. Then there exists a set
U ⊆ T with U /∈ negminset(Φ). Now, since
2T ⊆ L(f(Φ)) there must be a clause c ∈ C(Φ)
such that U ∈ L(f(c)). Hence, U |=prop ¬c and



Property Stable CI

Complete finite Yes
axiomatization

Implication algorithm coNP-complete

Perfect models [P] Yes

Perfect models [B] No

Figure 3: Summary of properties of stable CI.

thus U ∈ negminset(Φ), a contradiction to our
assumption that U /∈ negminset(Φ).

Theorem 3. STABLE-IMPLICATION is coNP-
complete.

Proof. Let T be a set of propositional variables,
let r /∈ T , s /∈ T , and let Φ ∈ 3-CNFV(T ). Then,
by Lemma 2 and Theorem 1, Φ is a contra-
diction if and only if L(f(Φ)) ⊇ L(I(r, s|∅))
if and only if f(Φ) ⊢ I(r, s|∅) if and only if
f(Φ) |= I(r, s|∅), where f is computable in poly-
nomial time. Hence, STABLE-IMPLICATION is
coNP-hard. The statement now follows from
Lemma 1.

The logical and algorithmic properties of sta-
ble CI are summarized in Figure 3.

6 Implication Testing and

Redundancy Elimination Using

SAT Solvers

In this section we will show that every set of
stable CI statements can be reduced to a propo-
sitional formula. This allows us to employ SAT
solvers to decide the implication problem and to
compute irredundant equivalent subsets of sta-
ble CI structures. Stable CI can considerably
reduce the size of representation of CI struc-
tures (de Waal and van der Gaag, 2004). First,
we will define the notion of irredundancy and re-
dundancy of representation for sets of stable CI
statements. We will use terminology that was
previously introduced in the context of propo-
sitional formulae in conjunctive normal form
(Liberatore, 2005).

Definition 13. A set of stable CI statements C
is irredundant if and only if C − {c} 2 c for all
c ∈ C. Otherwise it is redundant.

A related definition is that of an irredundant
equivalent subset. Note that a set of stable CI
statements may have several different irredun-
dant equivalent subsets and that the cardinality
of these sets can differ.

Definition 14. Let C be a set of stable CI state-
ments. A set of stable CI statements C′ is an
irredundant equivalent subset of C if and only if:

1. C′ ⊆ C;

2. C′ |= c for all c ∈ C; and

3. C′ is irredundant.

Example 6. Let S = {a, b, c} and let C =
{I(a, b|∅), I(a, b|c)}. Then, C′ = {I(a, b|∅)} is
an irredundant equivalent subset of C.

By Theorem 1 a stable CI structure can be
derived from each of its irredundant equivalent
subsets using the inference rules of system A.

Definition 15. Let S be a finite set, let C be a
set of CI statements, and let I(A,B|C) be a CI
statement. The mapping g : 2T (S) → CNF(S) is
defined as

• g(C) =
∧

c∈C(g(c)); with

• g(I(A,B|C)) =
∧

a∈A a∨
∧

b∈B b∨
∨

c∈C ¬c

The mapping g can be computed in linear
time in the size of C. Now, based on this map-
ping we can state the following theorem.

Theorem 4. Let C be a set of stable CI state-
ments and let c be a CI statement. Then the
following statements are equivalent:

• C |= c; and

• g(C) |=prop g(c).

Proof. We will again use the concepts minset
and negminset introduced in Definition 11. Let
C be a set of CI statements and let c be a
CI statement. One can verify that L(C) =
negminset(g(C)) and L(c) = negminset(g(c)).



irredundant-subset (C : set) C′ : set

C′ := C
for each c ∈ C′

begin

if g(C′ − {c}) ∧ ¬g(c) not satisfiable
then C′ := C′ − {c}

end

return C′

Figure 4: A function to compute an irredundant
equivalent subset.

By Theorem 1 we have that if C is a set of sta-
ble CI statements, then C |= c if and only if
L(C) ⊇ L(c). Now, L(C) ⊇ L(c) if and only if
negminset(g(C)) ⊇ negminset(g(c)) if and only
if g(C) |=prop g(c).

Example 7. Let S = {a, b, d, e}, let C =
{I(a, b|∅), I(d, e|a), I(d, e|b)}, and let c =
I(d, e|∅). We have g(C) = (a ∨ b) ∧ (d ∨ e ∨
¬a)∧ (d∨e∨¬b) and g(c) = d∨e. We also have
g(C) |=prop g(c) if and only if g(C)∧¬g(c) is not
satisfiable. Now, g(C) ∧ ¬g(c) = (a ∨ b) ∧ (d ∨
e∨¬a)∧ (d∨ e∨¬b)∧¬d∧¬e. This formula is
not satisfiable. Hence, C |= c by Theorem 4.

Corollary 3. Let C be a set of stable CI state-
ments. Then C is irredundant if and only if for
all c in C we have that g(C − {c}) ∧ ¬g(c) is
satisfiable.

The algorithm in Figure 4 is based on Corol-
lary 3. It takes as input a set of stable CI state-
ments C and returns an irredundant equivalent
subset of C based on several satisfiability tests.
For each number of attributes from 5 to 25 we
randomly created sets of 500 CI statements and
determined the size of the irredundant equiva-
lent subsets using the algorithm. Figure 5 shows
the average size of 1000 different runs. As one
can expect, the fewer attributes there are the
smaller is the irredundant equivalent subset.

The performance of the SAT solvers applied
to instances of the implication problem was
quite remarkable. We used MiniSat1 by Niklas

1http://minisat.se

5 10 15 20 25
0

50

100

150

200

250

300

350

400

450

500

number of variables

nu
m

be
r 

of
 C

I s
ta

te
m

en
ts

irredundant subsets of 500 CI statements

 

 

Figure 5: Size of irredundant equivalent subset
of a set of initially 500 CI statements for differ-
ent numbers of attributes.

variables 50 100 200 300 400

time [ms] 740 1523 3362 5627 7076

Figure 6: Average time needed (in milliseconds)
to decide the implication problem for different
numbers of variables and 100,000 antecedents.

Eén and Niklas Sörensson on a Pentium4 dual-
core Linux system for the experiments. For the
500 satisfiability tests made to compute an irre-
dundant equivalent subset, the algorithm took
at most 1100 ms, where the majority of the time
was spent on unsatisfiable instances of the prob-
lem. This amounts on average to 2ms per sat-
isfiability test for sets of 500 CI statements.

In a second experiment we applied the SAT
solver to larger, randomly generated instances
of the stable CI implication problem with up
to 400 variables. Figure 6 shows the average
time (out of 10 tests) needed to decide the im-
plication problem C |= c for |C| = 100, 000 and
different numbers of variables.

7 Discussion and Future Work

We used a finite complete axiomatization of sta-
ble conditional independence to show that sta-
ble CI has the same perfect model properties as
general conditional independence. In addition,
we proved that stable conditional independence
can be interpreted as a generalization or exten-
sion of undirected graphical models in that the



class of stable CI structures is a strict superset
of the class of CI structures induced by undi-
rected graphical models. Many procedures that
learn graphical models are based on the data
faithfulness assumption, see for example (Stu-
dený, 2005). The data faithfulness assumption
states that data are “generated” by a proba-
bility measure P which is perfectly Markovian
with respect to an instance of the class of graph-
ical model under consideration. Now, learn-
ing methods based on these procedures are only
safely applicable if the data faithfulness assump-
tion is guaranteed.

While the data faithfulness assumption is also
not guaranteed for the class of stable CI struc-
tures, we have as a consequence of Proposition 3
that the number of stable CI structures grows
double exponentially with the size of S and,
therefore, more probability measures are per-
fect with respect to a stable CI structure. On
one hand, this implies that a reasonable graphi-
cal representation of stable CI is unlikely, using
arguments similar to those made in (Studený,
2005) on page 63. On the other hand, it shows
that the class of stable CI structures is the
broadest and only double exponentially growing
class of CI structures for which a complete finite
axiomatization using inference rules and an
implication algorithm are known. We also know
that this class of CI structures includes the
class of all CI structures induced by undirected
graphical models and that there exists an
interesting, direct connection to propositional
logic. Furthermore, we have demonstrated that
SAT solvers can be used to efficiently decide the
implication problem for stable conditional inde-
pendence, even for large numbers of variables.
Future research should be concerned with
the development of algorithms that can learn
stable CI models from data and for probabilistic
inference in the context of stable CI.

In addition to the aforementioned possible
applications, stable CI can also be used as
part of a probabilistic system to store informa-
tion about conditional independencies more ef-
ficiently, using irredundant equivalent subsets
computed by the algorithm in Figure 4.

Acknowledgments

We thank Marc Gyssens and Paul Purdom for
helpful discussions and the anonymous review-
ers for their valuable suggestions.

References

Peter R. de Waal and Linda C. van der Gaag. 2004.
Stable independence and complexity of represen-
tation. In Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, pages 112–
119.

Peter R. de Waal and Linda C. van der Gaag. 2005.
Stable independence in perfect maps. In Proceed-
ings of the 21st Conference on Uncertainty in Ar-
tificial Intelligence, pages 161–168.

Dan Geiger and Judea Pearl. 1993. Logical and al-
gorithmic properties of conditional independence
and graphical models. The Annals of Statistics,
21(4):2001–2021.

Paolo Liberatore. 2005. Redundancy in logic i: Cnf
propositional formulae. Artif. Intell., 163(2):203–
232.

Frantǐsek Matúš. 1992. Ascending and descending
conditional independence relations. In Transac-
tions of the 11th Prague Conference on Informa-
tion Theory, pages 189–200.

Mathias Niepert, Dirk Van Gucht, and Marc
Gyssens. 2008. On the conditional indepen-
dence implication problem: A lattice-theoretic ap-
proach. In Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence, pages 435–
443.

Judea Pearl. 1988. Probabilistic reasoning in in-
telligent systems: networks of plausible inference.
Morgan Kaufmann Publishers Inc.

Jose Peña, Roland Nilsson, Johan Björkegren, and
Jesper Tegnér. 2006. Reading dependencies from
the minimal undirected independence map of a
graphoid that satisfies weak transitivity. In Proc-
cedings of the European Workshop on Probabilistic
Graphical Models, pages 247–254.

Milan Studený. 2005. Probabilistic Conditional In-
dependence Structures. Springer-Verlag.

Petr Šimeček. 2006. A short note on discrete rep-
resentability of independence models. In Procced-
ings of the European Workshop on Probabilistic
Graphical Models, pages 287–292.



A∗Wars: The Fight for Improving A∗ Search
for Troubleshooting with Dependent Actions

Thorsten J. Ottosen and Finn V. Jensen

Department of Computer Science

Aalborg University

9220 Aalborg, Denmark

Abstract

Decision theoretic troubleshooting combines Bayesian networks and cost estimates to ob-

tain optimal or near optimal decisions in domains with inherent uncertainty. We use the

well-known A∗ algorithm to �nd optimal solutions in troubleshooting models where dif-

ferent actions may �x the same fault. We prove that a heuristic function proposed by

Vomlelová and Vomlel is monotone in models without questions, and we report on recent

work on pruning. Furthermore, we experimentally investigate a hybrid approach where

A∗ is combined with a method that sometimes avoid branching. The method is based on

an analysis of the dependency between actions as suggested by Koca and Bilgiç.

1 Introduction

Imagine that you have a device which has been

running well up to now, but suddenly it is mal-

functioning. A set of faults F describes the pos-

sible causes to the problem. To �x the problem

you have a set A of actions, which may �x the

problem and a set Q of questions, which may

help identifying the problem. Each action or

question S has a positive cost CS(ε) possibly

depending on evidence ε. Your task is to �x the

problem as cheaply as possible. In this paper we

do not consider questions.

When actions in a model can remedy sets of

faults that overlap, we say that the model has

dependent actions. Finding an optimal solution

in models with dependent actions is of great

practical importance since dependent actions

can be expected to occur in many non-trivial do-

mains. However, all non-trivial troubleshooting

scenarios have been shown to be NP-hard�this

includes models with dependent actions (Vom-

lelová, 2003).

Two di�erent approaches have previously

been used for �nding optimal strategies: (Jensen

et al., 2001) describes a branch & bound algo-

rithm whereas (Vomlelová and Vomlel, 2003) de-

scribes an AO∗ algorithm. The AO∗ algorithm

can be used for models with questions, but since

a model without questions does not lead to

AND-nodes in the search tree, we only need to

consider the simpler A∗ algorithm (Hart et al.,

1968) (Dechter and Pearl, 1985) for models with

dependent actions.

We can summarize our troubleshooting as-

sumptions as follows:

Assumption 1. There are no questions.

Assumption 2. There is a single fault present

when troubleshooting begins. (This implies that

we can have a single fault-node F with states

fi ∈ F .)

Assumption 3. Actions are conditionally in-

dependent given evidence on the fault node.

Assumption 4. The cost of actions CA(ε) is

independent from evidence ε.

We use the following notation. The model

provides for all A ∈ A and f ∈ F probabili-

ties P(f |ε) ,P(A |ε) and P(A | f), where ε is evi-

dence. In Figure 1 is shown a simple model with

dependent actions. We have some initial evi-

dence ε
0, and in the course of executing actions

we collect further evidence. We write ε
i to de-

note that the �rst i actions have failed (ε0 ⊆ ε
i),

and we have by assumption P
(
ε

0
)

= 1 because



F

f1 f2 f3 f4

A1 A2 A3

f1 f2 f3 f4
P(a1 |F) 1 1 0 0

P(a2 |F) 0 1 1 0

P(a3 |F) 0 0 1 1

P(F) 0.20 0.25 0.40 0.15

CA1
= CA2

= CA3
= 1

Figure 1: Left: a simple model for a troubleshooting scenario with dependent actions. The dotted

lines indicate that the faults f1 to f4 are states in a single fault node F. A1, A2 and A3 represent

actions, and parents of an action node A are faults which may be �xed by A. Right: the quantitative

part of the model.

the device is faulty. When action A has failed,

we write A = ¬a whereas A = a means that it

has succeeded. We often abbreviate P(A = ¬a)
as P(¬a). The presence of the fault f is written
F = f, but we often abbreviate the event sim-

ply as f. Furthermore, we write P(ε ∪ f) when

we really had to write P(ε ∪ {f}). The set of

faults that can be repaired by an action A is

denoted fa (A). For example, in Figure 1 we

have fa(A2) = {f2, f3}. In models where actions

can have P(a |ε) = 1, fa (·) is a dynamic en-

tity which we indicate by writing fa(· |ε). The

set of remaining actions is denoted A(ε), and
A (f |ε) ⊆ A(ε) is the set of remaining actions

that can �x f.

When there are no questions, a trouble-

shooting strategy is a sequence of actions s =
〈A1, . . . ,An〉 prescribing the process of re-

peatedly performing the next action until the

problem is �xed or the last action has been per-

formed. To compare sequences we use the fol-

lowing de�nition:

De�nition 1. The expected cost of repair

(ECR) of a troubleshooting sequence s =
〈A1, . . . ,An〉 with costs CAi

is the mean of the

costs until an action succeeds or all actions have

been performed:

ECR (s) =
n∑

i=1

CAi
(εi−1) · P

(
ε

i−1
)

.

We then de�ne an optimal sequence as a se-

quence with minimal ECR. Also, ECR∗(ε) is

the ECR for an optimal sequence of the actions

A(ε) given ε.

Example 1. Consider a sequence for the model

in Figure 1:

ECR (〈A2, A3,A1〉) =

CA2
+ P(¬a2) · CA3

+ P(¬a2,¬a3) · CA1

= CA2
+ P(¬a2) · CA3

+ P(¬a2) · P(¬a3 |¬a2) · CA1

= 1 +
7

20
· 1 +

7

20
·
4

7
· 1 = 1.55 .

A crucial de�nition is that of e�ciency:

De�nition 2. The e�ciency of an action A
given evidence ε is

ef(A |ε) =
P(A = a)

CA(ε)
.

2 Monotonicity of the heuristic

function ECR

A∗ (and AO∗) is a best-�rst search algorithm

that works by continuously expanding a fron-

tier node n for which the value of the evaluation

function

f(n) = g(n) + h(n), (1)

is minimal until �nally a goal node t is ex-

panded. The cost between two nodes n and m

(m reachable from n) is denoted c(n, m), and the
function g(n) is the cost from the start node s

to n whereas h(n) is the heuristic function that

guides (or misguides) the search by estimating

the cost from n to a goal node t.



If h(n) ≡ 0, A∗ degenerates to Dijkstra's algo-

rithm. The cost of the shortest path from s to

n is denoted g∗(n), and from n to t it is denoted

h∗(n). Finally, the evidence gathered about

actions from s to n is denoted ε
n (ε0 ⊆ ε

n).

De�nition 3. A heuristic function h(·) is ad-

missible if

h(n) ≤ h∗(n) ∀n .

When A∗ is guided by an admissible heuristic

function, it is guaranteed to �nd an optimal so-

lution (Hart et al., 1968).

(Vomlelová and Vomlel, 2003) have sug-

gested the following heuristic function for use

in troubleshooting:

De�nition 4. Let E denote the set containing

all possible evidence. The function ECR : E 7→
R+ is de�ned for each ε

n ∈ E as

ECR(εn) = P(εn) ·
∑

f∈F

P(f |εn) · ECR∗(εn ∪ f) .

Remark. In (Vomlelová and Vomlel, 2003) the

factor P(εn) is left out. However, the factor

ensures that the decomposition in Equation 1

takes the simple form

f(n) = ECR (εn)
︸ ︷︷ ︸

g(n)

+ ECR(εn)
︸ ︷︷ ︸

h(n)

,

where ECR (εn) is the ECR for the sequence

de�ned by the path up to n. We also de�ne

ECRh(ε) =
∑

f∈F

P(f |ε) · ECR∗(ε ∪ f) .

The optimal cost ECR∗(εn ∪ f) is easy to cal-

culate under Assumption 2-4: the optimal se-

quence is found by ordering the actions in

A (f |εn) with respect to descending e�ciency

(Kadane and Simon, 1977).

Example 2. Assume the fault f can be repaired

by two actions A1 and A2 and that P(a1 | f) =
0.9 and P(a2 | f) = 0.8. Furthermore, let both

actions have cost 1. Since instantiating the fault
node renders the actions conditionally indepen-

dent, P(a |ε ∪ f) = P(a | f) and the e�ciencies

of the two actions are 0.9 and 0.8, respectively.
We get

ECR∗(ε ∪ f) = ECR (〈A1,A2〉)

= CA1
+ P(¬a1 | f) · CA2

= 1 + 0.1 · 1 = 1.1 .

Not only is ECR(·) easy to compute, it also

has the following property (Vomlelová and Vom-

lel, 2003):

Theorem 1. Under Assumption 2-4 the heuris-

tic function ECR(·) is admissible, that is,

ECR(εn) ≤ ECR∗(εn) ∀ε
n ∈ E .

For a class of heuristic functions, A∗ is guaran-

teed to have found the optimal path to a node

when the node is expanded (Hart et al., 1968):

De�nition 5. A heuristic function h(·) ismono-

tone if

h(n) ≤ c(n, m) + h(m),

whenever m is a successor node of n.

Remark. Monotonicity is equivalent to the often

used and seemingly stronger consistency prop-

erty: h(n) ≤ c∗(n, m) + h(m) ∀n, m.

Henceforth we let An denote the performed

action on the edge from a node n to a successor

node m in the search graph.

Proposition 1. For the heuristic function

ECR(·) under Assumption 1 and 4 monotonicity

is equivalent to

ECRh(εn) ≤ CAn
+ P(¬an |ε

n) · ECRh(εm) .

Proof. We have c(n, m) = P(εn) · CAn
and

P(εm) = P(¬an |ε
n) ·P(εn) and so the common

factor P(εn) cancels out.

Theorem 2. Under Assumption 1-4 the heuris-

tic function ECR(·) is monotone.

Proof. The idea is to express ECRh(εm) in

terms of ECRh(εn). To do that we consider

the complement of the set fa(An) which is the

set of all faults that An cannot �x. For each

f ∈ F \ fa(An) Bayes' rule (conditioned) yields

P(f |εm) =
1 · P(f |εn)

P(¬an |εn)
,

because P(¬an |ε
n ∪ f) ≡ 1. If we restrict

ECRh(·) to a subset of faults X, we shall abuse

notation and write it

ECRh(ε |X) =
∑

f∈X

P(f |ε) · ECR∗(ε ∪ f) .



In particular, we must have

ECRh(εn) = (2)

ECRh(εn |F \ fa(An)) + ECRh(εn | fa(An)).

We can furthermore de�ne

∆F = ECRh(εm |F \ fa(An))

− ECRh(εn |F \ fa(An)) ,

which is an extra cost because all faults in F \
fa(An) are more likely. Similarly

∆fa(An) =

ECRh(εm | fa(An)) − ECRh(εn | fa(An)) ,

is the cost lost or gained because An has been

performed and can no longer repair the faults

fa(An). We can then express ECRh(εm) by

ECRh(εm) = ECRh(εn) + ∆fa(An) + ∆F , (3)

The constant ECR∗(·) factors implies

∆F =
∑

f∈F\fa(An)

[P(f |εm) − P(f |εn)] · ECR∗(εn ∪ f).

Exploiting Bayes' rule (as explained above) and

Equation 2 we get

∆F =
[

1
P(¬an |εn) − 1

]

· ECRh(εn |F \ fa(An)) =

[
1

P(¬an |εn)−1
]

·
[

ECRh(ε
n)−ECRh(ε

n | fa(An))
]

.

Inserting into Equation 3 yields

ECRh(εm) = ECRh(εn) +

ECRh(εm | fa(An)) − ECRh(εn | fa(An))

+
[ 1

P(¬an |εn)
−1

]

·

[

ECRh(ε
n)−ECRh(ε

n | fa(An))
]

=
ECRh(εn)

P(¬an |εn)
+ ECRh(εm | fa(An))

−
1

P(¬an |εn)
· ECRh(εn | fa(An)),

and we rearrange the equation into

ECRh(εn) = P(¬an |ε
n) · ECR(εm) +

ECRh(εn|fa(An))−P(¬an|ε
n)·ECRh(εm|fa(An))

︸ ︷︷ ︸

∆

.

By Proposition 1, we have to prove ∆ ≤ CAn
.

Because of Bayes' rule and Assumption 3 we

have

P(¬an |ε
n) · P(f |εm) =

P(¬an |ε
n) ·

P(¬an | f) · P(f |εn)

P(¬an |εn)

= P(¬an | f) · P(f |εn) .

So we get

∆ =
∑

f∈fa(An)

P(f |εn) ·

[ECR∗(εn ∪ f) − P(¬an | f) · ECR∗(εm ∪ f)]
︸ ︷︷ ︸

δ

.

Because of the single-fault assumption, we only

need to prove that δ ≤ CAn
. We now index the

actions in A (f |εn) as follows:

P(Bi = bi | f)

CBi

≥
P(Bi+1 = bi+1 | f)

CBi+1

∀i.

In this ordering, we have An = Bx. The inequal-

ities generalizes to

CBi
≤

P(Bi = bi | f)

P(Bj = bj | f)
· CBj

∀j > i . (4)

In particular, this is true for j = x which we

shall exploit later.

Assume we have N dependent actions in

A (f |εn). The �rst term of δ is then

ECR∗(εn ∪ f) = ECR∗(〈B1, . . . ,BN 〉)

= CB1
+

N∑

i=2

CBi
·

i−1∏

j=1

P(¬bj | f) . (5)

Assume that x > 1 (we shall deal with x = 1
later), then the second term of δ is

P(¬an | f) · ECR∗(εm ∪ f) =

P(¬an | f) · ECR∗(〈. . . ,Bx−1,Bx+1, . . .〉)

= P(¬an | f) ·

[

CB1
+

x−1∑

i=2

CBi
·

i−1∏

j=1

P(¬bj | f)

+

∑N
i=x+1 CBi

·
∏i−1

j=1 P(¬bj | f)

P(¬an | f)

]

.



We see that the last term is also represented in

Equation 5 and therefore cancels out. We get

δ = CB1
· [1 − P(¬an | f)] +

[1 − P(¬an | f)] ·
x−1∑

i=2

CBi
·

i−1∏

j=1

P(¬bj | f)

+ CAn
·

x−1∏

j=1

P(¬bj | f) ,

where the last term is a leftover from Equation

5. Using P(¬a |ε) = 1 − P(a |ε) and Equation

4 we get

δ = CB1
· P(an | f)+

P(an | f) ·
x−1∑

i=2

CBi
·

i−1∏

j=1

P(¬bj | f)

+ CAn
·

x−1∏

j=1

P(¬bj | f)

≤
P(b1 | f)

P(an | f)
· CAn

· P(an | f) +

P(an | f) ·
x−1∑

i=2

P(bi | f)

P(an | f)
· CAn

·
i−1∏

j=1

P(¬bj | f)

+ CAn
·

x−1∏

j=1

P(¬bj | f)

= CAn
·
[

P(b1 | f) +

x−1∑

i=2

P(bi | f) ·
i−1∏

j=1

P(¬bj | f)

+
x−1∏

j=1

P(¬bj | f)
]

(6)

= CAn
·
[

1 − P(¬b1 | f) +

(1 − P(¬b2 | f)) · P(¬b1 | f)

+ · · · +
x−1∏

j=1

P(¬bj | f)
]

= CAn
·
[

1 − P(¬b2 | f) · P(¬b1 | f)

+ · · · +
x−1∏

j=1

P(¬bj | f)
]

= CAn
· 1,

as required. This is not surprising if we look at

the expression inside the parenthesis of Equa-

tion 6: the corresponding events are "B1 �xes f,
B2 �xes f if B1 did not �x f" etc. up to "none of

the actions �xed f". These events form a sample

space.

When x = 1, then δ = CAn
−P(¬an | f) ·CAn

,

so in all cases δ ≤ CAn
which completes the

proof.

Remark. It is quite straightforward to show that

ECR(·) is not monotone when the model in-

cludes questions.

3 Pruning based on e�ciency and

ECR

We recently investigated the e�ect of a prun-

ing method based on e�ciency (Ottosen and

Jensen, 2008). By considering two adjacent

actions in an optimal troubleshooting sequence,

the following has been proved about the e�-

ciency (Jensen et al., 2001):

Theorem 3. Let s = 〈A1, . . . ,An〉 be an opti-

mal sequence of actions with independent costs.

Then it must hold that

ef(Ai |ε
i−1) ≥ ef(Ai+1 |ε

i−1),

for all i ∈ {1, . . . , n − 1}.

In Figure 2 it is illustrated how the theorem

can be used for pruning. If we have the order

ef(A1) > ef(A2) > ef(A3) at the root, we know

that A3 should never be the �rst action. Fur-

thermore, after performing A2, we know that A1

should never be the second action. We call this

e�ciency-based pruning.

In summary, the theorem was very easy to ex-

ploit during the expansion of a node by keeping

the actions sorted with respect to e�ciency and

by passing that information in the parent node.

However, the results where a bit disappointing

since it only gave a speed-up of a factor of 2-4.

We have since then tried to extend the idea

by considering three adjacent actions instead of

two. We call this ECR-based pruning. Figure

2 shows an overview of the pruning process. If

we consider an arbitrary subset of three actions

A1, A2, and A3, we would normally need to com-

pare six di�erent sequences. However, if we have



calculated the e�ciencies of the three actions

at the local root node with evidence ε, Theo-

rem 3 leaves us with only three possible candi-

dates. After the three sequences are expanded,

the paths are coalesced into a single node in the

search graph.

Now imagine that A∗ is about to expand A3

in the sequence 〈A1,A2, A3〉. We determine

if the current node expansion is optimal by

comparing it with the ECR of the sequence

〈A2,A3,A1〉. (There is no need for comparing

〈A1,A2,A3〉 with 〈A1,A3,A2〉 since Theorem 3

has pruned the latter.) If we expand the se-

quence 〈A2, A3,A1〉 �rst, the analysis is similar

and we compare with the best of the two other

sequences (again, the best sequence is found by

applying Theorem 3).

There is no way to avoid calculating the full

ECR of both sequences, and we have to traverse

the search graph down to the root and up to

the �rst node of the second path. Furthermore,

this traversal means that we have to store child

pointers in all nodes, and we also need to keep

all expanded nodes in memory. This more than

doubles the memory requirement.

In conclusion the method turned out to slow

down A∗ . In a model with 19 action and 19

faults, Theorem 3 pruned 989k nodes whereas

the ECR-based pruning prevented a mere 3556

expansions out of about 41k possible.

Theorem 2 also explains why the e�ect of the

pruning is so small: if A∗ is guided by a mono-

tone heuristics and expands a node, then the op-

timal path to that node has been found (Hart et

al., 1968). This means that the sub-trees out-

lined with dotted edges in Figure 2 are never

explored unless we really need to explore them.

Should we discover a non-optimal sequence �rst,

that path is not explored further until coalescing

happens.

4 An A∗ hybrid approach

Troubleshooting with dependent actions was

proved NP-hard by reduction from the exact

cover by 3-sets problem (Vomlelová, 2003).

Therefore, troubleshooting in models where

each action can repair three or more faults is

ε

A1 A2 A3

A3 A1

A1

A2 A3

A3 A2

Figure 2: An overview of the pruning process for

any subset of three actions. At the root of the

subtree we have evidence ε and the actions are

sorted with respect to e�ciency, and we have

ef(A1 |ε) > ef(A2 |ε) > ef(A3 |ε). Theorem 3

implies that we can prune the nodes ending in a

square, and so we are left with only three pos-

sible sequences (〈A1, A2,A3〉, 〈A1,A3,A2〉, and
〈A2,A3,A1〉). After A∗ has discovered the last

node in these three sequences, the three paths

are subject to coalescing.

NP-hard. However, A∗ still has di�culties in

�nding a solution for models with much lower

average dependency (that is, the average size of

fa(·) over all actions). Remarkably enough, we

found that when the average dependency went

down from 3 towards 1, then the running time

increased many times. In the following we de-

scribe a hybrid method for models with an av-

erage dependency well below 3.

Figure 3 shows an example of the search tree

explored by A∗ in our hybrid approach. Near the

root node, A∗ is often forced to create a branch

for each successor node. However, as we get

closer to the goal nodes, branching is more likely

to be avoided. The branching can be avoided



Figure 3: An example of what the search tree looks like in our hybrid approach. For some nodes,

the normal A∗ branching is avoided, and near goal nodes this branching is almost avoided for all

nodes. We can see that it might happen that the algorithm has to investigate all successors of a

node even though the path down to that node was explored without branching.

because we are able to determine the optimal

next step of the remaining sequence (see below).

This leads us to the following de�nitions:

De�nition 6. A dependency graph for a trou-

bleshooting model given evidence ε is the undi-

rected graph with a vertex for each action A ∈
A(ε) and an edge between two vertices A1 and

A2 if fa(A1 |ε) ∩ fa(A2 |ε) 6= ∅.

De�nition 7. A dependency set for a trouble-

shooting model given evidence ε is a connectivi-

ty component in the dependency graph given ε.

De�nition 8. A dependency set leader for a

troubleshooting model given evidence ε is the

�rst action of an optimal sequence in a depen-

dency set given ε.

Dependency sets are important because the

order of actions in the same dependency set does

not change when actions outside the set are per-

formed. This property has been exploited in the

following theorem (Koca and Bilgiç, 2004):

Theorem 4. Suppose we are able to calculate

the dependency set leaders. Then the globally

optimal sequence is given by the following algo-

rithm:

1. Construct the dependency sets and retrieve

the set leaders.

2. Calculate ef(·) for all set leaders.

3. Select the set leader with the highest ef(·)
and perform it.

4. If it fails, update the probabilities, and con-

tinue in step (2).

Our hybrid approach then simply works by

�nding the optimal sequence in dependency sets

of a fairly small size. For this work we have re-

stricted us to sets of a size < 4. At any point

before expanding a node, if the most e�cient

action belongs to a dependency set of such a

small size, we �nd the �rst action in that de-

pendency set. If the dependency set consists of

one or two actions, this calculation is trivial. If

the dependency set has three actions, we �nd

the �rst by comparing the three candidate se-

quences as we discussed in Section 3. Otherwise

we simply expand the node as usual by inspect-

ing all successors.

Table 4 shows the results of three versions

of A∗ . We can see that the hybrid approach

is somewhat slower for models with an average

dependency between 2 and 3. This is because

the hybrid approach spends time investigating

the size of the dependency set of the most ef-

�cient action, but it rarely gets to exploit the

bene�ts of a small dependency set. For an aver-

age dependency between 2.1 and 1.6 the hybrid

approach becomes superior, and below 1.6 it be-

comes very fast.



Table 1: Results for the hybrid approach in

models with 20 actions and 20 faults. The aver-

age dependency ranges between 3 and 1, and

each action is usually associated with 1 to 3

faults. The time is measured in seconds. "A∗ " is

A∗with coalescing, "pruning-A∗ " is "A∗ " plus

e�ciency-based pruning and "hybrid-A∗ " is the

hybrid approach based on "pruning-A∗ ". Al-

ready at an average dependency around 2.1 we

see that the hybrid method wins.
Method A∗ pruning-A∗ hybrid-A∗

Dep. Time

3.0 33.56 11.48 12.27

2.9 42.11 12.42 21.97

2.8 62.14 15.08 27.52

2.7 45.03 14.38 21.61

2.6 29.86 10.20 12.39

2.5 86.52 22.20 29.61

2.4 31.55 12.39 12.00

2.3 65.19 19.11 21.28

2.2 80.56 21.28 29.38

2.1 50.28 18.72 9.78

2.0 83.75 27.70 20.05

1.9 62.88 16.77 10.64

1.8 127.59 35.09 18.72

1.7 102.17 25.36 14.42

1.6 133.17 39.14 25.41

1.5 122.08 27.59 0.92

1.4 164.84 41.16 4.25

1.3 139.89 39.44 0.13

1.2 168.42 38.13 0.00

1.1 160.42 39.42 0.00

1.0 159.95 38.08 0.00

5 Discussion

We originally investigated Theorem 2 because

monotonicity plays an important role in promis-

ing bidirectional A∗methods (Kaindl and Kainz,

1997). However, a bidirectional A∗ for trouble-

shooting is very di�cult because there is no ap-

parent way to start a search from the goal nodes

using ECR(·).

The hybrid A∗ approach seems very promis-

ing. We still need to determine how large a de-

pendency set that it pays o� to solve. We ex-

pect that it will be most bene�cial to solve small

dependency sets by brute-force whereas depen-

dency sets of medium size can be solved by a

recursive call to hybrid-A∗ .

Acknowledgements

We would like to thank the reviewers for their

valuable and detailed feedback.

References

Rina Dechter and Judea Pearl. 1985. Generalized
best-�rst search strategies and the optimality af
a*. J. ACM, 32(3):505�536.

P. E. Hart, N. J. Nilsson, and B. Raphael. 1968.
A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Systems Sci-
ence and Cybernetics, SSC-4(2):100�7.

Finn V. Jensen, U�e Kjærul�, Brian Kristiansen,
Claus Skaanning, Jiri Vomlel, and Marta Vom-
lelová. 2001. The sacso methodology for trou-
bleshooting complex systems. Arti�cial Intelli-
gence for Engineering Design, Analysis and Man-
ufacturing, 15:321�333.

J. Kadane and H. Simon. 1977. Optimal strate-
gies for a class of constrained sequential problems.
The Annals of Statistics, 5:237�255.

Hermann Kaindl and Gerhard Kainz. 1997. Bidi-
rectional heuristic search reconsidered. Journal
of Arti�cial Intelligence Research, 7:283�317.

Eylem Koca and Taner Bilgiç. 2004. A trouble-
shooting approach with dependent actions. In
Ramon López de Mántaras and Lorenza Saitta,
editors, ECAI 2004: 16th European Conference
on Arti�cial Intelligence, pages 1043�1044. IOS
Press.

Thorsten J. Ottosen and Finn V. Jensen. 2008.
Better safe than sorry�optimal troubleshooting
through A* search with e�ciency-based pruning.
In Proceedings of the Tenth Scandinavian Confer-
ence on Arti�cial Intelligence, pages 92�97. IOS
Press.

M. Vomlelová and J. Vomlel. 2003. Troubleshoot-
ing: Np-hardness and solution methods. Soft
Computing Journal, Volume 7, Number 5, pages
357�368.

Marta Vomlelová. 2003. Complexity of decision-
theoretic troubleshooting. Int. J. Intell. Syst.,
18(2):267�277.



Discrimination and its sensitivity in probabilistic networks

Silja Renooij and Linda C. van der Gaag
Department of Information and Computing Sciences, UtrechtUniversity

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
{silja,linda }@cs.uu.nl

Abstract

A probabilistic network built for an application domain often has a single output variable of
interest, for which either the posterior probability of oneof its values or its most likely value is
reported and used for subsequent decision making. For our domain of application, however, we
are interested primarily in how well the network distinguishes between various compound output
values of interest for different diagnostic variables. To capture this, we introduce a concept of
discrimination, and illustrate a measure to this end, basedupon joint posterior probabilities. In
addition, we address the sensitivity of discrimination to inaccuracies in a network’s parameters
and show that standard sensitivity functions suffice for studying the effects of such inaccuracies.

1 Introduction

A probabilistic network designed for diagnostic
support in an application domain often has a sin-
gle output variable of interest, capturing the pos-
sible diagnoses. Our application domain of classi-
cal swine fever, however, aims at multiple-disorder
diagnosis. To this end, we have two output vari-
ables of interest: a main diagnostic variable to de-
tect classical swine fever, and a secondary variable
to capture primary other infections. Although out-
breaks of classical swine fever occur seldomly, it
is a very serious infectious disease which warrants
early detection to prevent rapid spreading. Early de-
tection, however, is hampered by close resemblance
of the early symptoms of the disease to those of
common infections, and by the simultaneous pres-
ence of such infections. A model for early detection
of classical swine fever, therefore, needs to be able
to distinguish between classical swine fever in an
early stage and a primary other infection. Moreover,
it should be capable of diagnosing classical swine
fever in combination with common infections.

In order to determine how well a probabilis-
tic network can distinguish between different di-
agnoses in an individual case, it does not always
suffice to consider the most likely value of a vari-
able of interest, or its posterior distribution, espe-
cially when more than one diagnostic variable is

concerned. Therefore, we introduce the concept of
evidence-specific discriminationbetween values of
one or more variables. Various measures involv-
ing posterior probabilities for the diagnoses of in-
terest can be used to capture such discrimination. In
this paper we illustrate the concept of discrimination
by defining the absolute difference between poste-
rior probabilities as a simple discrimination mea-
sure: the further these probabilities are apart, the
better the network discriminates between the asso-
ciated diagnoses.

We note that the term discrimination is somewhat
overloaded; it is, for example, often used in the
context of classification problems: “can our model
discriminate between pigs that have classical swine
fever and pigs that have not?” This question, al-
though relevant, concerns discrimination between
cases, and not between diagnoses in an individual
case, which is the problem we address here.

Posterior probabilities can be highly sensitive to
changes in a probabilistic network’s numerical pa-
rameters (Van der Gaag & Renooij, 2001). As the
parameters are generally estimated from (incom-
plete) data or assessed by human experts in the
domain of application, they are inevitably inaccu-
rate. To study the robustness of discrimination to
parameter inaccuracies, we can study the sensitiv-
ity of the output probabilities involved to parame-
ter changes by means of a sensitivity analysis. To



Figure 1: The network for early detection of classical swinefever (csf).

this end, we show how to derive a function that cap-
tures thesensitivity of discriminationto parameter
changes. In addition, we demonstrate that we can
efficiently compute a sensitivity function for joint
posterior probabilities, required in order to study the
dynamics, and therefore robustness, of discrimina-
tion between values of two or more variables.

The paper is organised as follows. In Section 2
we describe an application which motivates the need
for a concept of discrimination and introduce a pre-
liminary measure to this end. In Section 3, we estab-
lish functions that allow for studying the robustness
of discrimination to parameter inaccuracies. The
paper ends with conclusions and directions for fur-
ther research in Section 4.

2 The Concept of Discrimination

Classical swine fever (csf) is a serious infectious
disease and, although outbreaks occur seldomly, its
rapid spreading warrants early detection. Classical
swine fever is hard to diagnose in an early stage,
due to the high variation in its associated clinical
patterns, which strongly resemble those of common
other infectious diseases. To support the early de-
tection of csf, a probabilistic network is being de-
veloped (Geenen, Elbers, Van der Gaag & Loeffen,
2006). The network, shown in Figure 1, currently
includes 82 directed edges, 2113 conditional prob-

abilities, and 41 variables of which 24 can be ob-
served upon clinical investigation. The variables
capture processes in the underlying pathogenesis,
risk factors, relevant clinical signs, and alternative
explanations for these signs.

The main diagnostic variable CSF Viraemia in
the network models the presence or absence of csf in
an individual pig. The extremely low prior for the
presence of csf (0.0000016), in combination with
the common occurrence of other infections resem-
bling csf, both in pigs with and without csf, makes
that these diseases cannot all be modelled in a sin-
gle variable: csf would never be diagnosed. A sec-
ondary diagnostic variable in the network therefore
models primary other infections as possible alterna-
tive explanations of a pig’s symptoms. As a result,
for a given pig, not only the network’s prediction
of the probability of csf is of interest, but our pri-
mary interest is to know how well the network dis-
tinguishes csf in an early stage, with or without an-
other infection being present, from just a primary
other infection.

Known concepts as the most likely value of a
variable of interest, or its posterior distribution, do
not always suffice to determine how well a prob-
abilistic network can distinguish between different
diagnoses in an individual case, especially when
more than one diagnostic variable is concerned. To



capture this, we therefore introduce the novel con-
cept of evidence-specific discriminationbetween
two combinations of values for one or more vari-
ables. To measure discrimination, we use a func-
tion of the posterior probabilities of the (compound)
values of interest. Thismeasure of discrimination
preferably has the property of obtaining a maximum
value when one of the posteriors equals zero and
the other 1: it is then easy to discriminate between
the two associated diagnoses; likewise, the measure
should obtain a minimum value when the posteriors
are equal. Possible measures of discrimination can
be based on (odds) ratios, or more complex func-
tions. In this paper, for the purpose of illustration,
we use a simple and straightforward measure of dis-
crimination, defined below. In the remainder of this
paper, we will writePr(a | e), to denote an output
probability under study, wherea is a specific value
assignment to one or more variablesA of interest
ande denotes the available evidence.

Definition 1. Let Pr(a | e) andPr(b | e) be two
output probabilities of interest. The amount ofdis-
crimination of the network betweena andb in the
context of evidencee, written d(a ; b | e), equals
| Pr(a | e) − Pr(b | e) |.

The above measured(a ; b | e) takes on values
between zero and 1, with larger values indicating a
larger amount of discrimination. This specific mea-
sure also has the benefit of being symmetric in its
arguments, that is,d(a; b | e) = d(b; a | e).

Example 1. Discrimination can be measured be-
tween different values of the same variable. For
example, discrimination between a gastro-intestinal
infection (value gi of variable POI , modelling
primary other infections) and an airway infection
(valueai of variablePOI ) in pig 14 is given by

d(gi ; ai | 14) = | Pr(gi | 14) − Pr(ai | 14) |

= 0.54 − 0.10 = 0.44

indicating that the network can easily distinguish
between these two types of infection in this pig.
Discrimination can also be studied for values of dif-
ferent variables. For example, discrimination be-
tween classical swine fever (valuecsf of variable
CSF ) and a gastro-intestinal infection in pig 169 is
given byd(csf ; gi |169) = | Pr(csf |169)−Pr(gi |
169) | = 0.20 − 0.13 = 0.07, indicating that the

network has some difficulty distinguishing csf from
a common infection in this pig. Discrimination
can even be studied for value assignments to more
than one variable. For example, discrimination be-
tween the presence and absence of classical swine
fever in combination with an airway infection in pig
304: d(csf , ai ;¬csf , ai | 304) = | Pr(csf , ai |
304)−Pr(¬csf , ai |304) | = | 0.01−0.15 | = 0.14;
this indicates that the network is capable of diagnos-
ing csf in combination with another infection in this
pig. �

3 Robustness of Discrimination

Sensitivity analysisis a powerful tool for study-
ing the robustness of a probabilistic network’s out-
put probabilities to inaccuracies in the network pa-
rameters. Since discrimination is defined in terms
of output probabilities, its robustness to parameter
changes is a relevant matter, and can be studied by
means of the functions that result from a sensitivity
analysis. We now review some known properties of
such sensitivity functions.

3.1 Sensitivity Functions

Sensitivity analysis of a probabilistic network
amounts to establishing, for each of the network’s
numerical parameters, thesensitivity functionthat
expresses an output probability of interest in terms
of that parameter. Letx = p(b | π) be a parame-
ter under study, whereb is a value of some variable
B andπ is a combination of values forB’s parents.
We now usefe

a(x) to denote the sensitivity function
that expresses the output probabilityPr(a | e) in
terms of the parameterx.

Any one-way sensitivity functionfe
a(x) is a quo-

tient of two linear functions in the parameterx un-
der study (Castillo, Gutiérrez & Hadi, 1997; Couṕe
& Van der Gaag, 2002). More formally, the function
takes the form

fe
a(x) =

Pr(a, e)(x)

Pr(e)(x)
=

c1 · x + c2

c3 · x + c4

where the constantscj , j = 1, . . . , 4, are built from
the assessments for the parameters that are not be-
ing varied1. Efficient algorithms exist to compute

1We assume that the parameters pertaining to the same con-
ditional distribution as the parameter under study are co-varied
proportionally (Kjærulff & Van der Gaag, 2000).



√|2r|

center
(s,t)

• vertex

r < 0
s > 1
t ≤ 1

r < 0
s < 0
t ≥ 0

r > 0
s < 0
t ≤ 1

r > 0
s > 1
t ≥ 0

I

IVIII

II

Figure 2: Two hyperbolas with their branches and
associated constants (the constraints ons andt are
specific for sensitivity functions).

the constants of any sensitivity function relating a
(posterior) probability for a value of a single output
variable to a network parameter (Coupé & Van der
Gaag, 2002; Kjærulff & Van der Gaag, 2000).

The sensitivity functionfe
a(x) can take one of

three general forms. The function islinear for prior
probabilities of interest, or ifPr(e) is unaffected by
the parameter variation (c3 = 0); if c4 = 0, then
c2 = 0 and the function reduces to aconstant. In all
other cases the function is a fragment of arectangu-
lar hyperbola, which takes the general form

f(x) =
r

x − s
+ t

where, for a sensitivity function withc1, . . . , c4 as
before,s = −c4/c3, t = c1/c3, andr = (c2/c3) +
s · t. In the remainder of the paper, we assume any
sensitivity function to be hyperbolic.

Figure 2 illustrates that a rectangular hyperbola
in general has two branches, and two asymptotes
defining its center(s, t). We observe that a sensitiv-
ity function is defined by0 ≤ x, f(x) ≤ 1; the two-
dimensional space of feasible points thus defined, is
termed theunit window. Since a sensitivity function
moreover should be continuous forx ∈ [0, 1], its
vertical asymptote necessarily lies outside the unit
window. A hyperbolic sensitivity function therefore
is a fragment of a single hyperbola branch.

3.2 Discrimination Dynamics: Simple Values

The robustness of a network’s discrimination be-
tween a and b, in the context of evidencee, to

changes in a parameterx, can be captured by con-
sideringd(a; b | e) as a function ofx. In this section
we assume thata and b are simplevalues, that is
values for a single variableA and a single variable
B; the case wherea andb arecompoundvalues is
considered in Section 3.3. In this paper we assume
thatd(a ; b | e) itself is a function involving simple
operators as the sum, the difference, and/or the ratio
of posterior probabilities. We will demonstrate, for
our choice of measure, thatdiscrimination sensitiv-
ity d(a; b|e)(x) can now again be described in terms
of a rectangular hyperbola.

Proposition 1. Let fe
a(x) = ra/(x − s) + ta and

fe
b (x) = rb/(x−s)+tb be two sensitivity functions.

Then

fe
a(x) − fe

b (x) =
(ra − rb)

x − s
+ (ta − tb)

The above immediately follows from having the
same constants in both sensitivity functions, which
is justified by the following lemma.

Lemma 1. For a fixed parameterx and evidence
e, all sensitivity functionsfe

A(x) for any variableA
have the same vertical asymptote.

Recall that the constants for a sensitivity func-
tion fe

a(x) equalss = −c4/c3, wherec3 · x + c4 =
Pr(e)(x). Given a parameterx, constants therefore
relates to just the available evidence and is indepen-
dent of the output variable of interest.

Although the difference function from Proposi-
tion 1 again is a fragment of one hyperbola branch
for x ∈ [0, 1], it will in general not be a sensitivity
function since it can be negative on[0, 1]; for our
choice of measure,d(a ; b | e)(x) is the absolute
value of this difference. For a fixed parameterx and
evidencee, establishing the constants of all sensitiv-
ity functionsfe

A(x) for any single variableA, rather
than for one specificA, comes at no additional com-
putational expense. Establishingd(a; b|e)(x) hence
requires no additional network propagations.

The functiond(a ; b | e)(x) now details how dis-
crimination is affected by parameter variation. Dis-
crimination is robust to parameter inaccuracies if its
change upon varying a parameter is limited. To as-
sess robustness, we now define different intervals
of parameter values having different effects on dis-
crimination.



 0  0.2  0.4  0.6  0.8  1

f(
x)

x

1

Figure 3: Example sensitivity functions with
s = −1, xint = 0.56 andxmax = 0.

Sinced(a ; b | e)(x) is based on two sensitivity
functions, which are continuous and monotone for
x ∈ [0, 1], we have that maximum discrimination is
found on the boundaries of the unit window, that is,
for eitherx = 0 or x = 1. The value of parameterx
where discrimination is maximised will be denoted
by xmax:

xmax = argmax
x∈[0,1]

d(a; b | e)(x) ∈ {0, 1}

If the two sensitivity functionsfe
a(x) andfe

b (x)
for the posterior probabilities under consideration
intersect within the unit window, such as in Fig-
ure 3, then minimum discrimination is attained at
this intersection point. Assuming that the two
hyperbolas are truly different functions, that is
fe

a(x) 6= fe
b (x), they intersect for at most one value

of x, denotedxint. For our choice of discrimina-
tion measure this minimum value equals zero and is
attained at

d(a; b | e)(xint) = 0 ⇐⇒ xint =
ra − rb

tb − ta
+ s

If xint ∈ 〈0, 1〉, then parameter values on op-
posite sides ofxint will result in the same amount
of discrimination between the valuesa andb under
consideration (see Figure 4). Letxsim denote the
value ofx for which discrimination equals the orig-
inal amount of discrimination betweena and b in
contexte, that is

d(a; b | e)(xsim) = d(a; b | e)(x0),

wherex0 is the original value of the parameterx
under consideration. For our example measure, the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x

f169
csf (x)

f169
gi (x)

d(x)

x0

Figure 4: Discriminationd(csf ; gi | 169)(x) for
a parameterx with x0 = 0.075; xint = 0.11 and
xsim = 0.16.

value ofxsim can be easily established fromd0 =
fe

a(x0) − fe
b (x0):

xsim =
ra − rb

tb − ta − d0
+ s

We now note thatx0 andxsim necessarily lie on op-
posite sides ofxint if the latter two lie within the unit
window. As a result, forx-values betweenx0 and
xsim, discrimination will become smaller than its
original value atx0; we will then say that discrim-
ination decreases, even though it is not a decreas-
ing function ofx; for x-values outside the interval
bounded byx0 and xsim discrimination increases.
If xsim 6∈ [0, 1], for example as in Figure 3 with
x0 = 0.10 andxsim = 1.70, then, necessarily,xmax

lies on the same side ofxint asx0, so variation of
x from x0 towardsxmax increases discrimination,
whereas discrimination will become less whenx is
varied in the opposite direction.

The intersection point of the two hyperbolas does
not necessarily lie within the unit window (see for
example Figure 5). If the intersection point lies out-
side the unit window, or if the hyperbola branches
do not intersect at all, then discriminationd(a ; b |
e)(x) is monotone forx ∈ [0, 1], obtaining its min-
imum value at1 − xmax.

We now have all the ingredients to describe the
effect of parameter variation on discrimination.

Proposition 2. Let fe
a(x), fe

b (x), xmax, xint, and
xsim be as before. Then the network’s discrimina-
tion d(a ; b | e) betweena and b in the context of
evidencee changes as follows, upon varying param-
eterx:



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x

f14
ai (x)

f14
gi (x)

d(x)

x0

Figure 5: Discriminationd(gi ; ai | 14)(x) for a
parameterx with x0 = 0.20; xint = 2.08, xsim =
−1.17, andxmax = 0.

◮ if xint 6∈ [0, 1] or xsim 6∈ [0, 1], then discrimi-
nation is non-decreasing ifx is varied towards
xmax, and non-increasing otherwise.

◮ if xint ∈ [0, 1] and xsim ∈ [0, 1], then dis-
crimination is non-decreasing ifx is var-
ied to x ≤ γ or to x ≥ δ, where [γ, δ]
= [min{x0, xsim},max{x0, xsim}], and non-
increasing otherwise.

Example 2. Reconsider the network for early de-
tection of csf and its discrimination between csf and
a gastro-intestinal infection for pig 169,d(csf ; gi |
169). Discrimination between these two values as
a function of a parameterx pertaining to the suc-
cess of treatment with antibiotics (x0 = 0.075), is
captured by the following two sensitivity functions:

f169
csf (x) =

0.12

x + 0.55
andf169

gi (x) =
−0.54

x + 0.55
+ 1

and shown in Figure 4. From these functions we
find thatxint = 0.11 andxsim = 0.16. As a result,
if a more accurate assessment of the parameter turns
out smaller than 0.075, then the network will be able
to better discriminate between the two infections in
this pig; if a more accurate assessment is larger, but
not as large as 0.16, then discrimination becomes
worse. Similarly, discriminationd(gi ; ai | 14) be-
tween a gastro-intestinal and an airway infection in
pig 14, as a function of a parameterx pertaining to
faeces samples (x0 = 0.20), is captured by the fol-
lowing two sensitivity functions:

f14
gi (x) =

0.69

x + 1.19
+ 0.05, and

f14
ai (x) =

−0.39

x + 1.19
+ 0.38

shown in Figure 5. From the formulas we find that
xint = 2.08 andxsim = −1.17. We conclude that
discrimination decreases for any parameter value
larger than0.20, and increases otherwise. �

For our example measure we have studied the dif-
ference between two sensitivity functions, each de-
scribing a posterior probability for a simple output
value as a function of a network parameter. We note
that the difference between two such posterior prob-
abilities in relation to changes in a network param-
eter has been studied before by Chan & Darwiche
(2002) in the context of parameter tuning. They
demonstrated that parameter values which enforce
a constraint on the difference, or on the ratio, of two
posterior probabilities can be computed from par-
tial derivatives established from the network with-
out explicitly determining a sensitivity function. Es-
tablishing the constants of the sensitivity function,
however, is just as efficient and has the benefit of
providing insight in the effects of arbitrary parame-
ter changes on an output of interest.

3.3 Discrimination Dynamics: Compound
Values

In this section, we extend the results on the robust-
ness to parameter inaccuracies of discrimination be-
tween simple values, to apply to compound value
combinations for two or more variables. This type
of robustness is relevant in case we need to dis-
tinguish between diagnoses for multiple disorders,
modelled in separate diagnostic variables. In prac-
tice, the number of variables under consideration
should typically be small, for computational reasons
as well as for interpretability. Although results in
this section apply to compound values for any num-
ber of variables, we limit the discussion to only two.

We consider the variablesA andB and the poste-
rior probability Pr(a, b | e) of the compound value
ab. A sensitivity functionfe

ab(x) for ab in the con-
text of evidencee, as a function ofx, is readily de-
termined by one of the following two approaches:

I) Extend the network with a new variableY ,
with parentsA andB and all their compound
values as possible values forY ; for the CPT,
define p(y | a, b) = 1 iff y ≡ ab, and



p(y | a, b) = 0 otherwise. Enter evidencee
into the new network and computefe

Y =ab(x).

II) Enter evidencee into the original network to
computefe

b (x), then enter additional evidence
b to computef be

a (x). Finally, multiply the two
functions:

fe
ab(x) = f be

a (x) · fe
b (x)

=

(

ra

x − sbe

+ ta

)

·

(

rb

x − se
+ tb

)

The first approach requires less propagations, but in
a more complex network, and establishes the sensi-
tivity functions for all compound values of the vari-
ables under consideration. The second approach
leaves the network as-is and provides all informa-
tion for establishing the sensitivity functionsfe

Ab(x)
for all values of all variablesA in the network. The
multiplication step is simplified by the observation
that the resulting function is again a sensitivity func-
tion and therefore a rectangular hyperbola. This in-
deed follows after careful inspection of all constants
involved.

Proposition 3. Letf be
a (x) = ra/(x− sbe) + ta and

fe
b (x) = rb/(x − se) + tb be two sensitivity func-

tions. Then

fe
ab(x) =

ra · tb + (se − sbe) · ta · tb
x − se

+ ta · tb

is the sensitivity function relating the joint probabil-
ity Pr(a, b | e) to parameterx.

Proof. First we rewrite the formulas for the hyper-
bolic sensitivity functions in terms of a fraction of
linear functions:

f be
a (x) =

Pr(a, b, e)(x)

Pr(b, e)(x)
=

c1 · x + c2

c3 · x + c4

where−c4/c3 = sbe, c1/c3 = ta, and c2/c3 =
ra − sbe · ta, and

fe
b (x) =

Pr(b, e)(x)

Pr(e)(x)
=

c3 · x + c4

c5 · x + c6

where−c6/c5 = se, c3/c5 = tb, andc4/c5 = rb −
se · tb. Now,

fe
ab(x) = f be

a (x) · fe
b (x) =

c1 · x + c2

c5 · x + c6

=
rab

x − sab

+ tab

where

sab = −
c6

c5
= se

tab =
c1

c5
=

c1

c3
·
c3

c5
= ta · tb

rab =
c2

c5
+ se · ta · tb =

c2

c3
·
c3

c5
+ se · ta · tb

= (ra − sbe · ta) · tb + se · ta · tb

From the above observations, we have that all
properties for sensitivity functions and discrimina-
tion derived in the previous section readily apply to
the compound values case.

Example 3. Reconsider the network for early de-
tection of csf. We study the network’s discrimina-
tion, and its robustness, between csf and one of the
primary other infections. More specifically, since
other infections are quite common in pigs, we are
interested in whether or not csf can be distinguished
from them. In this example, we focus on the differ-
ence betweenPr(csf , ¬gi | 169) andPr(¬csf , gi |
169) for pig 169. The robustness of discrimina-
tion, as a function of a parameterx, can be stud-
ied by means of the corresponding sensitivity func-
tions: | f169

csf ,¬gi (x)−f169
¬csf , gi (x)|. The constants for

the rectangular hyperbola representing this differ-
ence are found by applying Propositions 3 and 1 to
the functionsf169,¬gi

csf (x), f169, gi
¬csf (x), andf169

gi (x)

and exploiting the fact thatf169
¬gi (x) = 1 − f169

gi (x).
From these constants,xint andxsim can be straight-
forwardly computed.

Examples of the sensitivity functions for the sim-
ple output values under consideration and a parame-
terx pertaining to the success of an antibiotics treat-
ment are given in Figure 6. The sensitivity functions
for the compound values of interest for the samex,
together with discrimination as a function ofx, are
shown in Figure 7. Note that Figure 7 gives valu-
able insight into the dynamics of discrimination be-
tween csf and gastro-intestinal infections, which is
not obvious from Figure 6: although from Figure 6
we can see that changes in the posterior probabil-
ity of gi will pull the probabilities for its combina-
tion with csf towards the center of the probability
range, it is not immediately obvious from this fig-
ure that the functions for the compound values will
intersect, nor where this will occur. �



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x

f169,gi
csf (x)

f169
gi (x)

f169,¬gi
csf (x)

x0

Figure 6: Sensitivity functions for simple values of
variables CSF and POI, for a parameterx pertaining
to the success of an antibiotics treatment.

4 Conclusions

In this paper we introduced the concept of evidence-
specific discrimination to investigate how well a
probabilistic network can distinguish between two
or more output values or, more in general, between
value combinations for two or more output variables
of interest. We illustrated a simple measure of dis-
crimination based on the difference between two
posterior probabilities. Subsequently, we demon-
strated how sensitivity functions can be employed
to study the robustness of discrimination to parame-
ter inaccuracies, even when discrimination concerns
compound values rather than simple ones.

Our results on the dynamics of discrimination
build to a large extent on the observation that, in
the same evidence context, simple operations on
hyperbolic sensitivity functions for the same pa-
rameterx, again result in a rectangular hyperbola.
This entails that more sophisticated discrimination
measures, such as for example (odds) ratios or
|fe

a(x) − fe
b (x)|/(fe

a(x) + fe
b (x)), can be straight-

forwardly employed with the techniques presented
in this paper. Further research is required to in-
vestigate what measure of discrimination is most
suitable in what situation, and what amount of dis-
crimination is acceptable or desirable. In addition,
we plan on investigating to what extent results that
address evidence-dependent bounds on sensitivity
functions (Renooij & Van der Gaag, 2005) can be
employed to make general statements concerning
discrimination involving all network parameters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x

f169
csf, ¬gi (x) f169

¬csf, gi (x)

d(x)

x0

Figure 7: Sensitivity functions for compound val-
ues of variables CSF and POI, for a parameterx
pertaining to the success of an antibiotics treatment,
together with discriminationd(csf ,¬gi ;¬csf , gi |
169)(x) for parameterx.

References

E. Castillo, J.M. Gutíerrez, A.S. Hadi (1997). Sensitivity
analysis in discrete Bayesian networks.IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. 27,
pp. 412 – 423.

H. Chan, A. Darwiche (2002). When do numbers really
matter? Journal of Artificial Intelligence Research,
vol. 17, pp. 265 – 287.

V.M.H. Couṕe, L.C. van der Gaag (2002). Properties of
sensitivity analysis of Bayesian belief networks.An-
nals of Mathematics and Artificial Intelligence, vol.
36, pp. 323 – 356.

P.L. Geenen, A.R.W. Elbers, L.C. van der Gaag, W.L.A.
Loeffen. Development of a probabilistic network for
clinical detection of classical swine fever.Proceedings
of the 11th Symposium of the International Society
for Veterinary Epidemiology and Economics, Cairns,
Australia, pp. 667669, 2006.

U. Kjærulff, L.C. van der Gaag (2000). Making sensitiv-
ity analysis computationally efficient.Proceedings of
the 16th Conference on Uncertainty in Artificial Intel-
ligence, Morgan Kaufmann, San Francisco, pp. 317 –
325.

L.C. van der Gaag, S. Renooij (2001). Analysing sen-
sitivity data from probabilistic networks.Proceedings
of the 17th Conference on Uncertainty in Artificial In-
telligence, Morgan Kaufmann, San Francisco, pp. 530
– 537.

S. Renooij, L.C. van der Gaag (2005). Exploiting
evidence-dependent sensitivity bounds.Proceedings
of the 21st Conference on Uncertainty in Artificial In-
telligence, AUAI Press, Corvallis, OR, pp. 485-492.



An empirical analysis of loopy belief propagation in three
topologies: grids, small-world networks and random graphs

R. Santana, A. Mendiburu and J. A. Lozano
Intelligent Systems Group

Department of Computer Science and Artificial Intelligence
University of the Basque Country

Paseo Manuel de Lardizábal, 20018 San Sebastian - Donostia, Spain.
rsantana,alexander.mendiburu,ja.lozano@ehu.es

Abstract

Recently, much research has been devoted to the study of loopy belief propagation algo-
rithm. However, little attention has been paid to the change of its behavior in relation
with the problem graph topology. In this paper we empirically study the behavior of
loopy belief propagation on different network topologies which include grids, small-world
networks and random graphs. In our experiments, several descriptors of the algorithm are
collected in order to analyze its behavior. We show that the performance of the algorithm
is highly sensitive to changes in the topologies. Furthermore, evidence is given showing
that the addition of shortcuts to grids can determine important changes in the dynamics
of the algorithm.

1 Introduction

Loopy belief propagation (LBP) (Pearl, 1988) is
a very efficient message-passing algorithm that
has been applied to a variety of inference and
optimization problems. One of the factors that
influences the accuracy and efficiency of LBP
and other message-passing algorithms is the un-
derlying graphical structure (or topology) of the
graphical model where the inference algorithm
is applied. Although it is known that the exis-
tence of cycles in the graph has an impact on
the behavior of LBP, little attention has been
given to the study of the relationship between
other characteristics of the graph topology and
the LBP behavior. Moreover, few papers con-
sider possible ways of using the graph topology
to adapt the LBP implementation.

A paper that can be considered an exception
to this trend is (Ohkubo et al., 2005). It de-
scribes a modification of LBP that takes into
account the information about the topological
heterogeneity of the complex networks where it
is applied. It turns out that by modifying the
asynchronous message-passing schedule accord-

ing to the degree of the network vertices it is
possible to increase the efficiency of LBP. The
use of topological information in the scheduling
of the messages could also be seen as another
way of conceiving informed scheduling schemes
of which residual belief propagation (Elidan et
al., 2006) is perhaps the best known example.

Natural candidates for analyzing the influ-
ence of the graph topology on LBP are com-
plex networks, whose topological characteristics
are midway between those of regular lattice or
grids and random graphs. The recent surge on
the study of complex networks (Watts and Stro-
gatz, 1998) is mainly due to their suitability as
a framework for the study of complex systems
(Dorogovtsev et al., 2007).

One example of complex networks are small-
world networks which simultaneously hold some
particular characteristics of regular lattices,
such as the existence of local clustering between
neighboring vertices, with other attributes char-
acteristic of random networks, such as the short
average distance between pairs of vertices. This
combination of attributes makes them more ap-



propriate than grids and random graphs to rep-
resent interaction networks of real phenomena
such as neuronal, social and genetic networks
(Watts and Strogatz, 1998), electronic circuits
(Ferrer i Cancho et al., 2001), etc.

In this paper, we analyze two kinds of prob-
lems related with the use of LBP on networks
of different topology:

1. We consider the change in the dynamics of
LBP when there is a variation in the graph-
ical structure. In particular, we investigate
whether there are significant differences in
the behavior of LBP for problems defined
in grids, small-world and random graphs.

2. We also investigate whether it is possible to
influence the performance and behavior of
LBP by modifying the graphical structure
without changing the function values.

The paper is organized as follows: In the fol-
lowing section the main concepts related to the
class of complex networks and factor graphs are
introduced. Section 3 briefly reviews the LBP
algorithm and in Section 4 the main character-
istics of our implementation, FlexLBP, are ex-
plained. In Section 5, the use of LBP across the
different classes of chosen topologies is analyzed.
Section 6 presents the experiments and analyzes
their results. The paper ends in Section 7 where
the conclusions and topics for future work are
presented.

2 Small-world networks and factor

graphs

2.1 Small-world networks

Let G = (V,E) be an undirected graph, where
V = {v1, . . . , vn} is the set of nodes and E =
{e1, . . . , em} is the set of edges between the
nodes. We use parameter ǫij to represent the
existence of an edge between vertices vi and vj.
ǫij = 1 if there exists such an edge, ǫij = 0
otherwise. Two nodes connected by an edge are
called adjacent and we denote ki to the degree of
a given vertex vi, which is the number of edges
connecting vi with other nodes. The shortest

path length between vertices vi and vj is de-
noted dij . We assume the graph G is connected
and, therefore, dij is finite and positive ∀i, j.

Let |Γi| be the number of connections be-
tween the nearest neighbors of a node vi ∈ V

and Ci = |Γi|
ki(ki−1) , the clustering coefficient C

is calculated as C = 1
n

∑
i Ci. The path length

is calculated as L = 1
n(n−1)

∑
i6=j dij .

Small-world networks are characterized by
a high clustering coefficient and a small path
length. They can be generated by randomly
replacing a fraction p of the links of a d-
dimensional lattice with new random links.
Since the new links decrease the shortest path
length between the connected nodes, they are
usually called shortcuts. The two limiting val-
ues of p = 0 and p = 1 respectively correspond
to a regular lattice and a random graph. p is
commonly called the rewiring probability.

Different patterns can be identified in the con-
nectivity of small-world networks resulting in a
classification (Amaral et al., 2000) of these net-
works in scale-free networks, broad-scale net-
works and single-scale networks. For more de-
tails on small-world and other complex net-
works, (Amaral et al., 2000; Barthélémy and
Amaral, 1999; Dorogovtsev et al., 2007) can be
consulted.

2.2 Factor graphs

Factor graphs (Kschischang et al., 2001) are bi-
partite graphs with two different types of nodes:
variable nodes and factor nodes. Each vari-
able node identifies a single variable Xi that
can take values from a (usually discrete) do-
main, while factor nodes fj represent different
functions whose arguments are subsets of vari-
ables. This is graphically represented by edges
that connect a particular function node with its
variable nodes (arguments).

Factor graphs are appropriate to represent
those cases in which the joint probability dis-
tribution can be expressed as a factorization of
several local functions:

p(x1, . . . , xn) =
1

Z

∏

jǫJ

fj(xj) (1)

where Z =
∑

x

∏
jǫJ fj(xj) is a normalization



constant, n is the number of variable nodes,
J is a discrete index set, Xj is a subset of
{X1, . . . ,Xn}, and fj(xj) is a function contain-
ing the variables of Xj as arguments.

The structure of a factor graph can be deter-
mined from a given undirected network by as-
sociating a factor node to each edge in the net-
work. We use factor graphs as the base graphi-
cal for the application of LBP.

3 Loopy belief propagation

LBP works by exchanging messages between
nodes. Each node sends and receives messages
until a stable situation is reached. Messages,
locally calculated by each node, comprise sta-
tistical information concerning neighbor nodes.

When applied on factor graphs, two kinds of
messages are identified (Yedidia et al., 2005):
messages ni→a(xi) sent from a variable node i

to a factor node a, and messages ma→i(xi) sent
from a factor node a to a variable node i.

Messages are updated according to the fol-
lowing rules:

ni→a(xi) :=
∏

cǫN(i)\a

mc→i(xi) (2)

ma→i(xi) :=
∑

xa\xi

fa(xa)
∏

jǫN(a)\i

nj→a(xj)

(3)

ma→i(xi) := arg max
xa\xi

{fa(xa)
∏

jǫN(a)\i

nj→a(xj)}

(4)
where N(i)\a represents all the neighboring
factor nodes of node i excluding node a, and∑

xa\xi
expresses that the sum is completed

taking into account all the possible values that
all variables except Xi in Xa can take –while
variable Xi takes its xi value.

Equations 2 and 3 are used when marginal
probabilities are looked for (sum-product). By
contrast, in order to obtain the most proba-
ble configurations (max-product), Equations 2
and 4 should be applied.

When the algorithm converges (i.e. mes-
sages do not change), marginal functions (sum-
product) or max-marginals (max-product),
gi(xi), are obtained as the normalized product
of all messages received by Xi:

gi(xi) ∝
∏

aǫN(i)

ma→i(xi) (5)

Regarding the max-product approach, when
the algorithm converges to the most probable
value, each variable in the optimal solution is as-
signed the value given by the configuration with
the highest probability at each max-marginal.

4 FlexLBP program

As described in the previous sections, LBP is a
widely studied and used algorithm and has been
rediscovered and adapted repeatedly to partic-
ular problems. Thus, different implementations
have been developed since the algorithm was
first proposed, although most of them focus on a
particular scheduling policy, stopping criterion,
etc.

In our LBP implementation (FlexLBP), we
have designed a flexible tool, so that researchers
can tune different parameters according to the
characteristics of the problem they are fac-
ing. The FlexLBP implementation has been
done following a distributed scheme. That is,
each node runs independently, triggered by the
message(s) it receives. Additionally, different
scheduling policies (asynchronous, synchronous,
and even particular rules for individual nodes)
can be selected. In addition, the set of nodes
that start sending messages can be customized,
the order in which messages are processed can
be changed, different values can be set for
the initial messages, and max-product or sum-
product algorithms can be selected. Finally,
and due to the distributed scheme, stopping
conditions are checked locally (in each node).
We have established four different stopping sit-
uations: (1) a given maximum number of iter-
ations is reached (that is, calculated messages
are different), (2) a node stops because all its
neighbors have stopped, (3) message values cal-
culated by a node have not changed in the last



i iterations, and (4) message values calculated
by a node follow a periodic (cyclic) sequence.

To investigate the behavior of LBP, we col-
lect a number of statistics that will be used in
the analysis of the algorithm behavior. These
statistics include information about the four dif-
ferent stopping criteria previously explained.

5 LBP on networks of different

topologies

Key to the evaluation of LBP is the determina-
tion of the network topologies from which the
factor graphs are constructed by associating a
factor node to each edge in the graph. We con-
sider two different scenarios to investigate the
effects of the network topology. These scenarios
are defined by the way the networks are gener-
ated.

5.1 From grids to random graphs

We start from a factor graph Gi constructed
from a 2-dimensional grid with periodic bound-
ary conditions. In Gi, there is a factor between
any pair of nodes that are neighbors in the grid.
The number of nodes is n = ×m where m is the
dimension of the grid. The number of factors is
2n. The function values for each of the factors
are independently generated.

¿From graph Gi, a collection of factor graphs
is generated by rewiring the original edges in
the grid of Gi with probability p. To generate a
rewired graph from Gi, each edge is visited and
a decision about rewiring is made with probabil-
ity p. If the edge if rewired, the variable nodes
in the corresponding factor node are modified
but the factor node’s function values are kept
intact.

5.2 Adding shortcuts

Similar to the previous section, we start from
a factor graph Gi constructed from a 2-
dimensional grid with periodic boundary condi-
tions. In this case, a collection of factor graphs
is generated from graph Gi by adding e edges
to the grid of Gi and associating a factor to
each edge. Three classes of graphs are created
according to the way shortcuts are added:

1. Randomly: Edges are added between two
randomly selected nodes.

2. Max. distance: At each step, an edge is
added between a pair of nodes at maxi-
mum distance in the current network. Ev-
ery time an edge is added, distances are
recalculated.

3. Min. distance: At each step, an edge is
added between a pair of nodes at distance
2 in the current network. Every time an
edge is added, distances are recalculated.

The different procedures used to add the
edges determine differences between the path
lengths of graphs belonging to the different
groups. Regarding the factor nodes, no matter
which method was used for adding the short-
cuts, the function values for all the configura-
tions of each of the added factors are set to 1.
This means that the contribution of all possi-
ble configurations of these factors to the global
function will be the same and therefore the max-
imum configuration of the original graph (re-
spectively the marginals) will not be modified
by the addition of the factors. However, the in-
troduction of the new factors (or shortcuts) may
have an effect on the LBP dynamics and this is
precisely what we would like to identify.

6 Experiments

6.1 Design of the experiments

The starting graph structures used in our ex-
periments are 2-dimensional grids (m = 7) with
periodic conditions. We use binary variables
(n = 49) and the maximum size of the factor
nodes is 2. Random functions are used. The
values corresponding to each factor node en-
try are generated as Jij = eβ, where β is a
value uniformly chosen from (0, 1). To deter-
mine whether differences between the behavior
of LBP on the different classes of networks are
statistically significant the Kruskal-Wallis test
(Hsu, 1996) has been employed.

In all the following experiments, the maxi-
mum number of messages calculated by each



node was set to 2500 and a node is said to con-
verge when the same message value is repeated
500 times.

6.2 Investigating LBP when the

rewiring probability is increased

In these experiments we investigate how LBP is
affected by the changes in the rewiring prob-
ability p. Since the transition to the small-
network topology is known to occur for small
p values, we generate networks for values of
p ∈ {0.01, 0.02, . . . , 0.1}. In addition, and in
order to observe the behavior of LBP when p is
further increased, we also generate networks for
p ∈ {0.2, 0.3, . . . , 1.0}.

We identify each member of the
graph collection generated from Gi

with a unique assignment to parame-
ters p ∈ {0.01, 0.02, . . . , 0.1, 0.2, . . . , 1.0},
inst ∈ {1, . . . , 100}. Thus, for each value of p,
100 different graphs are generated by rewiring
the edges from Gi with probability p. The total
number of factor graphs generated starting
from Gi is 1900. Since in our experiments we
conducted experiments with 10 initial graphs,
i.e. i ∈ {1, . . . , 10}, and the max and sum
versions of LBP were used, the total number of
LBP runs was 38, 000.

Figures 1, 2 and 3 show the results of max-
LBP for different values of the rewiring proba-
bility. For each of the descriptors employed, the
results were computed as the average among all
the runs for the 10 different instances. The used
descriptors were: the function value of the best
solution found by LPB, the number of nodes
that converged and the number of iterations for
nodes that converged.

An analysis of Figure 1 reveals the decrease
in the average value of the best solution found
by max-LBP when the rewiring probability is
increased. This may indicate that the type of
constraints introduced by higher values of p de-
termine smaller values of the optimum and/or
that it is more difficult for max-LBP to find the
actual optimum of the functions. Evidence of
the difficulties of max-LBP for converging when
p is increased emerges from the analysis of Fig-
ures 2 and 3. It can be seen that the number of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
62.5

63

63.5

64

64.5

65

F
un

ct
io

n 
va

lu
e 

of
 th

e 
LB

P
 s

ol
ut

io
n

p

Figure 1: Value of the best solution found by
max-LBP for different values of the rewiring
probabilities.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
115

120

125

130

135

140

N
um

be
r 

of
 n

od
es

 th
at

 c
on

ve
rg

ed

p

Figure 2: Number of nodes that converged
when using max-LBP with different values of
the rewiring probabilities.

nodes that converged decreases with p. On the
other hand, the number of iterations needed by
the nodes that converged is higher. Although
the curve describing the number of nodes that
converged is clearly monotonically decreasing,
it seems to be more pronounced as p goes from
0.1 to 0.5 than for p > 0.5. This fact indicates
that the behavior of max-LBP is more sensitive
to changes around certain values or p.

We conducted similar experiments using sum-
LBP for the same set of graphs. As it has been
previously reported (Mooij et al., 2007), LBP
convergence is easier to achieve for the sum case
than for the max case. Figures 4 and 5 re-
spectively show the number of nodes that con-
verge and the average number of iterations for
different values of the rewiring probability. Al-



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
780

800

820

840

860

880

900

920

940
N

um
be

r 
of

 it
er

at
io

ns
 u

nt
il 

co
nv

er
ge

nc
e

p

Figure 3: Number of iterations for nodes that
converged when using max-LBP with different
values of the rewiring probabilities.

though the number of nodes that converge is
higher, the curve is also monotonically decreas-
ing. Conversely, the number of iterations until
convergence is increased. Therefore, the influ-
ence of the rewiring probability seems to be the
same for max-LBP and sum-LBP.

Results shown in the previous figures corre-
spond to the average for 10 different network
topologies.

For each descriptor we have carried out the
Kruskal-Wallis statistical test to compare the
LBP results for each possible pair of values of
p. For some pairs of values and descriptors, the
test did not find statistically significant differ-
ences.

6.3 Investigating the influence of factor

additions

The purpose of the following experiments is
twofold: First, we investigate the way in which
the addition of shortcuts can modify the be-
havior of LBP. Second, we analyze the influ-
ence that the way in which shortcuts are added
has in the LBP behavior. We are particularly
interested in knowing whether the addition of
shortcuts leads to improvements in the results
achieved by LBP, i.e. better solutions are ob-
tained or the algorithm converges faster.

The number of added edges was fixed to e =
10 and the number of initial graphs to 50. An
instance corresponds to a random assignment of
the function values to the factor nodes defined

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
143

143.5

144

144.5

145

145.5

146

146.5

147

N
um

be
r 

of
 n

od
es

 th
at

 c
on

ve
rg

ed

p

Figure 4: Number of nodes that converged
when using sum-LBP with different values of
the rewiring probabilities.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
560

570

580

590

600

610

620

630

640

650

N
um

be
r 

of
 it

er
at

io
ns

 u
nt

il 
co

nv
er

ge
nc

e

p

Figure 5: Number of iterations for nodes that
converged when using sum-LBP for different
values of the rewiring probabilities.

on the 2-dimensional grid.

For each of the three methods used to add
the edges described in Section 5.2, 50 different
graph structures are created by considering 50
possible ways of adding 10 edges to the original
grid. The total combination of the initial in-
stances, the methods used to add the edges, and
the graph structures generated for each method
was 50×3×50 = 7500. max-LBP and sum-LBP
were run on each of these instances.

For each of the instances, we compute the av-
erage value of the best solutions found by max-
LBP among the 50 graph structures for each of
the three methods employed to add the short-
cuts. Average values are then compared with
the value found by max-LBP in the original
graph (without added shortcuts). Of the 50



graphs, the Random, Max. distance and Min.
distance methods respectively improve (on aver-
age) the values of the function for 9, 9, and 10
of the instances. They respectively converged
to the same optimal solution for 22, 22, and
24 instances. These results show that adding
shortcuts may have an effect on the quality of
the solution obtained, at least in some cases.

To find statistical differences between the be-
havior of the three methods, the Kruskal-Wallis
test was applied using the values of the best so-
lution found. It found statistical significant dif-
ferences between at least two of the three meth-
ods in 13 of the instances. The average gain in
the value of the function is shown in Figure 6a.
Negative values indicate that the solution found
by LBP in the graphs with shortcuts was worse
than in the original graph. Of the 13 instances,
the method that reduces the path length the
most (i.e. Min. distance) was the best in im-
proving the value with respect to the other two
methods in 9 of the instances.

On the 37 instances in which the statistical
test did not find significant differences between
any pair of the methods regarding the qual-
ity of the solution obtained, we conducted ad-
ditional tests to identify significant differences
in the number of (factor and vertices) nodes
that converged and the number of iterations to
convergence. In 21 of the instances, significant
differences were found in the number of nodes
that converged. The gain in the proportion of
nodes that converged with respect to the initial
graph is shown in Figure 6b. The Min. distance
method achieved a higher proportion of nodes
that converged in 18 of the 21 instances. Fi-
nally, regarding the number of iterations until
convergence, there were significant differences
in 20 of the 37 instances and, as shown in Fig-
ure 6c), in 12 of them Min. distance achieved a
higher number of iterations.

In general, it was observed that max-LBP
obtained better solutions and converged in a
higher proportion of the nodes of the graphs
generated by the Min. distance method than
the other two methods. However, the average
number of iterations also increased.

Concerning the behavior of sum-LBP, there

were not significant differences in the number
of nodes that converged. Nevertheless, a dif-
ferent trend to that shown for max-LBP was
manifested. As observed in Figure 7, the Min.
distance method needed fewer iterations than
the other two for all of the instances.

7 Conclusions and future work

In this paper we have analyzed the effect of the
network topology on the behavior of LBP. The
empirical analysis of the LBP results for the dif-
ferent graphs considered has shown that finding
optimal solutions is harder for LBP when the
rewiring probability is increased.

On the other hand, we have shown that
adding shortcuts to the initial lattice graphs
changes the dynamics of LBP in a less clear
way. These changes may determine that bet-
ter solutions are achieved and/or the number
of iterations to convergence can be diminished.
The results obtained seem to indicate that the
method which reduces the path length the most
can lead to more improvements in the LBP be-
havior than selecting the shortcuts randomly,
or choosing them in such a way that the path
length is minimally reduced.

Although we have not advanced a method or
heuristic for choosing the right shortcuts, i.e.
those that can help LBP to escape from cycles or
converge to better solutions, we speculate that
an influencing factor to this respect is the reduc-
tion in the local and global distances determined
by the addition of the shortcut. Furthermore,
we have just investigated the addition of edges
in a step previous to the algorithm start. It
might be the case that the adequacy of adding
a particular shortcut will change dynamically
according to the current step of the LBP algo-
rithm. An open question is then to devise ways
to add shortcuts on line taking into account the
current state of the process.

Acknowledgements

This work has been partially supported by
the Etortek, Saiotek and Research Groups
2007-2012 (IT-242-07) programs (Basque Gov-
ernment), TIN2005-03824 and Consolider In-
genio 2010 - CSD2007-00018 projects (Span-



1 2 3 4 5 6 7 8 9 10 11 12 13
−1.5

−1

−0.5

0

0.5

1

 

 

random
max. distance
min. distance

0 2 4 6 8 10 12 14 16 18 20 22
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

 

 

random
max. distance
min. distance

0 2 4 6 8 10 12 14 16 18 20
−80

−60

−40

−20

0

20

40

60

 

 

random
max. distance
min. distance

Figure 6: Influence of the network topology in the behavior of max-LBP when shortcuts are added
to an initial grid configuration. a) Improvements in the function values of the best solution found
by LPB. b) Number of nodes that converged. c) Number of iterations for nodes that converged.

a) b) c)

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

 

 

random
max. distance
min. distance

Figure 7: Influence of the network topology in
the number of iterations before convergence of
sum-LBP when shortcuts are added.

ish Ministry of Education and Science)
and COMBIOMED network in computational
biomedicine (Carlos III Health Institute).

References

L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E.
Stanley. 2000. Classes of small-world networks.
Proceedings of the National Academy of Sciences
(PNAS), 97(21):11149–11152.

M. Barthélémy and L. A. N. Amaral. 1999. Small-
world networks: Evidence for a crossover picture.
Physical Review Letters, 82(15):3180–3183.

S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.
Mendes. 2007. Critical phenomena in complex
networks. arXiv.org, arXiv:0705.0020v6 [cond-
mat.stat-mech], Nov.

G. Elidan, I. McGraw, and D. Koller. 2006. Resid-

ual belief propagation: Informed scheduling for
asynchronous message passing. In Proceedings
of the Twenty-second Annual Conference on Un-
certainty in Artificial Intelligence (UAI-2006),
Boston, Massachussetts.

R. Ferrer i Cancho, C. Janssen, and R. V. Solé. 2001.
Topology of technology graphs: Small world pat-
terns in electronic circuits. Physical Review E.
Statistical, Nonlinear, and Soft Matter Physics,
64:046119.

J. C. Hsu. 1996. Multiple Comparisons: Theory and
Methods. Chapman and Hall.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger.
2001. Factor graphs and the sum-product algo-
rithm. IEEE Transactions on Information The-
ory, 47(2):498–519.

J. M. Mooij, B. Wemmenhove, H. J. Kappen, and
T. Rizzo. 2007. Loop corrected belief propaga-
tion. In Proceedings of the Eleventh International
Conference on Artificial Intelligence and Statis-
tics (AISTATS-07).

J. Ohkubo, M. Yasuda, and K. Tanaka. 2005.
Statistical-mechanical iterative algorithms
on complex networks. Physical Review E,
72(046135):8 pages.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Mateo, California.

D.J. Watts and S.H. Strogatz. 1998. Collec-
tive dynamics of small-world networks. Nature,
393(6684):440–442.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. 2005.
Constructing free energy approximations and gen-
eralized belief propagation algorithms. IEEE
Transactions on Information Theory, 51(7):2282–
2312.



Factorized Normalized Maximum Likelihood Criterion for
Learning Bayesian Network Structures

Tomi Silander, Teemu Roos, Petri Kontkanen and Petri Myllymäki
Helsinki Institute for Information Technology HIIT, Finland

Abstract

This paper introduces a new scoring criterion, factorized normalized maximum likelihood,
for learning Bayesian network structures. The proposed scoring criterion requires no
parameter tuning, and it is decomposable and asymptotically consistent. We compare the
new scoring criterion to other scoring criteria and describe its practical implementation.
Empirical tests confirm its good performance.

1 Introduction

The popular Bayesian criterion, BDeu (Buntine,
1991), for learning Bayesian network structures
has recently been reported to be very sensitive
to the choice of prior hyperparameters (Silander
et al., 2007). On the other hand, general model
selection criteria, such as AIC (Akaike, 1973)
and BIC (Schwarz, 1978), are derived through
asymptotics and their behavior is suboptimal
for small sample sizes. The study of different
scoring criteria is further complicated by the
fact that learning the network structure is NP-
hard for all popular scoring criteria (Chickering,
1996), even if these criteria have a convenient
characteristic of decomposability, which allows
incremental scoring in heuristic local search
(Heckerman et al., 1995). Due to recent ad-
vances in exact structure learning (Koivisto and
Sood, 2004; Silander and Myllymäki, 2006) it
is feasible to find the optimal network for de-
composable scores when the number of variables
is less than about 30. This makes it possible
to study the behavior of different scoring crite-
ria without the uncertainty stemming from the
heuristic search.

In this paper we introduce a new decompos-
able scoring criterion for learning Bayesian net-
work structures, the factorized normalized max-
imum likelihood (fNML). This score features no
tunable parameters, thus avoiding the sensitiv-
ity problems of Bayesian scores. We show that
the new criterion is asymptotically consistent.

Unlike AIC and BIC, it is derived based on op-
timality criterion for finite sample sizes, and it
has a probabilistic interpretation.

The rest of the paper is structured as follows.
In Section 2, we will first introduce Bayesian
networks and the notation needed later. In Sec-
tion 3, we review the most popular decompos-
able scores, after which in Section 4, we are
ready to introduce the fNML criterion. We then
briefly discuss the implementation of this new
score in Section 5. Section 6 presents the empir-
ical experiments, and the conclusions are sum-
marized in Section 7.

2 Bayesian Networks

We assume that reader is familiar with Bayesian
networks (for tutorial, see (Heckerman, 1996)),
and only introduce the notation needed later in
this paper.

A Bayesian network defines a joint probabil-
ity distribution for an m-dimensional multivari-
ate data vector X = (X1, . . . ,Xm). We assume
that all variables are discrete, so that variable
Xi may have ri different values {1, . . . , ri}.

A Bayesian network consists of a directed
acyclic graph G and a set of conditional prob-
ability distributions. We specify the DAG with
a vector G = (G1, . . . , Gm) of parent sets so
that Gi ⊂ {X1, . . . ,Xm} denotes the parents
of variable Xi, i.e., the variables from which
there is an arc to Xi. Each parent set Gi has
qi (qi =

∏

Xp∈Gi
rp) possible values that are the



possible value combinations of the variables be-
longing to Gi. We assume a non-ambiguous
enumeration of these values and denote the fact
that Gi holds the jth value combination simply
by Gi = j.

The local Markov property for Bayesian net-
works states that each variable is independent
of its non-descendants given its parents. Func-
tionally this is equivalent to the following fac-
torization of the joint distribution

P (x | G) =
m
∏

i=1

P (xi | Gi). (1)

The conditional probability distributions
P (Xi | Gi) are determined by a set of parame-
ters, Θ, via the equation

P (Xi = k | Gi = j,Θ) = θijk,

where k is a value of Xi, and j is a value con-
figuration of the parent set Gi. We denote the
set of parameters associated with variable Xi by
Θi.

For learning Bayesian network structures we
assume a data D of N complete i.i.d instantia-
tions of the vector X, i.e., an N×m data matrix
without missing values. It turns out to be use-
ful to introduce a notation for certain parts of
this data matrix. We often want to select rows
of the data matrix by certain criteria. We then
write the selection criterion as a superscript of
the data matrix D. For example, DGi=j de-
notes those rows of D where the variables of Gi

have the jth value combination. If we further
want to select certain columns of these rows, we
denote the columns by subscripting D with a
corresponding variable set. As a shorthand, we
write D{Xi} = Di. For example, DGi=j

i selects

the ith column of the rows DGi=j.
Since the rows of D are assumed to be i.i.d,

the probability of a data matrix can be calcu-
lated just by taking the product of the row prob-
abilities. Combining equal terms yields

P (D | G,Θ) =

m
∏

i=1

qi
∏

j=1

ri
∏

k=1

θ
Nijk

ijk , (2)

where Nijk denotes number of rows in
DXi=k,Gi=j .

For a given structure G, we use notation
P̂ (D | G) = supθ P (D | G, θ). The maximizing
parameters are simply the relative frequencies
found in data: θ̂ijk =

Nijk

Nij
, where Nij denotes

the number of rows in DGi=j , or 1.0 if Nij = 0.
We often drop the dependency on G when it is
clear from the context.

3 Decomposable scores

In general, a scoring function Score(G,D) for
learning a Bayesian network structure is called
decomposable, if it can be expressed as a sum
of local scores

Score(G,D) =
m
∑

i=1

S(Di,DGi
). (3)

Many popular scoring functions avoid over-
fitting by balancing the fit to the data with the
complexity of the model. A common form of
this idea can be expressed as

Score(G,D) = log P̂ (D | G) − ∆(D,G), (4)

where ∆(D,G) is a complexity penalty.
The maximized likelihood P̂ (D | G) decom-

poses by the network structure, and for the de-
composable scores handled in this paper, the
complexity penalty decomposes too. Hence, we
can write the penalized scores in the decom-
posed form (3), with the local scores given by

S(Di,DGi
) = log P̂ (Di | DGi

) + ∆i(Di,DGi
).
(5)

Different scores differ in how the local penalty
∆i(Di,DGi

) is determined.

3.1 AIC and BIC

Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) are
two popular decomposable scores for learning
Bayesian network structures. These scores do
not have any additional parameters so in this
sense they are similar to the proposed fNML
score. The penalty terms for these scores are
∆BIC

i = qi(ri−1)
2 ln N , and ∆AIC

i = qi(ri − 1).
Both of these complexities are independent of
the data, and only depend on the arities ri

of random variables and the structure of the
Bayesian network.



3.2 Bayesian Dirichlet scores

Bayesian Dirichlet (BD) scores assume that the
parameter vectors Θij are independent of each
other and distributed by Dirichlet distributions
with hyper-parameter vector ~αij. Given a vec-
tor of hyper-parameters ~α, the local score can
be written as

SBD(Di,DGi
, ~α) = log P (Di | DGi

, ~α)

=

qi
∑

j=1

log P (DGi=j
i | DGi=j

Gi
, ~αij)

=

qi
∑

j=1

log

(

B(~αij + ~Nij)

B(~αij)

)

,

where B is a multinomial Beta function

B(α1, . . . , αK) =

∏K
k=1 Γ(αk)

Γ(
∑K

i=1 αk)
.

With all αijk = 1 we get a K2-score (Cooper
and Herskovits, 1992), and with αijk = α

qiri
we

get a family of BDeu scores popular for giv-
ing equal scores to different Bayesian network
structures that encode the same independence
assumptions. BDeu scores depend only on a sin-
gle parameter, the equivalent sample size α. Re-
cent studies on the role of this parameter show
that network learning under BDeu is very sen-
sitive to this parameter (Silander et al., 2007).

For comparison, we can write the BD-score as
a penalized maximized likelihood with penalty

∆BD
i (Di,DGi

) = (6)
qi
∑

i=i

log

(

P̂ (DGi=j
i | DGi=j

Gi
)

P (DGi=j
i | DGi=j

Gi
, ~αij)

)

.

We immediately notice that this penalty
is always positive. The complexity is data-
dependent and it is controlled by the hyper-
parameters αijk. The asymptotic behavior of
this Bayesian regret is well studied (Grünwald,
2007). However, when learning Bayesian net-
works, the data parts DGi=j

i are often very
small, which makes asymptotic result less in-
formative.

4 fNML

The factorized normalized maximum likelihood
(fNML) score is based on the normalized max-
imum likelihood (NML) distribution (Shtarkov,
1987; Rissanen, 1996). The NML distribution
for the model class M (which may or may not
be a Bayesian network) is the unique distribu-
tion solving the minimax problem

min
Q

max
D′

P̂ (D′ | M)

Q(D′ | M)
, (7)

where Q ranges over all distributions.
As originally shown by Shtarkov (1987) the

solution of the above minimax problem is given
by

PNML(D | M) =
P̂ (D | M)

∑

D′ P̂ (D′ | M)
, (8)

where the normalization is over all data sets D′

of a fixed size N . The log of the normalizing
factor is called parametric complexity or regret.

Evaluation of the normalizing sum is often
hard due to exponential number of terms in the
sum. Currently, there are tractable formulas
for only a handful of models; for examples, see
(Grünwald, 2007). In the case of a single r-ary
multinomial variable and the sample size n the
normalizing sum is given by

Cr
n =

∑

k1+k2+...+kr=n

n!

k1! k2! · · · kr!

r
∏

j=1

(

kj

n

)kj

,

(9)
where the sum goes over all non-negative inte-
ger vectors (kj)

r
j=1 that sum to n. A linear-time

algorithm for the computation of Cr
n was intro-

duced recently by Kontkanen and Myllymäki
(2007).

Given a data set D, the NML model selection
criterion proposes to choose the model M for
which the PNML(D | M) is largest. After taking
the logarithm the score is in a form of penalized
log likelihood with complexity penalty describ-
ing how well the model can fit any equal size
dataset D′.

Because of the score equivalence of the max-
imum likelihood score, the NML score is score



equivalent as well. However, it is not decom-
posable, and the parent assignment problem is
known to be NP-hard (Koivisto, 2006). Sacrific-
ing the score equivalence we propose a decom-
posable version of this score, which penalizes
the complexity locally similarly to the other de-
composable scores. Specifically, we propose the
local score

SfNML(Di,DGi
) = log PNML(Di | DGi

) (10)

= log

(

P̂ (Di | DGi
)

∑

D′

i
P̂ (D′

i | DGi
)

)

,

where the normalizing sum goes over all the
possible Di-column vectors of length N , i.e.,
D′

i ∈ {1, . . . , ri}
N .

Since equation (10) defines a (log) conditional
distribution for the data column Di, adding
these local scores together yields a total score
that defines a distribution for the whole data.
In this sense fNML can be seen as an alterna-
tive way to define the marginal likelihood for
the data

log PfNML(D | G) =

m
∑

i=1

log PNML(Di | DGi
).

At the same time, combining the local scores
yields an enumerator that equals the decom-
position of the maximum likelihood, thus the
whole score can be seen as a penalized maxi-
mum log-likelihood with local (data-dependent)
penalties

∆fNML
i (DGi

) = log
∑

D′

i

P̂ (D′
i | DGi

). (11)

The following observation follows from the
factorization of the maximum likelihood by the
parent configurations, and it is crucial for effi-
cient calculation of the local penalty term.

Theorem 1. The local penalty of fNML can be
expressed in terms of multinomial normalizing
constants

∆fNML
i (DGi

) =

qi
∑

j=1

log Cri

Nij
,

where Cri

Nij
is the normalizing constant of NML

for an ri-ary multinomial model with sample
size Nij .

The theorem follows by noting that the maxi-
mized likelihood P̂ (Di | DGi

) factorizes into in-
dependent parts according to the values of DGi

.
To conclude this section we show that asymp-

totically, and under mild regularity conditions,
the fNML score belongs to the (large) class of
BIC-like scores that are consistent. Other scores
in this class include most Bayesian and MDL
criteria. The regularity conditions required for
BIC-like behavior typically exempt a measure
zero set of generating parameters, such as the
boundaries of the parameter simplex. The fol-
lowing theorem gives sufficient conditions on the
penalty term that guarantee consistency for ex-
ponential family models.

Theorem 2 (Remark 1.2 in (Haughton, 1988)).
For (curved) exponential families, if data is gen-
erated by an i.i.d. distribution p, and the penalty
term is given by 1

2 k aN , where k is the number
of parameters and aN is a sequence of positive
real numbers, satisfying

aN/N → 0, and aN → ∞,

as N → ∞, then, symptotically, the model con-
taining p that has the least number of parame-
ters will be chosen.

Since Bayesian networks are curved exponen-
tial families (Geiger et al., 2001; Chickering,
2002), it now remains to prove that the penalty
term of fNML satisfies this property.

Theorem 3 (Asymptotically fNML behaves
like BIC). Assuming that the maximum like-
lihood parameters are asymptotically bounded
away from the boundaries of the parameter sim-
plex, the local penalty of fNML behaves as

∆fNML
i (DGi

) =
qi(ri − 1)

2
log N + O(1),

almost surely, where the O(1) term is bounded
by a constant wrt. N .

Proof. By Thm. 1, the local penalty is a
sum of logarithms of multinomial normalizing
constants. The latter is known to grow as
log Cri

Nij
= ri−1

2 log Nij +O(1), (Rissanen, 1996).
Under the assumption that the maximum like-
lihood parameters are bounded away from the



boundaries, the counts Nij grow linearly in the
total sample size N almost surely, which im-
plies that we have log Nij = log([η + o(1)]N) =
log N + O(1) with some 0 < η < 1. Adding
together the qi terms yields the result.

Since qi(ri − 1) is the number of parameters
(associated with the ith variable), the property
of Thm. 2 holds for the fNML penalty.

5 Implementation

We now provide information for practical im-
plementation of the fNML score for Bayesian
networks. Due to the decomposability of the
score the only new implementational issue for
the fNML is to calculate the terms Cr

n of the
Thm. 1. For reasonable N and R (R = max ri)
these values can be stored in an N × R table,
which can be done before structure learning.
Moreover, this table does not depend on data
or any parameters, so it can be done just once.

The calculation of the C-table with N rows
and R columns proceeds as follows. First of all,
Cr

0 = 1 for all r, and C1
n = 1 for all n. For r = 2

we can use the formula (9), which yields

C2
n =

n
∑

h=0

(

n

h

)(

h

n

)h(n − h

N

)n−h

, (12)

and for r > 2 we can use the recursion (Kontka-
nen and Myllymäki, 2007)

Cr
n = Cr−1

n +
n

r − 2
Cr−2

n . (13)

Calculating the column C2
∗ using the formula

(12) takes time O(N2), and the calculation of
the rest of the table using the formula (13) takes
just O(NK). For very large N , the complexity
of calculating the column C2

∗ may be prohibitive.
In this case a very accurate Szpankowski ap-
proximation (Kontkanen et al., 2003)

C2
n =

nπ

2
e

q

8

9nπ
+ 3π−16

36nπ (14)

can be used.
If the space for storing the table is critical,

one may just store 1000 first entries of column
C2
∗ , use Szpankowski approximation for the rest

of the column, and use formula (13) for calcu-
lating the values for r > 2.

6 Experiments

It is not obvious how to compare different crite-
ria for learning Bayesian network structures. If
the data is generated from a Bayesian network,
one might call for selecting the data generating
network, but if the generating network is com-
plex, and the sample size is small, it may be
rational to pick a simpler model.

This simplicity requirement is often backed
up by arguments about the generalization ca-
pability of the model. However, it is not always
clear how the network structure should be used
for prediction.

A softer version of discovering the generating
model is to compute a structural distance mea-
sure between the selected and the generating
network structures. A common choice is to cal-
culate an editing distance with operations such
as arc additions, deletions and reversals. Even
if we take the generating structure as a golden
standard, this approach is problematic, since
these editing operations are not independent.
For example, fixing a certain arc can lead to
several other changes to the network structure
if the selection by a score is made only among
the structures having the fixed arc present.

Despite of these problems in the empirical
testing, we conducted a golden standard exper-
iment. We first generated data from different
networks with five nodes, and then studied how
the generating network structures were ranked
among all the possible networks by different
scoring criteria.

For BDeu and fNML scores that both calcu-
late the probability P (D | G), we also compared
the scores for the real data sets. This experi-
ment can be seen as the result of a sequential
prediction competition, since by the chain rule
we can write

P (D | G) =

N
∏

i=1

P (di | G, di−1), (15)

where di is the ith data vector, and di−1 =
{d1, . . . , di−1} denotes the first i−1 vectors. The
idea follows the principle of prequential model
selection (Dawid, 1984).



 0

 5000

 10000

 15000

 20000

 25000

 30000

 10  100  1000

R
an

k

Sample size

AIC
BIC

BDeu_1.0
fNML

(a) BDeu Scheme

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10  100  1000

R
an

k

Sample size

AIC
BIC

BDeu_1.0
fNML

(b) Dir(1/2,. . . ,1/2) Scheme

Figure 1: The median curves for different scoring criteria as a function of sample size when the
parameters for a 5-node, 7-edge network were generated by the BDeu and Dir(1/2,. . . ,1/2) schemes.
Errorbars indicate upper and lower quartiles.

We will now explain the experiments in more
detail.

6.1 Artificial data

We first compared the ability of different scoring
criteria to discover the data generating struc-
ture. For this purpose we generated 100 differ-
ent 5-node Bayesian network structures with 4
edges and another 100 structures with 7 edges.
The variables were randomly assigned to have
2 – 4 values (ri ∈ {2, 3, 4}). For each net-
work, we generated parameters by two differ-
ent schemes. The first scheme exactly matched
the assumptions of the BDeu score with α = 1,
i.e., the parameters were distributed by θij ∼
Dir( 1

riqj
, . . . , 1

riqj
). The other scheme was to

generate the parameters independently from a
Dirichlet distribution θij ∼ Dir(1/2, . . . , 1/2).
This distribution was selected instead of the
uniform distribution in order to make the gen-
erating structure more identifiable.

For each network (structure + parameters),
we generated 100 data sets of 1000 data vec-
tors, and studied how different scoring criteria
ranked the structure of the generating network
among all the 5-node networks as a function of
(sub)sample size.

Not surprisingly, the results indicate that
when parameter generation mechanism matches
the assumptions of the BDeu-score, the BDeu

usually also ranks the generating structure
higher than the other scores (Figure 1(a)).
However, fNML usually behaves very similarly
to BDeu. The density of the network (4 vs. 7
edges) is not a very significant factor. If any-
thing, the similar behavior of fNML and BDeu
is more pronounced in networks with 7 edges.
For the parameter-free scores, AIC and BIC,
the underfitting tendency of BIC can be clearly
detected whereas AIC tends to rank the gener-
ating network higher. Qualitatively these two
scores seem to behave similarly to each other.

Switching the parameter generation scheme
to independent Dirichlets with αijk = 0.5 usu-
ally also switches the ranking ability of fNML
and BDeu, while the behavior of AIC and BIC
stays mostly unaffected. For example, Fig-
ure 1(b) was generated using the same network
structure as for Figure 1(a). Only the parame-
ter generation scheme was changed from BDeu
to Dir. For dense networks fNML often appears
as a clear winner.

6.2 Real data

Learning the structure with AIC or BIC does
not readily suggest any particular way to use
the learned structure for prediction, but the pre-
quential interpretation of the BDeu score and
the fNML allows comparison. However, the
BDeu score is known to be very sensitive to the



Table 1: Summary of the prediction experiment.

Data N m #vals α∗ BDeu1 BDeu* fNML

balance 625 5 4.6 48 -4549.06 -4445.64 -4478.36
iris 150 5 3.0 2 -452.21 -449.71 -450.90
thyroid 215 6 3.0 2 -577.52 -575.55 -572.42

liver 345 7 2.9 4 -1309.67 -1299.83 -1299.38

ecoli 336 8 3.4 8 -1715.92 -1661.34 -1643.64

abalone 4177 9 3.0 6 -15946.58 -15891.25 -15847.33

diabetes 768 9 2.9 4 -3678.57 -3662.31 -3654.02

post operative 90 9 2.9 3 -647.35 -642.98 -639.94

yeast 1484 9 3.7 6 -7938.60 -7873.21 -7848.98

breast cancer 286 10 4.3 8 -2781.62 -2737.20 -2739.34
shuttle 58000 10 3.0 3 -97635.72 -97620.78 -97714.22
tic tac toe 958 10 2.9 51 -9423.07 -9126.78 -9162.39
bc wisconsin 699 11 2.9 8 -3315.51 -3262.33 -3239.56

glass 214 11 3.3 6 -1288.93 -1255.73 -1233.18

page blocks 5473 11 3.2 3 -12455.60 -12438.01 -12410.69

heart cleveland 303 14 3.1 13 -3450.07 -3356.78 -3352.32

heart hungarian 294 14 2.6 5 -2376.53 -2348.23 -2343.65

heart statlog 270 14 2.9 10 -2867.54 -2819.37 -2814.28

wine 178 14 3.0 8 -1866.41 -1821.28 -1808.66

adult 32561 15 7.9 50 -329373.73 -326803.91 -326486.85

equivalent sample size parameter, which creates
an extra complication.

For predictive comparison we selected 20 UCI
data sets1 for which the score maximizing hy-
perparameter α has been reported (Silander
et al., 2007), and we compared the maximum
fNML scores to the maximum scores obtained
with BDeu1 (BDeu with α = 1.0) and BDeu*
(BDeu with score maximizing α). In reality,
we do not know the score maximizing α’s, and
searching structures with many α is usually
computationally too hard. Optimal structures
were obtained by the exact structure learn-
ing algorithm described in (Silander and Myl-
lymäki, 2006).

Table 1 lists for each data set the number
of data vectors N , the number of variables m,
the average number of values per variable #vals,
the BDeu maximizing equivalent sample size pa-
rameter α∗ (with integer precision), and the ac-

1 http://www.ics.uci.edu/∼mlearn/MLRepository.html

tual scores obtained with three different scoring
criteria. The score obtained with fNML is the
best of the three 14 times out of 20, and only
once BDeu1 yields higher score than fNML.

7 Conclusions

We have introduced a new probabilistic scoring
criterion, the factorized normalized maximum
likelihood, for learning Bayesian network struc-
tures from complete discrete data. The score
aims at being an efficient and parameter-free
criterion for finite sample sizes. The score is
also decomposable, which makes it possible to
use it with existing search heuristics and exact
structure learning algorithms.

Initial empirical tests are promising. We
are particularly pleased with fNML’s ability to
learn network structures with good predictive
capabilities. While lot more empirical work has
to be done, the current experiments already
show a great promise for a good and care free



scoring criterion for learning Bayesian network
structures.

Acknowledgments

The authors thank the anonymous referees for
valuable comments. This work was supported in
part by the Academy of Finland (Project Civi),
by the Finnish Funding Agency for Technology
and Innovation (Kukot, PMMA), and the IST
Programme of the European Community, under
the PASCAL Network of Excellence.

References

H. Akaike. 1973. Information theory and an ex-
tension of the maximum likelihood principle. In
B.N. Petrox and F. Caski, editors, Proceedings of
the Second International Symposium on Informa-
tion Theory, pages 267–281, Budapest. Akademiai
Kiado.

W. Buntine. 1991. Theory refinement on Bayesian
networks. In B. D’Ambrosio, P. Smets, and
P. Bonissone, editors, Proceedings of the Seventh
Conference on Uncertainty in Artificial Intelli-
gence, pages 52–60. Morgan Kaufmann Publish-
ers.

D.M. Chickering. 1996. Learning Bayesian networks
is NP-Complete. In D. Fisher and H. Lenz, ed-
itors, Learning from Data: Artificial Intelligence
and Statistics V, pages 121–130. Springer-Verlag.

D.M. Chickering. 2002. Optimal structure identi-
fication with greedy search. Journal of Machine
Learning Research, 3:507–554.

G. Cooper and E. Herskovits. 1992. A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning, 9:309–347.

A.P. Dawid. 1984. Statistical theory: The prequen-
tial approach. Journal of the Royal Statistical So-
ciety A, 147:278–292.

D. Geiger, D. Heckerman, H. King, and C. Meek.
2001. Stratified exponential families: graphical
models and model selection. Annals of Statistics,
29:505–529.

P. Grünwald. 2007. The Minimum Description
Length Principle. MIT Press.

D.M.A. Haughton. 1988. On the choice of a model
to fit data from an exponential family. Annals of
Statistics, 16(1):342–355.

D. Heckerman, D. Geiger, and D.M. Chickering.
1995. Learning Bayesian networks: The combina-
tion of knowledge and statistical data. Machine
Learning, 20(3):197–243, September.

D. Heckerman. 1996. A tutorial on learning with
Bayesian networks. Technical Report MSR-TR-
95-06, Microsoft Research, Advanced Technol-
ogy Division, One Microsoft Way, Redmond, WA
98052.

M. Koivisto and K. Sood. 2004. Exact Bayesian
structure discovery in Bayesian networks. Journal
of Machine Learning Research, 5:549–573, May.

M. Koivisto. 2006. Parent assignment is hard for
the MDL, AIC, and NML costs. In Proceedings of
the 19th Annual Conference on Learning Theory
(COLT-06), pages 289–303.

P. Kontkanen and P. Myllymäki. 2007. A linear-
time algorithm for computing the multinomial
stochastic complexity. Information Processing
Letters, 103(6):227–233.

P. Kontkanen, W. Buntine, P. Myllymäki, J. Ris-
sanen, and H. Tirri. 2003. Efficient computa-
tion of stochastic complexity. In C. Bishop and
B. Frey, editors, Proceedings of the Ninth Inter-
national Conference on Artificial Intelligence and
Statistics, pages 233–238. Society for Artificial In-
telligence and Statistics.

J. Rissanen. 1996. Fisher information and stochas-
tic complexity. IEEE Transactions on Informa-
tion Theory, 42(1):40–47, January.

G. Schwarz. 1978. Estimating the dimension of a
model. Annals of Statistics, 6:461–464.

Yu.M. Shtarkov. 1987. Universal sequential cod-
ing of single messages. Problems of Information
Transmission, 23:3–17.

T. Silander and P. Myllymäki. 2006. A simple ap-
proach for finding the globally optimal Bayesian
network structure. In R. Dechter and T. Richard-
son, editors, Proceedings of the 22nd Conference
on Uncertainty in Artificial Intelligence, pages
445–452. AUAI Press.

T. Silander, P. Kontkanen, and P. Myllymäki. 2007.
On sensitivity of the MAP Bayesian network
structure to the equivalent sample size parameter.
In R. Parr and L. van der Gaag, editors, Proceed-
ings of the 23rd Conference on Uncertainty in Ar-
tificial Intelligence, pages 360–367. AUAI Press.



Large Incomplete Sample Robustness in Bayesian Networks

Jim Q. Smith
Department of Statistics
University of Warwick

Coventry, CV4 7AL, UK

Alireza Daneshkhah
Department of Management Science

University of Strathclyde
Glasgow, G1 1QE, UK

Abstract

Under local DeRobertis (LDR) separation measures, the posterior distances between two
densities is the same as between the prior densities. Like Kullback - Leibler separation
they also are additive under factorization. These two properties allow us to prove that the
precise specification of the prior will not be critical with respect to the variation distance
on the posteriors under the following conditions. The genuine and approximating prior
need to be similarly rough, the approximating prior has concentrated on a small ball on the
margin of interest, not on the boundary of the probability space, and the approximating
prior has similar or fatter tails to the genuine prior. Robustness then follows for all
likelihoods, even ones that are misspecified. Furthermore, the variation distances can be
bounded explicitly by an easy to calculate function of the prior LDR separation measures
and simple summary statistics of the functioning posterior. In this paper we apply these
results to study the robustness of prior specification to learning Bayesian Networks.

1 Introduction

Discrete Bayesian networks (BNs) are now
widely used as a framework for inference. The
usual Bayesian methodology requires the selec-
tion of prior distributions on the space of con-
ditional probabilities and various authors have
suggested ways to do this (see (Cowell et al,
2000) and references therein). When data sets
are complete, the usual analysis is conjugate
and it is straightforward to appreciate the ef-
fect of prior specification on the subsequent in-
ferences. However it is now more common to
be working on problems where data entries are
randomly or systematically missing. In this
case conjugacy is then lost, models can become
unidentifiable and sensitive to outliers. In such
circumstances it is much less clear what fea-
tures of the prior drive the inferential conclu-
sions. Of course good modelers use various

forms of sensitivity analyses to examine poten-
tial prior influence. However it is hard to do
this systematically and to be sure that the pos-
terior densities used really are robust to prior
specifications, even when the sample size n is
large. Indeed results on local sensitivity in
Gustafson and Wasserman (1995) appeared to
suggest that the hoped for robustness is a vain
one.

A new family of separation measures has now
been discovered which encode neighbourhoods
of a prior that are on the one hand plausi-
bly large and on the other are sufficient to en-
able the modeler to determine posterior varia-
tion neighbourhoods within which all posterior
densities arising from the prior neighbourhood
must lie. These posterior total variation neigh-
bourhoods can be bounded explicitly in terms of
the parameters of the prior separations and the



sort of summary statistics we would calculate
anyway from the joint posterior distribution of
the model actually implemented: such as pos-
terior means and covariances. In many situa-
tions it is possible to demonstrate that these
bounds between the functioning posterior and
genuine posterior decrease quickly with sample
size, irrespective of the likelihood - even when
that likelihood is misspecified.

Under local DeRobertis (LDR) separation
measures, the posterior distances between two
densities is the same as the prior densities.
Analogously to KL separation they also are ad-
ditive under factorization so are easy to calcu-
late or bound for most high dimensional models.

After reviewing some of the important prop-
erties of LDR in the next section we illustrate
how these techniques can be used to examine
analytically the robustness of inference to vari-
ous forms of prior misspecification in graphical
models (GMs) in Section 3.

2 Local De Robertis Separation

Let g0 denote our genuine prior density and
f0 denote the functioning prior we actually use:
usually chosen from some standard family- often
products of Dirichlets - and let fn and gn denote
their corresponding posterior densities after ob-
serving a sample xn = (x1, x2, . . . xn), n ≥ 1,
with observed sample densities {pn(xn|θ)}n≥1,
where θ = (θ1, . . . , θk). The genuine prior is
unknown but we hope that it lies in some ap-
propriate neighbourhood of f0 so that inferences
based on f0 will be approximately right.

In many situations, because of missingness,
these sample densities are typically sums of
products of the conditional probabilities defin-
ing the GM so both posterior densities fn and gn

usually have a very complicated analytic form.
The functioning posterior density is therefore
approximated either by drawing samples or
making some algebraic computations.

Let Θ(n) = {θ ∈ Θ : p(xn|θ) > 0}, assume
that g0(θ), f0(θ) are strictly positive and con-
tinuous on the interior of their shared support -

and so uniquely defined - and assume each ob-
served likelihood, pn(xn|θ), n ≥ 1 is measurable
with respect to g0(θ) and f0(θ). From Bayes
rule, for all θ ∈ Θ(n) our posterior densities
gn(θ) =△ g(θ|xn), fn(θ) =△ f(θ|xn) are given by

log gn(θ) = log g0(θ)+ log pn(xn|θ)− log pg(xn)

log fn(θ) = log f0(θ)+ log pn(xn|θ)− log pf (xn)

where pg(xn) =
∫

Θ(n) p(xn|θ)g0(θ)dθ and

pf (xn) =
∫

Θ(n) p(xn|θ)f0(θ)dθ, whilst
whenever θ ∈ Θ\Θ(n) we simply set
gn(θ) = fn(θ) = 0.

For any subset A ⊆ Θ(n) let

dL
A(f, g) =△ sup

θ∈A

log

{

f(θ)

g(θ)

}

− inf
φ∈A

log

{

f(φ)

g(φ)

}

Note that this is a transparent way of mea-
suring the discrepancy between two densi-
ties on a set A. It is non-negative, sym-
metric, and clearly only zero when f and g
are proportional to each other - i.e. when
f(θ) ∝ g(θ), θ ∈ A and f(φ) ∝ g(φ),
φ ∈ A. The separations have been studied
when A = Θ(n) (see e.g., DeRobertis (1978);
O’Hagan and Forster (2004)) but then the
neighbourhoods are far too small for practical
purposes. Here we focus on cases where A is
chosen to be small. This allows not only the as-
sociated neighbourhoods to be realistically large
but also leads to the types of strong convergence
results we need.

The reason these separation measures are
so important is that for any sequence
{p(xn|θ)}n≥1 - however complicated -

dL
A(fn, gn) = dL

A(f0, g0) (1)

It follows that for all sets A ⊆ Θ(n) the qual-
ity of the approximation of fn to gn - as mea-
sured by such a separation - is identical to the
quality of the approximation of f0 to g0. In par-
ticular distances between two posterior densities
can be calculated effortlessly from two different
candidate prior densities. Unlike the function-
ing posterior density with missingness, the func-
tioning prior and sometimes the genuine prior



lying in standard families and then the LDR
separations can then often be expressed explic-
itly and always explicitly bounded. It can be
shown that these separation measures are es-
sentially the only ones with the isoseparation

property (1) (Smith, 2007).

The fact that there are features in any prior
which always endure into the posterior suggests
that the priors we choose will “always” have
a critical impact on inference and this will in-
deed be so for small sample size n. However for
moderately large n the posterior fn we calcu-
late often places most of its mass within a set
An = B(µn, ρn) where B(µn, ρn) denotes the
open ball centred on µn of radius ρn. Write
dL
Θ0,ρ(f, g) =△ sup{dL

B(µn ,ρ)(f, g) : µn ∈ Θ0} and

dL
ρ (f, g) =△ sup{dL

B(µn ,ρ)(f, g) : µn ∈ Θ}. It
has long been known that a necessary condi-
tion for robustness is that in some sense the
functioning prior is “similarly smooth” to the
genuine one. We therefore demand the fol-
lowing mild condition regulating the mutual
roughness of the functioning and genuine prior.
Assume that f0, g0 ∈ F(Θ0,M(Θ0), p(Θ0)),
where F(Θ0,M(Θ0), p(Θ0)), M(Θ0) < ∞, 0 <
p(Θ0) ≤ 2 denotes the set of densities f such
that for all θ0 ∈ Θ0 ⊆ Θ

sup
θ,φ∈B(θ0;ρ))

|log f(θ) − log f(φ)| ≤

M(Θ0)ρ
0.5p(Θ0) (2)

Thus for example when p(Θ0) = 2 we demand
that log f0 and log g0 both have bounded deriva-
tives within the set Θ0 of interest. Under these
conditions Smith and Rigat (2008) show that

dL
Θ0,ρ(f, g) ≤ 2M(Θ0)ρ

1/2p(Θ0). (3)

It follows that as the mass of the functioning
prior converges on a ball of decreasing radius
within Θ0, dL

Θ0,ρ(f, g) converges to zero at a rate
governed by the roughness parameter p(Θ0). In
particular if f, g are one dimensional densities
such that log f and log g are both continuously
differentiable and have derivatives bounded by
M for all θ0 ∈ Θ0, then dL

ρ (f, g) ≤ 2Mρ.

Suppose the analysis of a Bayesian network is
used to support decisions but the user’s utility
function is unknown to the modeler. If we can
ensure that the variation distance

dV (fn, gn) =
∫

Θ | fn(θ)−gn(θ) | dθ, between fn

and gn is small then this is sufficient to deduce
that the impact of using fn instead of gn will not
be large. For example if dV (fn, gn) < ǫ then it is
trivial to check that for any utility U in the class
U of all measurable utility functions bounded
below by 0 and above by 1, on a decision space
D (Kadane and Chuang, 1978)

∣

∣

∣U(d∗(fn), fn) − U(d∗(fn), gn)
∣

∣

∣ < ε

for d∗(h) = arg maxd∈D U(d, h) and d ∈ D
where U(d∗(h), h) =

∫

Θ U(d,θ)h(θ)dθ.

So provided that dV (fn, gn) < ε where ε > 0
is small, the consequence - measured by utility
- of erroneously using fn instead of gn is simi-
larly small. Conversely - unlike for the KL sep-
aration - if dV (fn, gn) does not tend to zero as
n → ∞, there is at least some utility function
for which the decisions based on fn will remain
much worse than those of gn. This has made
posterior discrepancy measured through varia-
tion distance a popular choice and so is the one
we focus on. In this paper we therefore investi-
gate the conditions under which BN models are
robust in this sense.

In fact the condition that the distance
between the functioning and genuine prior
dL

B(θ0;ρ)
(f0, g0) being small for small ρ is almost

a sufficient condition for posterior variation dis-
tance between these densities being close for suf-
ficiently large sample size n regardless of the
value of the observed likelihood, provided that
the functioning posterior concentrates its mass
on a small set for large n. Below is one useful
result of this type. A useful result of this type
is given below.

Definition 1. Call a genuine prior g c-
rejectable with respect to a functioning f if the

ratio of marginal likelihood
pf (x)
pg(x) ≥ c.

We should believe the genuine prior will ex-
plain the data better than the functioning prior.



This in turn means that we should expect this
ratio to be small and certainly not c- rejectable
for a moderately large values of c ≥ 1. Note
that if the genuine prior were c - rejectable for
a large c we would probably want to abandon
it. For example using standard Bayesian selec-
tion techniques it would be rejected in favour of
f. We need to preclude such densities from our
neighbourhood.

Say density f Λ− tail dominates a density g
if

sup
θ∈Θ

g(θ)

f(θ)
= Λ < ∞.

When g(θ) is bounded then this condition re-
quires that the tail convergence of g is no faster
than f . Here the prior tail dominance condi-
tion simply encourages us not to use a prior
density with an overly sharp tail: a recommen-
dation made on other grounds by for example
O’Hagan and Forster (2004). The following re-
sult now holds.

Theorem 1. If the genuine prior g0 is not c re-

jectable with respect to f0, f0 Λ−tail dominates

g0 and f0, g0 ∈ F(Θ0,M(Θ0), p(Θ0)), then for

0 < p ≤ 2

dV (fn, gn) ≤ Tn(1, ρn) + 2Tn(2, ρn) (4)

where

Tn(1, ρn) = exp dL
µ,ρn

(f, g)−1 ≤ exp
{

2Mρp/2
n

}

−1

and Tn(2, ρn) = (1+cΛ)αn(ρn), where αn(ρn) =
Fn(θ /∈ B(θ0, ρn)) and Fn(.) stands for the cu-

mulative distribution function of θ .

Proof. See Appendix in Smith (2007).

It is usually easy to bound Tn(2, ρn) explicitly
using Chebychev type inequalities (see Smith,
2007 for more details). One useful bound, suf-
ficient for our present context, is given below.
It assumes that we can calculate or approxi-
mate well the posterior means and variances of
the vector of parameters under the functioning
prior. These posterior summaries are routinely
calculated in most Bayesian analyses.

Example 1. Let θ = (θ1, θ2, . . . , θk) and
µj,n, σ2

jj,n denote, respectively, the mean and
variance of θj, 1 ≤ j ≤ k under the functioning
posterior density fn. Then Tong (1980, p153)
proves that, writing µn = (µ1,n, µ2,n, . . . µk,n)

Fn (θ ∈ B(µn; ρn))

≥ Fn





k
⋂

j=1

{

|θj − µj,n| ≤
√

kρn

}





≥ 1 − kρ−2
n

k
∑

j=1

σ2
jj,n

so that Fn (θ /∈ B(µn; ρn)) ≤ kρ−2
n

∑k
j=1 σ2

jj,n

implying

Tn(2, ρn) ≤ cΛσ2
nρ−2

n ,

where σ2
n = k max1≤j≤k σ2

j,n. In many cases we
can show that σ2

n ≤ n−1σ2 for some value σ2.
Note that this gives an explicit upper bound
on Tn(2, ρn) which tends to zero provided ρn is
chosen so that ρ2

n ≤ nrρ where 0 < r < 1.

For a fixed (small) ρ, provided σ2
n is suffi-

ciently small dV (fn, gn) will also be small. In-
deed when p = 2 it will tend to zero at any
rate slower than the rate σ2

n converges to zero.
The other component of our bound Tn(1, ρn)
can also be calculated or bounded for most stan-
dard multivariate distributions. A simple illus-
tration of this bound, where both the function-
ing prior and genuine prior are drawn from the
same family, is given below.

Example 2. Let θ = (θ1, θ2, . . . , θk) α =
(α1, α2, . . . , αk), θi, αi > 0,

∑k
i=1 θi = 1 - so that

Θ is the k simplex. Let the two prior densities
f0(θ | αf ) and g0(θ | αg) be Dirichlet so that

f0(θ | αf ) ∝
k

∏

i=1

θ
αi,f−1
i , g0(θ | αg) ∝

k
∏

i=1

θ
αi,g−1
i

Let µn = (µ1,n, µ2,n, . . . , µk,n) denote the
mean of the functioning posterior density fn.
Then it can be easily checked that if ρn <
µ0

n = min {µi,n : 1 ≤ i ≤ k} , then dL
µn;ρn

(f0, g0)
is bounded above by

k
∑

i=1

|αi,f − αi,g| {log (µi,n + ρn) − log (µi,n − ρn)}



≤ 2kρn

(

µ0
n − ρn

)−1
α(f0, g0)

where α(f0, g0) = k−1 ∑k
i=1 |αi,f − αi,g| is the

average distance between the hyperparameters
of the functioning and genuine priors. So
Tn(1, ρn) is uniformly bounded whenever µn re-
mains in a given fixed closed interval Θ0 for all
n and converges approximately linearly in n.
Note that in the cases above, provided we ensure
ρ2

n ≤ nrρ, 0 < r < 1 then both Tn(1, ρn) and
Tn(2, ρn) - and hence dV (fn, gn) - tends to zero.
However if fn tends to concentrate its mass on
the boundary of Θ near one of the cell proba-
bilities being zero, then even when the average
distance α(f, g) between the hyperparameters
of the priors are small, it can be shown that
at least some likelihoods will force the varia-
tion distance between the posterior densities to
stay large for increasing ρn. See Smith (2007)
for a proof and an explicit example of this phe-
nomenon. Typically the smaller the probability
the slower any convergence in variation distance
will be.

Example 3. Sometimes it is convenient, partic-
ularly with covariate information, to smoothly
transform a vector of probabilities. One com-
monly used transformation in BNs is the logis-
tic transformation (Spiegelhalter and Laritzen,
1990). Like the variation distance the LDR is
invariant to diffeomorphic transformations like
this one. When the learning has proceeded on
this transformed scale it is often expedient to
use this scale directly in the use of Theorem
1. Note that under the logistic transformation
we can identify the problem area of inference
in the example above - i.e. where the pos-
terior concentrates near a zero in one of the
component probabilities, corresponds exactly to
the well known sensitivity to tail behaviour
when outliers are observed (O’Hagan (1979);
Andrade and O’Hagan (2006)). Any family of
distributions on the transformed scale having
sub-exponential tails - for example multivariate
t-distribution has better robustness properties
both in term of the LDR and the tail domi-
nation condition above than super-exponential
tails families - like the Gaussian, and should be
preferred in this context (O’Hagan and Forster,

2004).

Of course the usual priors in discrete GMs are
typically products of many such Dirichlet den-
sities. However our local separation for these
products is similarly easily explicitly bounded:
see below.

It is interesting to note that lower bounds
on variation distances can calculated given that
dL
µn;ρn

(f0, g0) stay unbounded above as n →
∞. Thus Smith (2007) show that whenever
dL
µn;ρn

(f0, g0) does not converge to zero as ρn →
0, in general. Of course our genuine prior g0

need not be Dirichlet even if the functioning
prior is. However, the general conditions above
ensure that except when posterior distribution
of a single vector of probabilities under the func-
tioning prior tend to zero in some component or
unless the prior we should use is much rougher
(or smoother) than f0 with large n we will ob-
tain approximately the right answer in the sense
described above.

Note that if two priors are close with respect
to LDRs, even when the likelihood is inconsis-
tent with the data, the functioning posterior
distribution nevertheless will tend to provide a
good approximation of the genuine posterior as
the functioning posterior concentrates. All simi-
lar priors will give similar (if possibly erroneous)
posterior densities.

We now proceed to investigate the properties
of dL

µn;ρn
(f0, g0) for graphical models.

3 Isoseparation and BN’s

3.1 Some General Results for

Multivariate BN’s

We begin with some general comments about
multivariate robustness.

In Smith and Rigat (2008) it is proved that
if θ = (θ1,θ2) and φ = (φ1,φ2) are two can-
didate parameter values in Θ = Θ1 × Θ2 where
θ1,φ1 ∈ Θ1 and θ2,φ2 ∈ Θ2, where the joint
densities f(θ), g(θ) are continuous in Θ and
f1(θ1), g1(θ1) represent the marginal densities
on Θ1 of the two joint densities f(θ) and g(θ)
respectively, then

dL
A1

(f1, g1) ≤ dL
A(f, g) (5)



where A1 = {θ1 : θ = (θ1,θ2) ∈ A for all
θ2 ∈ B ⊂ Θ2 for some open set B in Θ2}. So
in particular marginal densities are never more
separated than their joint densities. Thus if
we are interested only in particular margins of
the probabilities in a BN and we can show that
the functioning prior converges on that margin,
then even if the model is unidentified provided
f0, g0 ∈ F(Θ0,M(Θ0), p(Θ0)), we will still be
able to assert - using an argument exactly anal-
ogous to that in the proof of Theorem 1 that
with large n the functioning prior will be a good
surrogate for the genuine one. This is important
since we know that BNs with interior systemati-
cally hidden variables are unidentified. However
if our utility function is a function only of the
manifest variables we can ensure that the vari-
ation distance between two posterior marginal
densities f1,n g1,n become increasing close - usu-
ally at a rate of at least 3

√
n - in variation. So

in such a case lack of robustness only exists on
prior specifications of functions of probabilities
of the conditional distributions of the hidden
variables conditional on the manifest variables.

Next we note that the usual convention is to
use BNs whose probabilities all exhibit prior
local and global independence (LGI). Imme-
diately from the definition of dL

A(f, g) if θ =
(θ1,θ2, . . . θk) with functioning prior f(θ) and
genuine prior g(θ) both with the property that
subvectors {θ1,θ2, . . . θk} of parameters are
mutually independent so that

f(θ) =
k

∏

i=1

fi(θi), g(θ) =
k

∏

i=1

gi(θi)

where fi(θi) (gi(θi)) are the functioning (gen-
uine) margin on θi, 1 ≤ i ≤ k, then

dL
A(f, g) =

k
∑

i=1

dL
Ai

(fi, gi) (6)

It follows that - all other things being equal -
our local prior distances grow linearly with the
number of parameters needed to specify a BN.
In particular models encoding more conditional
independences are intrinsically more stable and
the effects of possibly erroneous prior informa-

tion will endure longer than more complex mod-
els encoding less conditional independences. It
has long been known that Bayesian selection
methods, for example based on Bayes Factors
automatically select simpler models when they
provide similar explanation of the observed data
than more complex models. But here we have
a complementary point. The choice of the com-
plex model will tend to give less reliable poste-
riors if we are not absolutely sure of our priors.

Example 4. Suppose a discrete BN G on
{X1,X2, . . . ,Xm} where Xi has t levels and par-
ents Pai, taking on si different parent configu-
rations, 1 ≤ i ≤ m. Make the common assump-
tion that our genuine and functioning prior both
exhibits LGI: i.e. all s =

∏m
i=1 si parameter

vectors θi|pai are mutually independent under
both f and g. If we believe the LDR sep-
aration between the s component densities of
the functioning and genuine prior is δA then
dL

A(f, g) = sδA. Note that the quality of the
approximation will depend on the number of
parent configurations in the model. Thus if G1

has all components independent, G2 is a tree,
G3 is complete and f j, gj are the prior densities
under Gj , j = 1, 2, 3 then

dL
A(f1, g1) = mδA, dL

A(f2, g2) = {mt − t + 1} δA

dL
A(f3, g3) = {tm − 1} {t − 1}−1 δA

The last most general separation bound in-
creases exponentially with m. By (5) this in
turn implies that BN’s containing a large clique
are most unreliable in the sense that data size
has to be enormous before we can be confident
our inferences are approximately reliable in the
sense measured by LDR. Note that in this set-
ting the bound given by our first example on
the second component Tn(2, ρn) in our theo-
rem is a function of the mean and variances
of the component vectors of probabilities (or in
some analyses their logistic transform). These
are routinely sampled anyway so good estimates
can just be plugged in our formula and together
with the bounds above this provides explicit op-
erational uncertainty bounds on our variation
distances.



Example 5. If the BN is decomposable with
cliques C[j], j = 1, 2, . . . ,m then if we require
LGI to hold in all Markov equivalent graphs
then it is proved that the joint distribution of
the clique probabilities on the vector of proba-
bility tables over each clique must have a Dirich-
let distribution (with consistent distributions
over separators). This in turn implies all con-
ditional probabilities used in a BN will also be
Dirichlet for both the genuine and functioning
prior allowing us to calculate explicit expres-
sions for distances between components. Here
we note again that prior distances are expressed
through a Euclidean distance on the hyperpa-
rameters of the genuine and functioning prior
then posterior variation instabilities can occur
in the limit only if our posterior density con-
centrates near zero on some component. Al-
though this phenomenon is unusual for many
likelihoods where components are missing at
random this is not the case when some com-
ponents are systematically missing (Smith and
Croft, 2003). Indeed when estimating probabil-
ities on phylogenetic trees where only the root
and leaf nodes are observed and all probabili-
ties are free it is the norm in practice to find
the distribution of at least some of the internal
hidden nodes concentrating near zero on some
of the probabilities. In these cases, whilst it
can be shown that the estimates of the marginal
manifest probabilities are usually stable under
large samples and the prior may well have a
large effect on the inferences about the internal
explanatory probabilities, even when the prob-
abilities are identifiable and samples are very
large. Unfortunately these probabilities are of-
ten the ones of scientific interest!

3.2 Sensitivity to Departures in

Parameter Independence

Although LGI is a useful expedient, if a prior
is elicited using contextual information - as it
should be- systematic biases in the elicitation
processes due to poor calibration or selection
bias will break these assumptions dramatically.
The issue then is to what extent using the as-
sumption of LGI matters. One possible exten-
sion away from LGI that naturally occurs under

selection biases is for the vector of probabili-
ties in the problem to mirror the dependence
structure of the BN G. A special case of this is
when we drop the local independence assump-
tion. So suppose a functioning prior f(θ) and
a genuine prior g(θ) where θ = (θ1, θ2, . . . θk) ∈
Θ = Θ1 ×Θ2× . . .×Θk are both constrained to
respect the same factorisation

f(θ) = f(θ1)
k

∏

i=2

fi|.(θi | θpai
)

g(θ) = g(θ1)
k

∏

i=2

gi|.(θi | θpai
),

where for 2 ≤ i ≤ k, the parents θpai
of θi is a

subvector of (θ1, θ2, . . . θi−1). Write θ[1] = θ1 ∈
Θ[1] = Θ1 and θ[i] = (θi,θpai

) ∈ Θ[i], 2 ≤ i ≤
k. Let A = A[1] × A[2] × . . . × A[k] ⊆ Θ where
A[i] ⊆ Θ[i], 1 ≤ i ≤ k. Then it is straightfor-
ward to show that dL

A(f, g) ≤ ∑k
i=2 dL

A[i](f[i], g[i])
where fA[i], gA[i] are respectively the margin of f

and g on the space Θ[i] of the ith variable and its
parents (Smith, 2007). Note therefore that our
local separations increase no faster than linearly
in the number of probabilities. It is natural to
set these bounds so that they are functionally
independently of the particular parent configu-
ration θpai

.

Definition 2. Say the neighbourhood N (f) of
f(θ) = f(θ1)

∏k
i=2 fi|.(θi | θpai

) is uniformly A
uncertain if g ∈ N (f) respect the same factori-
sation as f and

sup
g∈G(f)

sup
θi,φi∈A[i]

log

{

fi|. (θi,θpai
) gi|.((φi,θpai

)

gi|. (θi,θpai
) fi|. (φi,θpai

)

}

is not a function of θpai
2 ≤ i ≤ n.

If we believe the genuine prior g ∈ G(f)
is uniformly A uncertain then we can write
dL

A(f, g) =
∑k

i=1 dL∗
A[i](fi|., gi|.) (see Smith, 2007).

The separation between the joint densities f
and g is then simply the sum of the separa-
tion between its component conditionals fi|. and
gi|., 1 ≤ i ≤ k. So in particular we can calcu-
late bounds for the joint density of the genuine
posterior from prior smoothness conditions on



each of the genuine and functioning condition-
als and parameters of the posterior. Notice that
these bounds will apply even when the like-
lihood destroys the factorisation of the prior.
So the critical property we assume here is the
fact that we believe a priori that f respects the
same factorisation as g. If we learn the value
of θ(I) = {θi : i ∈ I} where I is some index
set then the separation between the densities
reduces to

dL
A(f(.|θ(I)), g(.|θ(I))) =

∑

i/∈I

dL∗
A[i](fi|., gi|.)

There is therefore a degree of stability to devi-
ations in parameter independence assumptions.

Finally consider the general case where the
hyperprior is totally general but the modeler be-
lieves that the dependence between parameters
has been caused by the expert first assuming all
component probabilities as mutually indepen-
dent and then observing a particular data set y

with sample mass function q(y|θ) > 0 and form-
ing her new dependent posterior. If we assume
that deviation in this process is only caused
by the misspecification of the initial indepen-
dence prior then by the isoseparation property,
the LDR discrepancy between genuine and func-
tioning prior should be set at the same deviation
parameters as the independence priors. So on
this strong assumption we regain the stability
existing under LGI.

4 Discussion

For any BNs whose densities factorise, the LDR
separations are a valuable way of understand-
ing exactly what forces the final posterior infer-
ences. Robustness under large n will typically
exist for sparse graphs with no component prob-
abilities close to zero. On the other hand graph-
ical models with many boundary probabilities
and/or a large number of edges will exhibit en-
during large approximation errors measured in
total variation distance. This gives yet another
reason why restricting inference with BN’s to
graphs with only a small number of edges is a
good idea.

We note that the same techniques can be used
to study inference in continuous and mixed BN’s

and also for all other GMs encoding a single fac-
torization. We are currently implementing these
techniques and the bounds appear to provide
genuinely helpful supplementary diagnostic in-
formation to what is often a complex estimation
exercise.

References

J. A. A. Andrade and Anthony O’Hagan. 2006.
Bayesian robustness modelling using regularly
varying distributions. Bayesian Analysis, 1:169–
188.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen and
D. J. Spiegelhalter. 2000. Probabilistic Networks
and Expert Systems. Springer Verlag.

L. DeRobertis. 1978. The use of partial prior knowl-
edge in Bayesian inference. Ph.D. dissertation,
Yale Univ.

P. Gustafson and L. Wasserman. 1995. Local sensi-
tivity diagnostics for Bayesiain inference. Annals
Statist, 23:2153–2167.

J. B. Kadane and D. T. Chuang. 1978. Stable deci-
sion problems. Ann. Statist, 6:1095–1111.

A. O’Hagan. 1979. On outlier rejection phenom-
ena in Bayesian inference. J. R. Statist. Soc. B,
41:358–367.

A. O’Hagan and J. Forster. 2004. Bayesian Infer-
ence. Kendall’s Advanced Theory of Statistics,
Arnold.

D. J. Spiegelhalter and S. L. Lauritzen .1990. Se-
quential updating of conditional probabilities on
directed graphical structures. Networks, 20:579–
605.

J. Q. Smith. 2007. Local Robustness of Bayesian
Parametric Inference and Observed Likelihoods.
CRiSM Res Rep, 07-08.

J. Q. Smith and J. Croft. 2003. Bayesian networks
for discrete multivariae data: an algebraic ap-
proach to inference. J of Multivariate Analysis,
84(2):387–402.

J. Q. Smith and F. Rigat. 2008. Isoseparation and
Robustness in Finitre Parameter Bayesian Infer-
ence. CRiSM Res Rep, 07-22.

Y. L. Tong. 1980. Probability Inequalities in Multi-
variate Distributions. Academic Press New York.



Eliciting expert beliefs on the structure of a Bayesian Network

Federico M. Stefanini
Department of Statistics ‘G.Parenti’

University of Florence, viale Morgagni 59, 50134 Firenze, Italy

Abstract

The elicitation of prior beliefs about the structure of a Bayesian Network is a formal
step of full-Bayesian structural learning which offers the opportunity of exploiting the
knowledge accumulated by an expert of the problem domain over years of research in a
quantitative way. Motivating applications include molecular biomarkers in gene expression
or protein assays, where the use of prior information is often suggested as a promising
approach to face the curse of dimensionality. In this paper a general formalization based on
propositions describing network features is developed which comprises issues like anchoring
and revision. An algorithm is described to estimate the number of structures bearing a-
priori relevant features in problem domains characterized by a large number of nodes.

1 Introduction

The structure of a Bayesian Network (BN) and
its parameters are in many cases unknown or
affected by substantial uncertainty, therefore
network learning is performed on the basis of
collected data. A prior distribution over the
space of structures is a formal ingredient of the
Bayesian paradigm. Nevertheless, the elicita-
tion of expert’s prior information on network’s
structure suffers a major limitation due to the
super-exponential increase of structures to be
considered which becomes critical for five or
more random variables. Despite the above men-
tioned difficulties, there is a wide agreement on
the possibility of mitigating the ‘curse of dimen-
sionality’ occurring in many applied fields by
using prior information elicited from experts of
the problem domain.

Several approaches have been proposed to de-
fine a prior distribution on the set of DAGs for
a fixed set of variables. The early work of Bun-
tine (Buntine, 1991) is based on a total order-
ing of nodes and a full specification of beliefs for
each edge which could join pairs of nodes in a
DAG. The collection of nodes which precedes a
given node v is known given the order relation,
therefore the probability of a given parent set
Πv of node v may be calculated as the product

of probability for events of type ‘there is edge
y → v’ or ‘there is not an edge y → v’, for each y
preceding v. The subjective probability elicited
from an expert about structure Bs is defined as
the product of probability values for each parent
set marginally considered. In the seminal paper
of Heckerman (Heckerman et al., 1995) a prior
network, Bsc, is elicited and compared with can-
didate networks so that a high degree of belief
is assigned to structures closely resembling to
the prior network. The number δi of different
nodes in the parent set of node vi is calculated
for each node to quantify the overall degree of
dissimilarity δ =

∑
i δi. Given an elicited hy-

perparameter 0 < k < 1, the prior distribution
is proportional to kδ. Castelo and Siebes first
addressed the issue of partial prior knowledge
and they also provided automatic rules to ob-
tain a full prior for a Bayesian network (Castelo
and Siebes, 2000). Recent contributions include
the development of an informed score function
based on the BDe metric (Mascherini and Ste-
fanini, 2007). The use of several types of re-
strictions to code expert knowledge in structural
learning of BNs has been investigated by (de
Campos and Castellano, 2007), who also par-
ticularized the approach to the local search and
to the PC learning algorithms.

This paper is motivated by the need of elicit-



ing beliefs in a more general setup, e.g. avoiding
both the a-priori independence among parent
sets and the specification of a prior network. A
formal approach is developed with the aim of
supporting researchers of applied fields in the
elicitation and revision of causal and probabilis-
tic beliefs. An algorithm is described which is
useful in problem domains characterized by a
large number of nodes. A simple case study
is presented to illustrate the approach. The key
idea of this paper is that in large spaces of struc-
tures, elicitation may deal with a limited num-
ber of network features.

2 Material and Methods

2.1 Bayesian networks

A graph G is a pair (V, E) where V =
{v1, v2, . . . , vK} is a finite set of nodes and E ⊂
V × V is the set of edges. The set E represents
the structure of the graph because it defines
which nodes are linked by an edge and if such
edge is oriented (arrow) or not (undirected). If
(vi, vj) ∈ E but (vj , vi) /∈ E then the ordered
pair corresponds to the oriented edge vi → vj .
The set of nodes originating oriented edges that
enter into node vj is called parents set, denoted
as pa(vj). In a directed graph all edges are ori-
ented. In a directed graph without cycles a tour
following the direction of oriented edges never
visits the same node two times. A directed
graph without cycles is called Directed Acyclic
Graph (DAG). An auxiliary random variable Z
is introduced to map the set of DAGs for a fixed
V to the set of natural numbers. It follows that
a structure E is associated to an arbitrary num-
ber z in the set ΩZ = {1, 2, . . . , nz}, the sample
space of Z.

The joint probability distribution of random
variables indexed in V , the random vector
Xv1,...,vK

, is Markov with respect to a DAG G if
the following factorization holds:

p(xv1
, xv2

, . . . , xvK
) =

∏

vi∈V

p(xvi
| xpa(vi))

where xpa(vi
) is random vector made by vari-

ables whose labels belong to the parents set of
vi. The lack of an arrow from vi to vj means ir-
relevance of Xvi

in predicting Xvj
if all random

variables defined by the parent set have been
observed, i.e. it is an instance of conditional in-
dependence. More general conditional indepen-
dence statements may be derived by means of
the D-separation theorem, or equivalently sepa-
ration theorems on moralized graphs (Cowell et
al., 1999). Under the stronger Markov Causal
Assumption a DAG represents relations among
variables which are stable under external ma-
nipulation (intervention) of a subset of them,
so that causal effects may be in principle esti-
mated.

Structural learning of a BN amounts to pro-
cess a database D = {d1, d2, . . . , dnd

} of nd con-
ditionally independent realizations of the ran-
dom vector Xv1,v2,...,vK

to infer the conditional
independence relations existing in the joint dis-
tribution of the random vector. Following the
Bayesian approach to inference, the joint proba-
bility distribution of D and network’s unknowns
given the context ξ is

p(D, θ, z | ξ) = p(D | θ, z, ξ) · p(θ | z, ξ) · p(z | ξ),

where θ = (θv1,pa(v1), . . . , θvK ,pa(vK)) are vec-
tors of parameters which appear in the condi-
tional probability distributions of each pair Xvi

,
Xpa(vi). The likelihood function p(D | θ, z, ξ) is
a product of multinomials and the degree of be-
lief about elements of θ is often expressed as
a product of Dirichlet probability density func-
tions (Heckerman et al., 1995). The probability
mass function p(z | ξ) captures the expert’s de-
gree of belief about the unknown structure of a
BN.

2.2 Expert’s degree of belief about

network features

In typical problem domains, we expect that
an expert is willing to believe more on can-
didate structures showing some important fea-
tures which are a-priori plausible.

Definition 1 (Features). Network features
{P1,P2, . . .} are propositions qualifying graphs
defined on a fixed set of nodes V . Given a struc-
ture z, a proposition Pi(z) is either true or false.

Among the examples of features we have:
P1 = ‘is an ancestor of v4’, P2 = ‘maximum



cardinality of parents ≤ 2 ∀v ∈ V ’, P3 = ‘maxi-
mum cardinality of children ≤ 2 ∀v ∈ V ’, P4 =
‘node v3 is neighbor of v7’, P5 = ‘variable Xv2

is
an immediate cause of Xv7

’. Features may ac-
commodate both probabilistic and causal beliefs
according to the choice of suitable propositions
and context.

Expert’s belief is typically elicited through
several network features which may or may not
hold at once. Nevertheless the straight specifi-
cation of p(z | P1,P2, . . .) may be difficult for a
general collection of statements due to relations
which might exist among propositions. A col-
lection of features may be organized into a basis
for the elicitation by defining canonical features.

Definition 2 (Canonical feature). Let R =
{Pi : i = 1, . . . , nf} be the set of reference fea-
tures selected by an expert for the elicitation.
A canonical feature Fj , j ∈ J , is a conjunc-
tion

∧nf

i=1 P̃i where P̃i is a proposition chosen
between Pi and its negation ¬Pi.

A convenient index set is J =
{(1, . . . , nf ), . . . , (1, . . . , nf )} so that the
configuration of features in R which generate
a canonical feature Fj , j ∈ J , is self-evident.
Note that a canonical feature is defined in a
context ξ which includes a fixed collection of
random variables.

Definition 3 (Elicitation basis). A canonical
reference set F = {Fj : j ∈ J} built on refer-
ence set R is the collection of canonical features
defined by all the possible conjunctions in Def-
inition 2. It is a basis for the elicitation.

A canonical reference set induces a partition
on the set of structures, as stated in the propo-
sition below:

Proposition 1 (Canonical partition). Let F
be an elicitation basis on a fixed R. Let Cj =
{z : Fj(z)} be the set of structures satisfying the
assertion Fj ∈ F . The set C = {Cj : j ∈ J } is
a partition of the set of graphs built on a fixed
collection of nodes V .

Proof. By definition, canonical features are in-
compatible propositions.

We are now in the position of eliciting a quan-
titative preference relation on such a partition.

Definition 4 (Preference on F). Let F be
a canonical reference set. A preference re-
lation U induces an order on F and the re-
sulting ‘precede’ and ‘succeed‘ relations are re-
spectively indicated as ≺ and ≻. If U deter-
mines a partial ordering of features then E =
{E1, . . . , Ee, . . . , Ene} is the induced partition of
F into equivalence classes, with Ee a generic
member of partition E , ne the total number of
equivalence classes and F[e] a generic member
of Ee.

The preference relation U is not necessarily a
strict ordering because different canonical fea-
tures may be equally plausible for the expert.
A non-trivial elicitation basis F , contains at
least two distinct elements FL and FU , with
FL ≺ FU , that respectively precedes and suc-
ceeds other canonical features. Therefore de-
grees of belief satisfy the inequality: P [FL |
U , ξ] < P [FU | U , ξ]. A generic canonical fea-
ture Fj , j ∈ J , does not succeed to FU and it
does not precedes FL, that is FL � Fj � FU ,
therefore the degree of belief satisfies:

P [FL | U , ξ] ≤ P [Fj | U , ξ] ≤ P [FU | U , ξ].

Note that if Fj′ � Fj′′ and Fj′ � Fj′′ both
holds for two canonical features Fj′ and Fj′′ ,
then they belong to the same equivalence class,
namely Fj′ ∼ Fj′′ induced by U .

The numerical assignment of degrees of belief
is here performed using conditional odds.

Definition 5 (Conditional odds). Let Fa,Fb

two canonical features and U a preference rela-
tion on F . Conditional odds of Fa against Fb

given U , ξ are:

ωa,b =
P [Fa | U , ξ]

P [Fb | U , ξ]
(1)

with ωa,b ≥ 0.

It follows from (1) that the numerical assign-
ment for two features Fj′ ∼ Fj′′ belonging to
the same equivalence class is ωj′,j′′ = 1.0. The
direct numerical assignment of the degree of be-
lief for pairs of features belonging to distinct
equivalence classes Ea and Eb exploits an aux-
iliary experiment, here a hypothetical random



draw of one ball from an urn which contains
αr red balls and αw white balls, with αr + αw

conveniently set to 100 or more. Given two fea-
tures F[a] and F[b], the number of white and of
red balls in the urn has to be changed by the
expert up to the point in which the odds asso-
ciated to the proposition ‘the ball drawn from
the urn is white’ are equal to conditional odds
of F[a] against F[b]: ωa,b = αw

αr
.

Proposition 2 (Complete minimal ensemble).
Let U be an order relation on F and E the in-
duced partition into equivalence classes. An en-
semble is a collection of conditional odds {ωa,b}
elicited from the expert. The ensemble is com-
plete and minimal if it contains ne−1 odds val-
ues between pairs of features belonging to dis-
tinct equivalence classes, so that at least one
feature is taken from each equivalence class in
E.

Proof. The ensemble is complete because a
probability distribution on F is obtained
by transformation of elicited odds, that is∑

j∈J P [Fj | U , ξ] = 1 and P [Fj | U , ξ] ≥ 0.
The ensemble is minimal because its size can
not be further reduced without compromising
the full specification of a probability distribu-
tion on F .

The assignment of conditional odds has to be
performed according to the order induced by U
in units of subjective probability.

Two structures z1 and z2 may belong to the
same equivalence class Cj and in this case they
are on equal footing for what concerns expert’s
prior information. The probability P [Z =
z | Fj , ξ] represents the expert degree of belief
about the proposition: ‘the unknown structure
z is one of those structures characterized by Fj ’.

Proposition 3 (Beliefs on Z). Given the
canonical partition C induced by an elicitation
basis F , the probability mass function p(z | ξ)
is given by:

p(z | U , ξ) =
1

nj(z)
· P [Fj(z) | U , ξ] (2)

where j(z) is the element of the canonical par-
tition in which z is located, and with nj(z) the
cardinality of such subset.

Proof. The starting factorization is:

p(z | U , ξ) =
∑

j∈J

P [Z = z | Fj , ξ] · P [Fj | U , ξ]

but P [Z = z | Fj , ξ] is null for all but one condi-
tioning feature, say Fj(z). Moreover, under in-
difference among members within class Cj(z) the
probability P [Z = z | Fj(z), ξ] is one over nj(z),
the cardinality of such equivalence class.

2.3 The elicitation of p(z | U , ξ)

An elicitation basis is a general object, never-
theless it is convenient to describe some prac-
tical details both to support algorithms formu-
lation and to prepare the expert to variations
which also depend on the amount of information
being elicited. The conjunction of two or more
incompatible features, like Pi′ = ‘has vi → vj ’
and Pi′′ = ‘has vj → vi’, determines a canonical
feature which is indeed false for DAGs. There-
fore the probability of Pi′ ∧ Pi′′ is null. Similar
remarks hold if a feature implies another fea-
ture, say P2 ⇒ P1. In such case the degree
of belief in the conjunction ¬P1 ∧ P2 should be
zero.

Substantial prior information in the prob-
lem domain may result in a narrow partition,
nj(z) = 1,∀j ∈ J , and the burden of assess-
ment is equivalent to the one-by-one elicitation
of beliefs on structures. Nevertheless, in large
spaces of structures it is likely that the elicita-
tion brings to coarse partitions in which nj ≫ 1,
and the number of DAGs belonging to an equiv-
alence class may be hard to assess.

An approximated solution to the counting
problem may be obtained by simulation. The
core of our algorithm is defined in (Ide et al.,
2002) who build a Markov Chain (MC) that at
convergence provides a DAG uniformly sampled
from the space of all DAGs on a fixed set of
nodes V . We extended the algorithm described
in (Ide et al., 2002, Algorithm 1) by adding steps
00, 09, 10, so that the auxiliary experiment
made by M runs of such a MC results in a sam-
ple of M DAGs:

INPUT: number of nodes n, number of

iterations N, number of DAGs M.



OUTPUT: a vector of counts.

00.Repeat M times:

01.Initialize a simple tree in which each

node has just one parent, except the

root node without parents;

02.Repeat the next loop N times:

03 Generate uniformly a pair of

distinct nodes i,j;

04 If arc(i,j) exists in the graph,

delete the arc providing the

graph remains connected;

05 else

06 Add the arc, provided that the

graph remains a DAG;

07 Otherwise keep the same state;

08.Return the current graph after N

iterations;

09.Assign the returned DAG to an

element of the partition;

10.Return the vector of counts after

M iterations;

Proposition 4 (MC estimate of cardinali-
ties). Given a Markov Chain algorithm provid-
ing DAGs uniformly sampled from the spaces of
DAGs on a fixed set V , an estimate of cardi-
nality nj , j ∈ J , of elements in the canonical
partition C is:

n̂j =
f(nK)

M
·

M∑

i=1

ICj
(zi) (3)

with f(nK) the total number of DAGs on a fixed
set V and M the number of simulated chains.
The indicating function ICj

(zi) is equal to 1 if
the structure zi belongs to Cj, zero otherwise.

Proof. The above algorithm generates a sam-
ple of M DAGs. Each DAG is assigned to the
equivalence class in C which corresponds to the
canonical feature Fj(z). The total number of
DAGs on a fixed set of nodes V is obtained by
recursion (Robinson, 1977):

f(nK) =
nK∑

i=1

(−1)i+1 ·

(
nK

i

)
·2i·(nK−i) ·f(nK −i)

(4)
where f(1) = 1, f(0) = 1 and nK ≥ 2.

2.4 Coherence, stability and revision

The elicitation of expert beliefs is not made by
one straight operation. It is closer to a self-
untangling adaptive procedure which increase in
clarity during its dynamic. In this perspective
the need of revision and elaboration of elicited
values is pretty understandable and generally
accepted in practice. The psychological nature
of the elicitation process may lead to poorly
elicited quantities, as it has been discussed in
the literature (Garthwaite et al., 2005, and ref-
erences therein). For this reason it is conve-
nient to elicit more quantities than needed, that
is a redundant collection of conditional odds is
elicited.

Definition 6. (Coherent anchoring) Let ω̃R be
the collection of distinct complete minimal en-
sembles based on R, that is ensembles in which
at least one value among conditional odds is
built on features taken from different equiva-
lence classes. Then degree of beliefs are coher-
ently anchored if all complete minimal ensem-
bles provide the same distribution of subjective
probability values on F .

Elaboration of elicited quantities is performed
to improve the correspondence between expert’s
belief and numerical assignments. Coherent an-
choring leads to the definition of a probability
measure on the algebra of features A(F). Sub-
jective probability values for marginal canoni-
cal features may be compared to actual expert
beliefs about the same joint statements for the
unknown structure.

Definition 7 (Reduced reference set). Let R be
a set of reference features. A reduced reference
set Rr is a proper subset of R.

Proposition 5 (Stability). Let R̃ be the collec-
tion of all reduced reference sets obtained from
a given reference set: R̃ = {Rr : Rr ⊂ R.}. Let
ω̃Rr be a collection of distinct complete minimal
ensembles, as in Definition 6, based on Rr and
the preference relation Ur. Then elicited degree
of beliefs are stable under reduction Rr if:

P [Fj | Ur,Rr, ξ] = P

[
∨

s∈S

Fs | U ,R, ξ

]
, (5)



where S is the collection of index values denot-
ing canonical features based on R which appear
in the disjunction producing the canonical fea-
ture Fj based on Rr. The elicited degree of be-
liefs are stable if they are stable for all reduc-
tions in R̃.

Proof. If one or more features are removed from
a reference set then the canonical basis of elici-
tation partially collapses to one of larger granu-
larity. The associated algebra is given by unions
of elements taken from the starting algebra.

Full stability may be heavy to check and a
useful compromise is to limit the number of re-
ductions, for example to the collection of all one-
feature reference sets. The revision of elicited
beliefs is mandatory if stability or coherent an-
choring are violated for some reductions.

2.5 A case study in breast cancer

Classical biomarkers in breast cancer studies
include progesterone receptors (PR), oestrogen
receptors (ER), age (AG), menopausal status
(MS), number of positive lymph nodes (PL).
Variables of interest for patients are tumor
grade (TG) and tumor size (TS). The refer-
ence set R contains the propositions below:
P1 =‘Nodes AG, MS precede all other nodes’;
P2 =‘TS, TG, NL follow all other nodes’;
P3 =‘The parent set is made by three or less
nodes for each node in V ’;
P4 =‘ER is independent on AG given MS’.

An important particularization of the general
elicitation scheme is obtained by a preference re-
lation U which sets the order over canonical fea-
tures according to the the number of true propo-
sitions making each canonical feature. The
canonical feature ¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4 pre-
cedes all the other canonical features, while
P1 ∧ P2 ∧ P3 ∧ P4 succeeds to all the other
canonical features. It follows that the first and
last equivalence classes are: E0 = {¬P1 ∧¬P2 ∧
¬P3 ∧ ¬P4} and E4 = {P1 ∧ P2 ∧ P3 ∧ P4}.
Four canonical features have just one proposi-
tion true and they define the equivalence class
E1 = {¬P1 ∧ P2 ∧ P3 ∧ P4,P1 ∧ ¬P2 ∧ P3 ∧
P4,P1 ∧ P2 ∧ ¬P3 ∧ P4,P1 ∧ P2 ∧ P3 ∧ ¬P4}
which follows E0. Equivalence classes E2 and E3

are defined in a similar way. The cardinality of
an equivalence class Ei in this case study is equal
to | Ei |=

(nf

i

)
, where nf is the total number of

propositions and i the number of true proposi-
tions for each canonical feature in the equiva-
lence class Ei: | E0 |= 1, | E1 |= 4, | E2 |= 6,
| E3 |= 4, | E4 |= 1. In this particular preference
relation the total number of equivalence classes
within the partition E is ne = nf + 1 = 5.

In the elicitation, three distinct complete
minimal ensembles are considered, say ω̃R =
{ω̃R,1, ω̃R,2, ω̃R,3}. The first ensemble is:
ω̃R,1 = {ω1,0 = 2.0, ω2,0 = 3.0, ω3,0 =
4.0, ω4,0 = 5.0}, with indices i = 0, 1, 2, 3, 4 de-
noting any canonical feature belonging to equiv-
alence class Ei. The second and third ensem-
bles are: ω̃R,2 = {ω1,0 = 1, ω2,1 = 3

2 , ω3,2 =
4
3 , ω4,3 = 5

4}, ω̃R,3 = {ω0,4 = 1
5 , ω1,3 = 1

2 , ω2,4 =
3
5 , ω3,2 = 4

3}. The anchoring is coherent because
the three ensembles provide the same probabil-
ity values: P [F[0] | U , ξ] = 1

48 , P [F[1] | U , ξ] =
1
24 , P [F[2] | U , ξ] = 1

16 , P [F[3] | U , ξ] = 1
12 ,

P [F[4] | U , ξ] = 5
48 .

The algorithm described in Section (2.3) run
with parameters M = 10000 and N = 294.
In (Ide et al., 2002) the authors motivated the
choice of N = K2 ∗ 6 through empirically find-
ings. We replicated the above simulation for one
hundred times to assess the variability of point
estimates of the fractions of DAGs in Cj , j ∈ J
(full results not shown): minimum and max-
imum standard deviations of n̂j observed for
the 24 = 16 elements of the canonical parti-
tion C are, respectively, 0.000475 and 0.004797
in 100 replicated simulations. The total number
of DAGs for seven nodes is f(7) = 1′138′779′265
(equation 4).

The stability of elicited values has been ex-
amined limited to four reduced reference sets:
R̃ = {Ri : i = 1, 2, 3, 4}, so that the re-
duced reference set Ri = {Pi} contains just
one proposition. An explicit expression exploit-
ing the already introduced index set J is eas-
ily obtained for such reductions, for example:
P [F[1] | U1,R1, ξ] =

∑
s∈S P [Fs | R,U , ω̃R, ξ],

where S = {(1, 2̄, 3̄, 4̄), . . . , (1, 2, 3, 4)}. In this
way we obtained four marginal probability val-



ues of each proposition Pi, i = 1, 2, 3, 4 and they
are all equal to 7

12 . The expert did not reject
the above values which follow from the unre-
stricted elicitation, so the revision did not take
place (see the discussion).

3 Discussion

The generality of the approach described in this
work is mainly due to the use of propositions de-
scribing network features. Nevertheless the use-
fulness also depends on the amount of work left
to the expert in actual problem domains. The
good scaling of the proposed elicitation with an
increasing number of nodes rests on a number of
propositions which is far smaller than the num-
ber of DAGs. Moreover structures counting is
left to simulation, and reasonable estimates in
equation (3) are obtained by sampling a number
of DAGs M which is much smaller than the total
number of DAGS f(nK). Even for an increasing
number of propositions and very large spaces of
structures the computation may remain feasi-
ble if the order relation U induces large equiva-
lence classes of canonical features. Nevertheless,
the overall computational burden partially de-
pends on the nature of features. For example,
features local to Markov blankets are quickly
checked, while features involving the considera-
tion of the whole structure are computationally
heavy to assess.

Particularized instances of our approach may
serve as starting elicitation from which semi-
automatic prior distributions may be quickly
obtained. The preference relation U discussed
in the case study induces a partition in which
Ei collects all canonical features made by i true
propositions. A computationally efficient as-
signment of probability values to canonical fea-
tures is obtained by eliciting a value 0 < k < 1
and by setting P [F[i] | U , ξ] ∝ k(nf−i), so
that for two features F[i′] and F[i′′] satisfying

i′ − i′′ = δ we have ωi′,i′′ = k−δ. Reconciliation
of incoherent anchoring may be automatically
performed by defining an equally weighted mix-
ture of probability distributions obtained from
different ensembles. This reconciliation scheme
might be an automatic first step towards a de-

tailed revision and it could be useful in problem
domains with a large number of features and
weak prior information.

Simpler elicitation schemes may work in prac-
tice, and in these setups our formalization may
be useful in obtaining the elicitation bias, for
example, due to the assumption of a-priori in-
dependence among propositions. Sharp prior
information has been coded as structural re-
strictions in (de Campos and Castellano, 2007),
but it may be as well coded using canonical fea-
tures and degree of beliefs very close to 0 or
to 1, so that management of restrictions and
potential overstatement of beliefs are avoided.
A comparison of computational burden and of
flexibility between the two approaches in simi-
lar case studies is a theme for future research.
The elicitation based on network features and
conditional odds is more demanding than the
approach in (Castelo and Siebes, 2000), where
edges are units of elicitation that are combined
up to a full prior for a BN in a quite implicit
way. The use of oriented graphs and the dis-
tribution of the extra-DAGs amount of weight
lead to a prior distribution for BNs, but in large
sized problem domains the resulting prior distri-
bution may be difficult to submit to further in-
spection as regards non-local properties. Levels
of information including full structures, corre-
lation or causation among nodes, temporal or-
der (O’Donnell et al., 2006) may be also cap-
tured through features, while the implications
due to the use of a uniform distribution on the
space of Totally Ordered Models (O’Donnell et
al., 2006, TOM) has still to be investigated. Fi-
nally, at the best of our knowledge the approach
described in this work seems the only one to
reach full generality in considering global net-
work features, therefore numerical explorations
of its performances under common learners, like
greedy search, deserve research efforts.

A key step of our scheme is the auxiliary
Monte Carlo experiment which provides the
cardinality of equivalence classes when straight
counting DAGs is too heavy. The algorithm
discussed in (Ide et al., 2004) may be used to
count DAGs in restricted spaces, for example
for a sharply believed feature like “no more then



three nodes in each parent set” with a probabil-
ity equal to 1. The counting problem has been
also considered by (Peña, 2007), who provides
MCMC algorithms to approximately calculate
the ratio of DAG models to DAGs up to 20
nodes and the fraction of chain graph models
that are neither DAG models nor DAG models
up to 13 nodes. The extension of the approach
to elicitation described in this work for more
general classes of graphs deserves attention in
future work.

4 Conclusions

In this paper we proposed a formal proce-
dure to elicit expert beliefs on the structure of
a Bayesian network by means of propositions
which capture relevant features. While a de-
tailed elicitation may be overwhelming for the
expert in large problem domains, particulariza-
tions of the general approach offer automatic
completion and limited expert efforts.

Further work on elicitation is needed both
on theoretical and applied sides. An inferen-
tial engine could suggest sure-false and sure-true
canonical features given a reference set. More-
over a graphical user interface could make elici-
tation and revision easier to perform for applied
scientists. It is has been found that different
propositions embedding the same meaning may
lead to different elicited values. Finally, human
cognitive peculiarities related to the elicitation
of beliefs on plausible structures for a BN are
still largely unexplored.

Acknowledgments

This work is funded by Italian MIUR (PRIN).
The author thanks anonymous referees for their
comments.

References

Wray Buntine. 1991. Theory of Refinement on
Bayesian Networks, In Proceedings of 7th Con-
ference on Uncertainty in Artificial Intelligence,
pages 52–60.

Roberto Castelo and Arno Siebes. 2000. Priors
on network structures. Biasing the search for
Bayesian networks, International Journal of Ap-
proximate Reasoning, 24:39–57.

Robert G. Cowell, A. Philip Dawid, Steffen L. Lau-
ritzen and David J. Spiegelhalter. 1999. Prob-
abilistic Networks and expert systems, Springer
Verlag.

Luis M. de Campos and Javier G. Castellano. 2007.
Bayesian network learning algorithms using struc-
tural restrictions, International Journal of Ap-
proximate Reasoning, 45:233–254.

Paul H. Garthwaite, Joseph B. Kadane and Antony
O’Hagan. 2005. Statistical methods for eliciting
probability distributions, Journal of the American
Statistical Association, 100:680–701.

David Heckerman, Dan Geiger, David M. Chick-
ering. 1995. Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data,
Machine Learning, 20:197–243.

Jaime S. Ide and Fabio Gagliardi Cozman. 2002.
Random generation of Bayesian Networks. In Pro-
ceedings of the Brazilian Symposium on Artificial
Intelligence, Brazil, pages 366–375.

Jaime S. Ide, Fabio Gagliardi Cozman and Fabio T.
Ramos. 2004. Generating Random Bayesian Net-
works with Constraints on Induced Width. In
Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI-04), IOS Press, Am-
sterdam, pages 323-327.

Massimiliano Mascherini and Federico M. Stefanini.
2007. Using weak prior information on structures
to learn Bayesian Networks. In B. Apolloni et
al. (Eds.): KES 2007/WIRN 2007,Part I, LNAI
4692, Springer Verlag, Berlin, pages 413-420.

Rodney T. O’Donnell, Ann E. Nicholson, Bin Han,
Kevin B. Korb, Jahangir M. Alam and Lucas R.
Hope. 2006. Causal discovery with prior informa-
tion. In A: Sattar and B. H. Kang (Eds): AI 2006,
LNAI 4304, Springer Verlag, Berlin, pages 1162-
1167.

Jose M. Peña. 2007. Approximate counting of
Graphical Models via MCMC, In Proceedings of
11th International Conference on Artificial In-
telligence and Statistics (AISTATS 2007), pages
352–359.

Robert W. Robinson. 1997. Counting unlabeled
acyclic digraphs. In Combinatorial Mathematics
V (C.H.C. Little, ed.) Springer Lectures Notes in
Mathematics 622, pages 28–43.



A Geometric Approach to Learning BN Structures

M. Studený and J. Vomlel
Institute of Information Theory and Automation of the ASCR

Prague, CZ 18208, Czech Republic

Abstract

We recall the basic idea of an algebraic approach to learning a Bayesian network (BN)
structure, namely to represent every BN structure by a certain (uniquely determined)
vector, called standard imset. The main result of the paper is that the set of standard
imsets is the set of vertices (= extreme points) of a certain polytope. Motivated by
the geometric view, we introduce the concept of the geometric neighborhood for standard
imsets, and, consequently, for BN structures. To illustrate this concept by an example,
we describe the geometric neighborhood in the case of three variables and show it differs
from the inclusion neighborhood, which was introduced earlier in connection with the GES
algorithm. This leads to an example of the failure of the GES algorithm if data are not
“generated” from a perfectly Markovian distribution. The point is that one can avoid this
failure if the greedy search technique is based on the geometric neighborhood instead.

1 Introduction

The motivation for this theoretical paper is
learning a Bayesian network (BN) structure
from data by the method of maximization of
a quality criterion (= the score and search
method). By a quality criterion, also named
a score metric by other authors, we mean a real
function Q of the BN structure, usually rep-
resented by a graph G, and of the database
D. The value Q(G, D) “evaluates” how the BN
structure given by G fits the database D.

An important related question is how to rep-
resent a BN structure in the memory of a com-
puter. Formerly, each BN structure was rep-
resented by an arbitrary acyclic directed graph
defining it, which led to the non-uniqueness in
its description. Later, researchers calling for
methodological simplification came up with the
idea to represent every BN structure with a
unique representative. The most popular graph-
ical representative is the essential graph. It is a
chain graph describing shared features of acyclic
directed graphs defining the BN structure. The
adjective “essential” was proposed by Anders-
son, Madigan and Perlman (1997), who gave a
graphical characterization of essential graphs.

Since direct maximization of a quality crite-
rion Q seems, at first sight, to be infeasible, var-
ious local search methods have been proposed.
The basic idea is that one introduces a neigh-
borhood relation between BN structure repre-
sentatives, also named neighborhood structure

by some authors (Bouckaert, 1995). Then one
is trying to find a local maximum with respect
to the chosen neighborhood structure. This is
an algorithmically simpler task because one can
utilize various greedy search techniques for this
purpose. On the other hand, the algorithm can
get stuck in a local maximum and fail to find the
global maximum. A typical example of these
techniques is greedy equivalence search (GES)
algorithm proposed by Meek (1997). The neigh-
borhood structure utilized in this algorithm is
the inclusion neighborhood, which comes from
the conditional independence interpretation of
BN structures. Chickering (2002) proposed a
modification of the GES algorithm, in which he
used the essential graphs as (unique) BN struc-
ture representatives.

There are two important technical require-
ments on a quality criterion Q brought in con-
nection with the local search methods, namely
to make them computationally feasible. One



of them is that Q should be score equiva-

lent (Bouckaert, 1995), which means it ascribes
the same value to equivalent graphs. The
other requirement is that Q should be decom-

posable (Chickering, 2002), which means that
Q(G, D) decomposes into contributions which
correspond to the factors in the factorization
according to the graph G.

The basic idea of an algebraic approach to
learning BN structures, presented in Chapter
8 of (Studený, 2005), is to represent both the
BN structure and the database with real vec-
tors. More specifically, an algebraic representa-
tive of the BN structure defined by an acyclic
directed graph G is a certain integer-valued vec-
tor uG, called the standard imset (for G). It is
also a unique BN structure representative be-
cause uG = uH for equivalent graphs G and H.
Another boon of standard imsets is that one can
read practically immediately from the differen-
tial imset uG − uH whether the BN structures
defined by G and H are neighbors in the sense
of inclusion neighborhood. However, the cru-
cial point is that every score equivalent and de-
composable criterion Q is an affine function (=
linear function plus a constant) of the standard
imset. More specifically, it is shown in § 8.4.2 of
(Studený, 2005) that one has

Q(G, D) = sQD − 〈t
Q
D, uG〉 ,

where sQD is a real number, tQD a vector of the
same dimension as the standard imset uG (they
both depend solely on the database D and the
criterion Q) and 〈∗, ∗〉 denotes the scalar pro-
duct. The vector tQD is named the data vector

(relative to Q).

We believe the above-mentioned result paves
the way for future application of efficient linear
programming methods in the area of learning
BN structures. This paper is a further step in
this direction: its aim is to enrich the algebraic
approach by a geometric view. One can imagine
the set of all standard imsets over a fixed set of
variables N as the set of points in the respec-
tive Euclidean space. The main result of the
paper is that it is the set of vertices (= extreme
points) of a certain polytope. One consequence

of this result is as follows: since every “reason-
able” quality criterion Q can be viewed as (the
restriction of) an affine function on the respec-
tive Euclidean space, the task to maximize Q
over standard imsets is equivalent to the task of
maximizing an affine function (= the extension)
over the above-mentioned polytope.

Now, a well-known classic result on convex
sets in the Euclidean space, Weyl-Minkowski
theorem, says that a polytope can equivalently
be introduced as a bounded polyhedron. Thus,
once one succeeds in describing the above-
mentioned polytope in the form of a (bounded)
polyhedron, one gets a classic task of linear pro-
gramming, namely to find an extremal value of
a linear function over a polyhedron. There are
efficient methods, like the simplex method, to
tackle this problem (Schrijver, 1986). To illus-
trate the idea we describe the above-mentioned
(standard imset) polytope in the form of a
bounded polyhedron in the case |N | = 3 in the
paper and give a web reference for |N | = 4.

However, because it is not clear at this mo-
ment how to find the “polyhedral” description
of the polytope for arbitrary |N |, we propose
an alternative approach in this paper. The ba-
sic idea is to introduce the concept of geometric

neighborhood for standard imsets, and, there-
fore, for BN structures as well. The standard
imsets uG and uH will be regarded as (geo-
metric) neighbors if the line-segment connect-
ing them is a face of the polytope (= the edge
of the polytope in the geometric sense). The
motivation is as follows: one of possible in-
terpretations of the simplex method is that it
is a kind of “greedy search” method in which
one moves between vertices (of the polyhedron)
along the edges - see § 11.1 of (Schrijver, 1986).
Thus, provided one succeeds at characterizing
the geometric neighborhood, one can possibly
use greedy search techniques to find the global
maximum of Q over the polytope, and, there-
fore, over the set of standard imsets. To illus-
trate the concept of geometric neighborhood we
characterize it for 3 variables in the paper and
give a web reference to the characterization in
the case of 4 variables.

The finding is that the inclusion neighbor-



hood and geometric neighborhood differ already
in the case of 3 variables. This observation has a
simple but notable consequence: the GES algo-
rithm, which is based on the inclusion neighbor-
hood, may fail to find the global maximum of
Q. We give such an example and claim that this
is an inevitable defect of the inclusion neigh-
borhood, which may occur whenever the data
faithfulness is not guaranteed. In our view, the
data faithfulness relative to a perfectly Marko-
vian distribution is a very strong unrealistic as-
sumption except for the case of artificially ge-
nerated data.

2 Basic Concepts

In this section we recall basic definitions and
results concerning learning BN structures.

2.1 BN Structures

One of the possible definitions of a (discrete)
Bayesian network is that it is a pair (G, P ),
where G is an acyclic directed graph over a
(non-empty finite) set of nodes (= variables) N

and P a discrete probability distribution over
N that (recursively) factorizes according to G

(Neapolitan 2004). A well-known fact is that P

factorizes according to G iff it is Markovian with
respect to G, which means it satisfies the con-
ditional independence restrictions determined
by the graph G through the corresponding (di-
rected) separation criterion (Pearl, 1988; Lau-
ritzen, 1996). Having fixed (non-empty finite)
sample spaces Xi for variables i ∈ N , the re-
spective (BN) statistical model is the class of all
probability distributions P on XN ≡

∏
i∈N Xi

that factorize according to G. To name the
shared features of distributions in this class one
can use the phrase “BN structure”. Of course,
the structure is determined by the graph G, but
it may happen that two different graphs over N

describe the same structure.

2.1.1 Equivalence of graphs

Two acyclic directed graphs over N will be
named Markov equivalent if they define the
same BN statistical model. If |Xi| ≥ 2 for ev-
ery i ∈ N , then this is equivalent to the con-
dition they are independence equivalent, which

means they determine the same collection of
conditional independence restrictions – cf. § 2.2
in (Neapolitan, 2004). Both Frydenberg (1990),
and Verma and Pearl (1991) gave classic graph-
ical characterization of independence equiva-
lence: two acyclic directed graphs G and H over
N are independence equivalent iff they have
the same underlying undirected graph and im-

moralities, i.e. induced subgraphs of the form
a → c ← b, where [a, b] is not an edge in the
graph.

2.1.2 Learning BN structure

The goal of (structural) learning is to deter-
mine the BN structure on the basis of data.
These are assumed to have the form of a com-

plete database D : x1, . . . , xd of the length d ≥ 1,
that is, of a sequence of elements of XN . Pro-
vided the sample spaces Xi with |Xi| ≥ 2 for
i ∈ N are fixed, let DATA(N, d) denote the col-
lection of all databases over N of the length d.
Moreover, let DAGS(N) denote the collection of
all acyclic directed graphs over N . Then we take
a real function Q on DAGS(N)×DATA(N, d) for
a quality criterion. The value Q(G, D) should
reflect how the statistical model determined by
G is suitable for explaining the (occurrence of
the database) D. The learning procedure based
on Q then consists in maximization of the func-
tion G 7→ Q(G, D) over G ∈ DAGS(N) if the
database D ∈ DATA(N, d), d ≥ 1 is given.

A classic example is Jeffreys-Schwarz
Bayesian information criterion (BIC), defined
as the maximum of the likelihood minus a
penalty term, which is a multiple of the number
of free parameters in the statistical model
(Schwarz, 1978). To give a direct formula
for BIC (in this case) we need a notational
convention. Given i ∈ N , let r(i) denote the
cardinality |Xi|, paG(i) ≡ {j ∈ N ; j → i}
the set of parents of i in G ∈ DAGS(N), and
q(i, G) ≡ |

∏
j∈pa

G
(i) Xj | the number of parent

configurations for i (in G). Provided i ∈ N

is fixed, the letter k will serve as a generic
symbol for (the code of) an element of Xi (=
a node configuration) while j for (the code
of) a parent configuration. Given a database
D of the length d ≥ 1 let dijk denote the



number of occurences in D of the (marginal)
parent-node configuration encoded by j and k;

put dij =
∑r(i)

k=1 dijk. Here is the formula - see
Corollary 8.2 in (Studený, 2005):

BIC (G, D) =
∑

i∈N

q(i,G)∑

j=1

r(i)∑

k=1

dijk · ln
dijk

dij

−
ln d

2
·
∑

i∈N

q(i, G) · [r(i)− 1] .

In this brief overview we omit the question of
statistical consistency of quality criteria; we re-
fer the reader to the literature on this topic
(Chickering, 2002; Neapolitan, 2004). A quality
criterion Q will be named score equivalent if, for
every D ∈ DATA(N, d), d ≥ 1,

Q(G, D) = Q(H,D) if G, H ∈ DAGS(N)

are independence equivalent. Moreover, Q will
be called decomposable if there exists a collec-
tion of functions qi|B : DATA({i} ∪ B, d) → R

where i ∈ N , B ⊆ N \ {i}, d ≥ 1 such that, for
every G ∈ DAGS(N), D ∈ DATA(N, d) one has

Q(G, D) =
∑

i∈N

qi|pa
G

(i)(D{i}∪pa
G

(i)) ,

where DA : x1
A, . . . , xd

A denotes the projection
of D to the marginal space XA ≡

∏
i∈A Xi for

∅ 6= A ⊆ N .

2.1.3 Inclusion neighborhood

The basic idea of local search methods for
the maximization of a quality criterion (= score
and search methods) has already been explained
in the Introduction. Now, we define the in-
clusion neighborhood formally. Given G ∈
DAGS(N), let I(G) denote the collection of con-
ditional independence restrictions determined
by G. Given G, H ∈ DAGS(N), if I(H) ⊂
I(G),1 but there is no F ∈ DAGS(N) with
I(H) ⊂ I(F ) ⊂ I(G), then we say H and G

are inclusion neighbors. Of course, this termi-
nology can be extended to the corresponding
BN structures and their representatives.

1Here, I ⊂ J denotes strict inclusion, that is, I ⊆ J
but I 6= J .

Note that one can test graphically whether
G, H ∈ DAGS(N) are inclusion neighbors; this
follows from transformational characterization
of inclusion I(H) ⊆ I(G) provided by Chicker-
ing (2002).

2.1.4 Essential graph

Given an (independence) equivalence class G
of acyclic directed graphs over N , the respec-
tive essential graph G∗ is a hybrid graph (= a
graph with both directed and undirected edges)
defined as follows:

• a→ b in G∗ if a→ b in every G ∈ G,

• a ! b in G∗ if there are G, H ∈ G such that
a→ b in H and a← b in G.

It is always a chain graph (= acyclic hybrid
graph); this follows from graphical characteriza-
tion of (graphs that are) essential graphs by An-
dersson, Madigan and Perlman (1997). Chick-
ering (2002) used essential graphs as unique
graphical BN structure representatives in his
version of the GES algorithm.

2.2 Standard Imset

By an imset u over N will be meant an integer-
valued function on the power set of N , that is,
on P(N) ≡ {A; A ⊆ N}. We will regard it
as a vector whose components are integers and
are indexed by subsets of N . Actually, any real
function m : P(N)→ R will be interpreted as a
(real) vector in the same way, that is, identified
with an element of RP(N). The symbol 〈m, u〉
will denote the scalar product of two vectors of
this type:

〈m, u〉 ≡
∑

A⊆N

m(A) · u(A) .

To write formulas for imsets we introduce the
following notational convention. Given A ⊆ N ,
the symbol δA will denote a special imset:

δA(B) =

{
1 if B = A,

0 if B 6= A,
for B ⊆ N.

By an elementary imset is meant an imset

u〈a,b|C〉 = δ{a,b}∪C + δC − δ{a}∪C − δ{b}∪C ,



where C ⊆ N and a, b ∈ N \ C are dis-
tinct. In our algebraic framework it encodes an
elementary conditional independence statement
a ⊥⊥ b |C.

Given G ∈ DAGS(N), the standard imset for
G, denoted by uG, is given by the formula

uG = δN−δ∅+
∑

i∈N

{ δpa
G

(i)−δ{i}∪pa
G

(i) }. (1)

It follows from (1) that uG has at most 2 · |N |
non-zero values. Thus, one can keep only
its non-zero values, which means the memory
demands for representing standard imsets are
polynomial in the number of variables.

It was shown as Corollary 7.1 in (Studený,
2005) that, given G, H ∈ DAGS(N), one has
uG = uH iff they are independence equivalent.
Moreover, Corollary 8.4 in Studený (2005) says
that G, H ∈ DAGS(N) are inclusion neighbors
iff either uG − uH or uH − uG is an elementary
imset. Finally, Lemmas 8.3 and 8.7 in (Studený,
2005) together claim that every score equivalent
and decomposable criterion Q necessarily has
the form:

Q(G, D) = sQD − 〈t
Q
D, uG〉 (2)

for G ∈ DAGS(N), D ∈ DATA(N, d), d ≥ 1
where the constant sQD ∈ R and the (data) vec-
tor tQD : P(N)→ R do not depend on G.

The reader can object that the dimension of
tQD grows exponentially with |N |, making the
method unfeasible for many “real-world” prob-
lems. However, since 2|N | ≤ |XN |, the rep-
resentation of a database D in the form of a
data vector may appear to be even more effec-
tive than (one of the traditional ways) in the
form of a contingency table! Another point is
that to compute 〈tQD, uG〉 one only needs at most
2 · |N | values of the data vector. In brief, we be-
lieve that whenever one is able to represent the
database in the memory of a computer then one
should be able to take care of the data vector
as well.

3 Some Geometric Concepts

In this section we recall well-known concepts
and facts from the theory of convex polytopes
(Schrijver, 1986).

3.1 Polytopes and Polyhedrons

These sets are special subsets of the Euclidean
space RK , where K is a non-empty finite set.
The points in this space are vectors v = [vi]i∈K .
Given x, v ∈ RK their scalar product is 〈v,x〉 =∑

i∈K vi · xi.

A polytope in RK is the convex hull of a finite
set of points in RK ; if the set consists of points
in QK , the polytope is rational. It is straight-
forward that the smallest set of points whose
convex hull is a polytope P is the set of its ver-

tices (≡ extreme points), that is, of those points
in P which cannot be written as convex combi-
nations of the other points in P. In particular,
the set of vertices of P is finite. The dimen-

sion dim(P) of P ⊆ RK is the dimension of its
affine hull aff(P), which is the collection of affine
combinations

∑
v∈R

λ
v
· v, where ∅ 6= R ⊆ P is

finite and λ
v
∈ R,

∑
v∈R

λ
v

= 1.2 A polytope is
full-dimensional if dim(P) = |K|.

An affine half-space in RK is the set

H+ = {x ∈ RK ; 〈v,x〉 ≤ α} ,

where 0 6= v ∈ RK and α ∈ R. A polyhedron

is the intersection of finitely many affine half-
spaces. It is bounded if it does not contain a ray
{x + α ·w; α ≥ 0} for any x, w ∈ RK , w 6= 0.

A well-known classic, but non-trivial, result
is that P ⊆ RK is a polytope iff it is a bounded
polyhedron – see Corollary 7.1.c in (Schrijver,
1986). A further important observation is that
if P is a full-dimensional polytope then its ir-

redundant description in the form of a polyhe-
dron3 is unique – see claim (17) on page 102 of
(Schrijver, 1986).

Finally, there are software packages that al-
low one, on the basis of the list of vertices of a
rational polytope P, to compute all inequalities
defining an irredundant polyhedral description
of P, e.g. (Franz, 2006).

2There is a unique linear subspace L ⊆ RK such that
aff(P) = w + L for some w ∈ RK . The dimension of
aff(P) is defined as the dimension of L.

3By this is meant the intersection of such a collec-
tion of half-spaces in which no half-space can be dropped
without changing the polyhedron.



4 Main Result

In this section we give the main result and illus-
trate it in an example with three variables. Let
S denote the set of standard imsets over N :

S ≡ {uG; G ∈ DAGS(N)} ⊆ RP(N) .4

Theorem 1. The set S of standard imsets over

N is the set of vertices of a rational polytope

P ⊆ RP(N). The dimension of the polytope is

2|N | − |N | − 1.

Because of a limited scope for this paper we
skip the proof, which can be found in (Studený
and Vomlel, 2008).

Example Let us describe the situation in the
case of three variables. Then one has 11 stan-
dard imsets and they break into 5 types (= per-
mutation equivalence classes). They can also be
classified by the number of edges in the corre-
sponding essential graph. (c.f. Figure 1 below)

• The zero imset corresponds to the complete
(undirected) essential graph.

• Six elementary imsets break into two types,
namely u〈a,b|∅〉 and u〈a,b|c〉; the essential
graphs are a→ c← b and a ! c ! b.

• Three “semi-elementary” imsets of the
form u〈a,bc|∅〉 ≡ δabc + δ∅ − δa − δbc define
one type; the essential graphs have just one
undirected edge.

• The imset δN −
∑

i∈N δi +2 ·δ∅ corresponds
to the empty essential graph.

By the theorem above, the dimension of the
polytope generated by these 11 imsets is 4. To
get its irredundant description in the form of a
polyhedron it is suitable to have it embedded (as
a full-dimensional polytope) in a 4-dimensional
space. To this end, we decided to identify eve-
ry standard imset over N with its restriction to
K ≡ {A ⊆ N ; |A| ≥ 2}. Then we used the com-
puter package Convex (Franz, 2006) to get all
13 polyhedron-defining inequalities. They break
into 7 types and can be classified as follows:

4To avoid misunderstanding recall that distinct
G, H ∈ DAGS(N) may give the same standard imset
uG = uH ; however, the set S contains only one imset for
each independence equivalence class.

• Five inequalities hold with equality for the
zero imset. They break into 3 types:
0 ≤ 2 · δabc + δab + δac + δbc, 0 ≤ δabc + δab

and 0 ≤ δabc.

• Eight inequalities achieve equality for the
imset corresponding to the empty graph.
They break into 4 types, namely δabc ≤ 1,
δabc + δab ≤ 1, δabc + δab + δac ≤ 1 and
δabc + δab + δac + δbc ≤ 1.

We also made analogous computation in the
case |N | = 4. In this case one has 185 standard
imsets breaking into 20 types. The dimension
of the polytope is 11. The number of corre-
sponding polyhedron-defining inequalities is 154
– see vertex-facet table in (Vomlel and Studený,
2008).

Thus, in the case of three and four variables,
the polyhedral description of the polytope P was
found. In particular, the task to maximize a
(score equivalent and decomposable) quality cri-
terion Q is, by (2), equivalent to a standard lin-
ear programming problem, namely to minimize
a linear function u 7→ 〈tQD, u〉 over the domain
specified by those 13, respectively 154, inequal-
ities. Note that the formula for the data vector
relative to BIC is also known, see (8.39) in (Stu-
dený, 2005):

tBIC

D (A) = d ·H(P̂A|
∏

i∈A

P̂i)

−
ln d

2
· { |A| − 1 +

∏

i∈A

r(i)−
∑

i∈A

r(i)}

for A ⊆ N , where H(∗|∗) is the relative entropy
and P̂A is the marginal empirical distribution
given by (the projection of the database) DA.

5 Geometric Neighborhood

We say that two standard imsets u, v ∈ S are
geometric neighbors if the line-segment E con-
necting them in RP(N) is an edge of the poly-
tope P (generated by S), which means P \ E

is convex. The motivation for this concept has
already been explained in the Introduction. Of
course, the concept of geometric neighborhood
can be extended to the corresponding BN struc-
tures, and to the essential graphs as well.



C

C

B

A C

B

A C

B

CA

B

A C

B

A C

B

CA

B

A C

B

A C

B

CA

B

B

A

A

Figure 1: The geometric and inclusion neighborhood (for essential graphs) in the case of 3 variables.

Example We characterized the geometric
neighborhood in the case of three variables and
compared it with the inclusion neighborhood.
We found out that the inclusion neighborhood
is contained in the geometric one. The result is
depicted in Figure 1, in which BN structures are
represented by essential graphs, solid lines join
inclusion neighbors and dashed lines geometric
neighbors that are not inclusion neighbors. Dif-
ferent levels correspond to the numbers of edges.

We made a similar computation also in the
case of four variables – see vertex-vertex table
in (Vomlel and Studený, 2008). The descrip-
tion of our method for computing the geometric
neighborhood is also available at (Vomlel and
Studený, 2008).

5.1 GES Failure

What does it mean that u, v ∈ S are geomet-
ric but not inclusion neighbors? The fact that
they are geometric neighbors means there exists
a linear function on RP(N) achieving its maxi-
mum over S just in {u, v}. Analogously, since
u is a vertex of P, there exists (another) lin-
ear function achieving its maximum just in u.
Therefore, by a suitable convex combination of
these functions, one can construct a linear func-
tion L on RP(N) such that L(u) > L(v) > L(w)
for any w ∈ S \{u, v}. Provided u and v are not
inclusion neighbors, L achieves its local maxi-

mum (with respect the inclusion neighborhood)
in v and the global maximum over S in u.

Now, it has already been explained that every
“reasonable” quality criterion Q is (the restric-
tion of) an affine function on RP(N). Thus, the
reader may ask whether this may happen for Q
in place of L. Indeed, this is true in the case of
three variables for the imset u = u〈a,c|∅〉, which
corresponds to an “immorality” a→ b← c and
the imset v corresponding to the empty graph
– see Figure 1.

Example There exists a database D (of the
length d = 4) over N = {a, b, c} such that the
BIC criterion achieves its local maximum in the
empty graph G0 and its global maximum in (any
of) the graph(s) Ĝ of the type a → b ← c.
Put Xi = {0, 1} for i ∈ N and x1 = (0, 0, 0),
x2 = (0, 1, 1), x3 = (1, 0, 1), x4 = (1, 1, 0).
Then direct computation of BIC (see § 2.1.2)
gives BIC(Ĝ) = −14 ln 2, BIC(G0) = −15 ln 2
and BIC(G′) = −16 ln 2 for any graph G′ over
N having just one edge.

The reader may object that this is perhaps a
rare casual example because of a short database.
However, BIC exhibits the same behavior if the
database D is multiplied! The limited scope
of this contribution does not allow us to give
the arguments why (we think) this is, actu-
ally, asymptotic behavior of any consistent score
equivalent decomposable criterion Q, provided
the database is “generated” from the empirical



distribution P̂ given by D. The point is that P̂

is not perfectly Markovian with respect to any
G ∈ DAGS(N).

In particular, the GES algorithm – see
(Chickering, 2002) for details about this algo-
rithm – should (asymptotically) learn the empty
graph G0, while it is clear that (any of the
graphs) Ĝ is a more appropriate BN structure
approximation of the “actual” conditional inde-
pendence structure given by P̂ .

6 Conclusion

In our view, this is an example of the failure of
the GES algorithm which may occur whenever
a disputable data faithfulness assumption is not
fulfilled.5 This assumption is “valid” if data are
artificially generated, but, in our view, one can
hardly ensure its validity for “real” data.

On the other hand, the point of the example
from 5.1 is that the GES algorithm is based on
the inclusion neighborhood. This cannot hap-
pen if the greedy search technique is based on
the geometric neighborhood. Indeed, we are
able to show that each local maximum (of an
affine function) with respect to the geometric
neighborhood is necessarily a global maximum
(over P). The proof is at the manuscript stage
and will be published later. The conjecture that
the inclusion neighborhood is always contained
in the geometric one has recently been con-
firmed by Raymond Hemmecke (personal com-
munication). Therefore, we think the concept
of geometric neighborhood is quite important.
We plan to direct our future research effort to
algorithms for its efficient computation.

Acknowledgements

We are grateful to our colleague Tomáš
Kroupa for his help with computations. This re-
search has been supported by the grants GAČR
n. 201/08/0539 and MŠMT n. 1M0572, and n.
2C06019.

5By this we mean the assumption that data are “ge-
nerated” from a distribution which is perfectly Marko-
vian with respect to an acyclic directed graph.

References

S.A. Andersson, D. Madigan and M.D. Perlman.
1997. A characterization of Markov equivalence
classes for acyclic digraphs. The Annals of Statis-
tics, 25:505-541.

R.R. Bouckaert. 1995. Bayesian belief networks:
from construction to evidence. PhD thesis, Uni-
versity of Utrecht.

D.M. Chickering. 2002. Optimal structure identifi-
cation with greedy search. Journal of Machine
Learning Research, 3:507-554.

M. Franz. 2006. Convex – a Maple package for con-
vex geometry, version 1.1, available at
http://www-fourier.ujf-grenoble.fr/

~franz/convex/

M. Frydenberg. 1990. The chain graph Markov prop-
erty. Scandinavian Journal of Statistics, 17:333-
353.

S.L. Lauritzen. 1996. Graphical Models. Clarendon
Press.

C. Meek. 1997. Graphical models, selecting causal
and statistical models. PhD thesis, Carnegie
Melon University.

R.E. Neapolitan. 2004. Learning Bayesian Networks.
Pearson Prentice Hall.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann.

A. Schrijver. 1986. Theory of Linear and Integer
Programming. John Wiley.

G. Schwarz. 1978. Estimation the dimension of a
model. The Annals of Statistics, 6:461-464.

M. Studený. 2005. Probabilistic Conditional Inde-
pendence Structures. Springer-Verlag.

M. Studený and J. Vomlel. 2008. Geometric view
on learning Bayesian network structures. A draft
available at
http://staff.utia.cas.cz/studeny/c11.html

T. Verma and J. Pearl. 1991. Equivalence and syn-
thesis of causal models. In 6th Conferece on Un-
certainty in Artificial Intelligence, pages 220–227.

J. Vomlel and M. Studený. 2008. Geometric neigh-
borhood for Bayesian network structures over
three and four variables. Web page, see
http://www.utia.cas.cz/vomlel/imset/

polytopes-3v-and-4v.html



An Influence Diagram framework for acting under influence by
agents with unknown goals

Nicolaj Søndberg-Jeppesen and Finn Verner Jensen
Department of Computer Science

Aalborg University
9220 Aalborg, Denmark

Abstract

We consider the situation where two agents try to solve each their own task in a common
environment. We present a general framework for representing that kind of scenario
based on Influence Diagrams (IDs). The framework is used to model the analysis depth
and time horizon of the opponent agent and to determine an optimal policy under various
assumptions on analysis depth of the opponent. Not surprisingly, the framework turns
out to have severe complexity problems even in simple scenarios due to the size of the
relevant past. We propose an algorithm based on Limited Memory Influence Diagrams
(LIMIDs) in which we convert the ID into a Bayesian network and perform single policy
update. Empirical results are presented using a simple board game.

1 Introduction

It is a central problem in Multi-agent research
to model the reasoning necessary when multiple
agents, each with individual objectives, inter-
act in the same environment. While each agent
may change the state of the environment to-
wards a more favorable state for itself, other
agent’s actions may change the state to a less
favorable state. When planning under such con-
ditions it is beneficial to take into account the
other agent’s reasoning. The Recursive Mod-
eling Method (RMM) which was proposed by
Gmytrasiewicz et al. (1991) does that. They
propose to equip each intelligent agent with a
model in which each agent is equipped with a
model which models the other agents. These
nested models may again have models of all
the rest of the agents in the environment which
again contain nested models. The nesting of
models continues until a predefined nesting level
is met. At the deepest level the nesting is ended
by a simpler kind of model which equip each
agent in the environment with a “flat” model,
without models of other agents.

We shall use RMM together with Influence
Diagrams (IDs) for modeling a game scenario.

In this scenario each agent intends to solve a
number of tasks or assignments. The charac-
teristics of the scenario is, that since the agents
co-exist in the same environment, the actions
performed by one agent affects the state of the
scenario for all agents. The scenario may be a
competition between the agents, they may co-
operate in solving the same task or they may
be working on solving each their task without
caring about the other agent’s performance. No
matter what, the success for each agent is highly
dependent on its ability to model the other
agents in the scenario.

Many of the RMM based approaches turn out
to be PSPACE-hard (Gmytrasiewicz and Doshi,
2005). IDs are also facing notorious complex-
ity problems due to the no-forgetting assump-
tion (the assumption that everything that was
known at a previous decision is also known at
the current decision). Eventually the decision
maker will have way too much information all
of which being relevant for the current decision.
Lauritzen and Nilsson (2001) propose Limited
Memory Influence Diagrams (LIMIDs) in which
the decision maker is assumed to have only a
certain amount of memory. They propose an al-



gorithm called single policy update, which finds
an approximation to the optimal policy. In this
paper we shall propose an algorithm which is
able to solve RMM based LIMIDs in multiagent
scenarios.

2 Background

The kind of scenarios we are interested in con-
sist of a finite set of world states W with
states w1, w2, . . . , wm, and 2 agents P 1 and
P 2. We assume P 1 to be female and P 2

to be male. The agents have finite sets
of actions, say Actions

P
1 and Actions

P
2

with members action1
P 1, action2

P 1 , . . . , actionk
P 1

and action1
P 2, action2

P 2 , . . . , actionk
P 2 respec-

tively. The transition between world states at
time t to time t + 1 is determined by a proba-
bilistic function τ , where τ : W ×Actions

P
1 ×

Actions
P

2 × W → [0; 1].
Furthermore, each agent has an assignment
which reflects how much the agent prefers each
world state by assigning a value to each state.
Thus, agent P 1 and P 2, have a finite set
of possible assignments aP 1

1

, aP 1

2

, . . . , aP 1

l

and
aP 2

1

, aP 2

2

, . . . , aP 2
m

respectively. We will consider
only scenarios where the world state is always
known by all agents but the actual assignments
of the other agents remain hidden. A proba-
bility distribution of the opponent’s assignment
can however, be obtained by observing his/her
actions.
You may consider the scenario as a board game,
where each player wishes to obtain certain pat-
tern on the board. The players receive their
pattern assignments by drawing cards from a
deck. The payoff function, which assigns payoffs
to each player at each time step, is a function
of the current world state and the assignment
of the two agents. We shall refer to the scenario
as covert interference(CIF).

2.1 Influence Diagrams

We shall use the classical paradigms from Prob-
abilistic Graphical Models (PGMs). A graphi-
cal model is a directed acyclic graph with three
types of nodes, chance nodes (circular nodes),
decision nodes (rectangular nodes), and util-
ity nodes (diamond shaped nodes). A directed

link into chance node reflects (causal) impact,
which may be of non-deterministic character, a
link into a decision node represents information.
That is, if C is a parent of the decision node D
then the state of C is known by the decision
maker when D is to be decided.

The quantitative part of a PGM consists of
utility functions and conditional probabilities.
For a utility node U with parents pa(U) we
specify the utility as a function of pa(U). For
a chance node C with parents pa(C) we spec-
ify P (C|pa(C)), the conditional probability of
C given pa(C).

A solution to an ID is an optimal strategy. A
strategy consists of set of policies, one for each
decision node. A policy for a decision node is a
function, which given the known past provides
a decision. A strategy is optimal if it maximizes
the decision maker’s expected utility.

There are standard algorithms for solving
IDs, and systems for specifying and solving
IDs are commercially available (Shachter, 1986;
Shenoy, 1992; Jensen et al., 1994; Hugin Expert
A/S, 2007). We shall in this paper take these
algorithms for granted.

The framework of IDs has been extended in
various ways. In particular, Koller and Milch
(2003) introduced Multi-Agent Influence Dia-
grams (MAIDs). The various acting agents are
given decision and utility nodes of particular
colors (or shadings).

2.2 Graphical representation of CIF

We adapt the framework of MAIDs to CIF. This
is illustrated in Figure 1. In Figure 1 player
P 1’s nodes are lightly shaded, and P 2’s nodes
are darkly shaded.

The nodes W0,W1, . . . represent the world
states at t = 0, t = 1, . . . the chance nodes
A1 and A2 represent the players’ assignments,
the nodes with P 1-labels represent the moves by
player P 1. The diamond shaped nodes, which
are half lightly shaded and half darkly shaded
represent the payoff matrixes, which assign a
utility to both players in each game step. The
links from a W -node and the A-nodes to a U -
node indicate that the utility is a function of
the world state and the assignments. The links



Constraint

W0 W1 W2 W3 W4

P 1
1

P 2
1

P 1
2

P 2
2

P 1
3

P 2
3

P 1
4

P 2
4

U1 U2 U3

A1 A2

. . .

. . .

. . .

Figure 1: A MAID representation of CIF.

from the A1-node to decision nodes represent
that player P 1 knows her assignment. The links
from W -nodes to decision nodes represent that
the state of the world is always known. The dots
at the right of the graph indicate that there is
no time limit specified.
There might be constraints on which assign-
ments the players can have simultaneously e.g.
they might not be able to have the same assign-
ment. Therefore, A1 and A2 are connected to a
constraint node which is instantiated.

At t = 0 the game starts in W0, where P 1 and
P 2 each decide their actions concurrently, know-
ing only their own assignment and the initial
world state. P 1’s and P 2’s joint moves lead to
a new state W1, where player P 1 and P 2 again
decide each their actions knowing only W1 and
each their own assignments. When both players
have decided their actions the game continues
with time t = 1. At t = 1 P 1 still knows only
her own assignment but if she knows P 2’s policy
she can estimate P 2’s assignment in A2.

Even if there is a pre-specified time hori-
zon, the standard methods for solving IDs
((Shachter, 1986; Shenoy, 1992; Jensen et al.,
1994)) cannot be used. Consider the last time
step. Both players have to come up with an
optimal decision given the past. Part of the
considerations for player P 1 will be an estimate
of player P 2’s move. However, P 2’s move is de-
pendent on an estimate of P 1’s move. You end
up with an infinite regression, which in game
theory is solved by determining Nash equilibria

(Nash, 1950).

We consider the situation, where we wish to
construct a computer program to play against
human players. As we cannot expect human
players to play Nash equilibria, the computer
shall exploit that, and therefore it usually shall
not play Nash-equilibria either.

2.3 The game seen in the eyes of P 1

In real world situations, players do not per-
form an infinite regression and determine Nash
equilibria. The players will analyse the situ-
ation to a certain depth and with a certain
lookahead of moves, and in the depth analy-
sis they will make some assumptions about the
other players’ analysis depth and look-ahead.
This is called the recursive modeling method
(RMM) (Gmytrasiewicz et al., 1991), and we
will incorporate RMM into the models by let-
ting P 1 bound the recursive modeling to a cer-
tain level. More specifically, P 1 has a model in-
corporating the moves of player P 2, where she
makes some assumptions on how many moves
ahead he analyzes the situation, and in turn,
how deep P 2 is assuming P 1’s model to be.
In other words, if P 1 makes these assumptions
about the policies of P 2, the model in Figure 1
can be transformed to an ID, where P 2’s deci-
sion nodes are replaced with chance nodes, and
P (P 2

i+1|A
2,W0, . . . ,Wi, P

2
0 , . . . , P 2

i ) is the pol-
icy (see Figure 2). Note that the node A2 re-
flects that P 2’s assignment is unknown to P 1.
The model shall include prior probabilities for
A2.

In the simplest case P 1 assumes that P 2 just
picks a move randomly. We will say that this
player has a level 0 model since she in this case
uses the least effort to model P 2. In case P 1

assumes that P 2 has a level 0 model, we say
that P 1 has a level 1 model. In general, when
P 1 has a level i model, she assumes that P 2

has a level i − 1 model. As we let P 1 be the
computer and P 2 the human, we assume P 1 to
have a larger analysis depth than P 2.

At each level, P 1 may take different numbers
of future time steps into account. If P 1 is only
taking one future time step into account she
will greedily pick a move that maximizes her



expected utility in the next time step. If P 1 is
taking 2 future time steps into account she will
maximize the sum of her expected utility in the
next and the following time step. In general, if
P 1 is taking h future time steps into account
she will maximize her expected sum of utility in
the next h time steps. We shall call the number
of future time steps P 1 takes into account P 1’s
time horizon. Consequently P 1 also must have
an assumption about P 2’s time horizon and she
must also have an assumption about which time
horizon P 2 assumes that P 1 has etc.

In order to capture P 1’s modeling level and
time horizon together with her assumptions
about P 2’s nesting depth and P 2’s assumptions
about P 1’s nesting depth we give the following
definition.

Definition 1. A player P is a pair defined as
follows:

1. P = (h,NIL) is a player with time horizon
h and modeling level 0.

2. Given a player O, with modeling level i−1,
P = (h,O) is a player with time horizon h
and modeling level i.

Thus, the simplest model, which is a level 0
model with time horizon 1 is denoted (1, NIL);
a (2, (1, NIL)) model is a level 1 model in
which P 1 has time horizon 2 assuming that
P 2 is a level 0 model with time horizon 1; a
(3, (2, (1, NIL))) model is a level 2 model in
which P 1 has time horizon 3 assuming that P 2

is a level 1 model with time horizon 2 assum-
ing that P 1 is a level 0 model with time hori-
zon 1. Note that, it is possible to define mod-
els in which P 1 assumes that P 2 has a longer
time horizon than herself. Scenarios where play-
ers want to maximize a short time gain play-
ing against players with a long time horizon are
common at, for example, stock exchanges.

Figure 2 shows how a (2, (2, (1, NIL))) model
for P 1 is represented as an ID. The leftmost
ID represents the world as seen by P 1. In this
ID, the nested model, namely (2, (1, NIL)) is
used to fill in the conditional probability dis-
tributions in the nodes P 2

1 and P 2
2 representing

P 2’s decisions. The ID in the center represents

this model, which represents the strategy as-
sumed to be played by P 2. In this model the
conditional probability distributions P 1

1 and P 1
2

are found by analyzing the rightmost ID, which
represents the deepest model (1, NIL). In the
(1, NIL) model the chance node P 2

1 represents
the completely random strategy which P 2 is as-
sumed to play on level 0. Note that the leftmost
ID in Figure 2, contains extra arcs, namely the
arc connecting the nodes P 2

1 and P 2
2 and the

arc connecting W0 and P 2
2 . These arcs repre-

sent that P 2 in time step 1 when P 2 is taking
decision P 2

2 will remember W0 and P 2
1 due to the

no-forgetting-assumption (the assumption that
whatever was known when taking a decision at
time i < t is also known at time t).

The not-forgotten information can be used to
learn the opponent’s assignment. Look at the
ID in the center in Figure 2. At t=1 P 2 can
use his model of P 1 to learn P 1’s assignment in
A1. P 2 will calculate, P (A1|W0,W1, P

2
1 ) which

can be found using the the ID. Thus, the no
forgetting assumption has an impact as P 2 can
be assumed to have learned something about
the state of A1.

The modeling of the learning opponent causes
the dimensionality of the conditional probabil-
ity table representing P 2

i to grow heavily with
the number of future world states to take into
account. In this work we are addressing this
problem by reducing the complexity introduced
by the no-forgetting assumption in IDs.

3 Agents with limited memory

The no-forgetting assumption results in notori-
ous complexity problems for IDs. In the study
reported in (Søndberg–Jeppesen and Jensen,
2008) we used IDs directly in situations like the
model in Figure 2 and we ran into serious com-
plexity problems. In our framework we have
seen that not only does it impact the decision
maker when solving the ID, it also causes the
chance nodes representing the opponent’s deci-
sions to have intractably large domains.
To address this problem we apply LIMIDs which
provide a way to address the complexity prob-
lems in IDs by assuming that the decision maker



W0 W1 W2

P 1
1

P 2
1

P 1
2

P 2
2

U1 U2

A1 A2

W0 W1 W2

P 1
1

P 2
1

P 1
2

P 2
2

U1 U2

A1 A2

W0 W1

P 1
1

P 2
1

U1

A1

Figure 2: An ID representing the (2, (2, (1, NIL))) model.

has limited memory (Lauritzen and Nilsson,
2000). Syntactically, LIMIDs are like IDs with
the only difference that the only things known
at a decision node D are nodes with arcs go-
ing into D, (pa(D)). This means that all the
information that the decision maker is assumed
to remember when making the decision must be
expressed explicitly by information arcs. In our
framework we introduce a LIMID player as a
player with a certain memory. Like a regular
player from Definition 1 a LIMID Player has
a time horizon and a model of the opponent,
however the LIMID Player also has a certain
memory. If P 1 is a LIMID player with memory
m, she will at decision P 1

i remember her pre-
vious m decisions P 1

i−m . . . P 1
i−1, together with

the previous m world states Wi−m . . . Wi−1.

Definition 2. A LIMID player L is a triple de-
fined as follows:

1. L = (h,m,NIL) is a LIMID player with
time horizon h, memory m and modeling
level 0.

2. Given a player or a LIMID player O, with
modeling level i − 1, L = (h,m,O) is a
LIMID player with time horizon h, memory
m, and modeling level i.

The second entry allows LIMID players to as-
sume that their opponents are ordinary players.

Single policy updating is an iterative algo-
rithm which is guaranteed to converge towards
a local maximum policy (Lauritzen and Nilsson,
2000).

Before we describe how the single policy up-
dating algorithm works, we will describe how

a policy can be found at each decision by first
converting an ID into a Bayesian network.

3.1 Finding optimal policies

We convert an ID into a Bayesian network by
converting the utility nodes and the decision
nodes into chance nodes. This method was first
proposed by (Cooper, 1988).

First replace each decision node P 1
i with a

chance node with the parents pa(P 1
i ), the rel-

evant information nodes for the decision. The
possible outcome of this new node is the pos-
sible decisions in the decision node. Eventu-
ally, this node shall receive a probability distri-
bution representing an optimal policy at this
node. Initially the node has uniform priors
P (P 1

i = d|pa(P 1
i )) = 1/Ni for all decisions d

in P 1
i where Ni is the number of possible deci-

sions.

Next, each Utility node Ui is replaced by a
two-state chance node NUi with the same set
of parents but with possible outcomes y and
n. For convenience we will write nui instead
of NUi = y and nui instead of NUi = n
throughout the rest of the paper. We need to
scale the utility values from Ui into the interval
[0; 1]. Let Xpa(NUi) denote the possible configu-
rations of the variables in the set pa(NUi), with
xpa(NUi) ∈ Xpa(NUi). Now nui receives its prob-
ability distribution according to the function:

P (nui|xpa(NUi)) =
Ui(xpa(NUi)) − umin

umax − umin

, (1)

where Ui(x) is the utility value for a configu-
ration x according to Ui, while umax and umin



are the maximum and minimum values of Ui.
Since we have assumed that the utility function
is the same for all Ui the sum of normalized util-
ities and the sum of utilities are maximal for the
same decision.

We shall show how this Bayesian network can
serve to find an optimal policy.

Theorem 1. Given a player with time hori-
zon h and ID I which has been converted to a
Bayesian network B, and let e = pa(P 1

i ). The
optimal policy δP 1

i

(pa(P 1
i )), can be determined

in the following way,

• If P 1
i is the last decision (i.e. i = h)

δP 1

i

(e) = argmax
d

P (d, |nui,e). (2)

• If P 1
i is not the last decision (i.e. i < h)

but the CPTs in P 1
i+1, . . . , P

1
h have been

replaced with their optimal policies, then
δP 1

i

(pa(P 1
i )) is:

δP 1

i

(e) = argmax
d

(

h
∑

j=i

P (d,e|nuj)P (nuj|e)
)

.

(3)

The proof for Theorem 1 is a trivial rewrite
of the original in (Cooper, 1988) and has been
omitted in this paper.

After junction tree propagation with evi-
dence nui, the clique containing P 1

i will hold
P (P 1

i ,e, nui). Hence,

δP 1

i

(e) = argmax
P 1

i

P (P 1
i ,e, nui)

P (e, nui)
.

When you have an ID with only one decision,
then Theorem 1 can be used for an efficient cal-
culation of an optimal policy. We will exploit
this in the next section.

3.2 A LIMID framework

Single policy updating for LIMIDs consists in a
series of policy estimates for IDs with one de-
cision. The decision nodes are represented as
chance nodes with the information parents as
parents. You start off with some policy for all

decisions, and then you systematically update
the policies for each decision. In each itera-
tion, each local policy δ̂di

(pa(di)) is calculated
according to the above trick with the last deci-
sions first. The algorithm iterates until conver-
gence (i.e. no policies change in two consecutive
iterations) or for a predefined number of itera-
tions.

• Given a LIMID Player with horizon h,
memory m and ID I.

• Convert I into a Bayesian network B.

• for each decision node P 1
i in B,

– add P 1
i−2, P

1
i−3, . . . , P

1
i−m as parents to

P 1
i , and

– add Wi−2,Wi−3, . . . ,Wi−m as parents
to P 1

i .

• Repeat until convergence:

– For each decision P 1
i , for i = h, h −

1, . . . , 0:

– update δ̂P 1

i

according to Theorem 1.

4 Experimental results

In order to measure the performance of our
proposed algorithm we present a simple game
which we call Grid. Grid is played by two play-
ers P 1 and P 2 that are moving the same single
piece on an m × m grid. Initially, both players
are randomly given an assignment, which is a re-
ward function for the positions in the grid. The
players may have the same assignment. In each
turn the players observe the position of the piece
(i.e. the state of the game board) and decide to
move it either up, down, right or left, (N , S, E
and W ). The actions the players have chosen
are carried out simultaneously and the result-
ing effect on the piece is the combination of the
two players’ moves. If both actions can be car-
ried out (i.e. the resulting position of the piece
is still inside the m × m grid), the piece is first
moved to the neighboring cell in the direction of
P 1’s decision and then to the neighboring cell
in the direction of P 2’s decision. If at least one
of the actions cannot be carried out, the single



♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

♣ ♣ ♣

{N,W} {N,S}

Assignment 1 Assignment 2

8.55 6.82 1.15

-6.82 0.0 4.12

-8.55 -1.15 -4.12

-1.66 0.42 6.84

-0.51 0.0 -0.42

-6.84 0.51 1.66

Figure 3: An example of the game Grid. In
the first move, P 1 chooses to move N while P 2

chooses to move W . In the second turn, P 1 and
P 2 moves N and S respectively, cancelling each
other’s effect.

action which can be carried out (if any) is car-
ried out. When the piece is in its new position,
the players are rewarded according to their as-
signment and the next turn begins. The game
is a competition so P 1 is punished when P 2 is
rewarded and vice versa. This is obtained by
subtracting P 2’s reward from P 1’s reward and
vice versa. The game continues for a predeter-
mined number of turns.

An example of Grid with m = 3 and 2 possi-
ble assignments is shown in Figure 3. Initially,
player P 1 and P 2 are assigned Assignment 1 and
Assignment 2 respectively. In the first move, P 1

decides to move N while P 2 decides to move W .
From the resulting new state, P 1 gets the re-
ward 8.55 while P 2 gets the reward -1.66. Now
the scores are 8.55 − −1.66 = 10.21 to P 1 and
−1.66 − 8.55 = −10.21 to P 2. In the second
move P 1 decides to move N while P 2 decides
to move S in which case the board state is not
changed. The scores are now 20.42 to P 1 and
−20.42 to P 2.

We have implemented Grid together with our
proposed algorithm using (Hugin Expert A/S,
2007). The experiments have been performed
on a 1.6 GHz PC with 1 GB of RAM.

4.1 Comparison of memory limitations

In the first experiments we have investigated
how deep a time horizon players are allowed to

Table 1: The maximal time horizons possi-
ble on our system with different sizes of the
Grid game.
Board ID max h LIMID max h (m = 1)

3 × 3 4 32

5 × 5 3 8

7 × 7 3 8

9 × 9 2 8

Table 2: Average scores and standard devia-
tions (σ) after 100 Grid games between differ-
ent models against (2,(2,(1,NIL))).

Model P 1 σ

1 (2,(2,(2,(1,NIL)))) 5.03 10.1

2 (2,1,(2,(2,(1,NIL)))) -0.248 8.66

3 (3,(2,(2,(1,NIL)))) 7.32 10,7

4 (3,2,(2,(2,(1,NIL)))) 0.252 8,27

get on our system. We start with a 3 × 3 in-
stance of Grid with 5 assignments and create
both a player with a regular ID and a LIMID
player to see which values of h we can use in
the models before our system runs out of mem-
ory. The results are summarized in Table 1. As
expected the LIMID allows significantly larger
values of h than IDs do.

4.2 Performance of LIMID players
compared to regular players

In a second experiment we have measured how
well a LIMID player plays compared a nor-
mal player with the same time horizon. We
performed experiments with a 3 × 3 instance
of Grid with 5 assignments. Each model has
played 100 games of each 10 moves as player P 1

against (2,(2,(1,NIL))) who played as player P 2.
The results are summarized in Table 2. When
P 1 is playing with the ID models she outper-
forms P 2 (rows 1 and 3). This is no surprise
since she uses more advanced models than P 2.
With the LIMID models however (rows 2 and
4) P 1 looses slightly when she plays with looka-
head 2 and memory 1 while she wins slightly
when she plays with lookahead 3 and memory
2. The σ column indicates a huge variation in
the game outcomes.



Table 3: Average scores and standard devia-
tions (italics) obtained by players with h = 3
on different levels in a 3 × 3 instance of Grid.
Level 0 1 2 3 4

1 2.47 – – – –
5.41 – – – –

2 -1.83 3.24 – – –
6.39 10.76 – – –

3 -3.19 -4.50 9.29 – –
7.64 10.9 10.5 – –

4 0.55 -4.60 -0.73 8.00 –
7.06 10.0 5.82 10.6 –

5 0.572 1.18 -6.21 4.40 5.78
6.36 7.34 10.8 10.0 8.84

4.3 Comparison of players of different
levels

In a third experiment we have investigated what
happens if P 1 has a wrong model of P 2. We do
that by letting P 1 assume that P 2 is more in-
telligent than he really is. Table 3 shows the
average scores of Grid games between players
of different levels all with h = 3 on a 3 × 3
board. Level 0 refers to the (3,NIL) model, level
1 refers to the (3,(3,NIL)) model etc. The num-
bers in the cells refer to the score of the row
player, i.e. in the first row, the (3,(3,NIL)) has
scored on average 2.47 points in games against
(3,NIL) who has scored on average -2.47. Again
the players play 100 games of each 10 moves.
Standard deviations on the game outcomes are
shown in italics. As expected, players win when
they have the correct assumptions about the
opponent, whereas it seems to be less optimal
to assume that the opponent is more intelligent
than he actually is. This is problematic since a
player rarely knows exactly how intelligent the
opponent is before a game begins. Rather it
should be possible to learn the opponent’s level
of intelligence during play. We will address this
problem in future research.

Acknowledgments

We want to thank the staff in the Machine Intel-
ligence Group at the Department of Computer
Science at Aalborg University. In particular, we

are grateful to Zeng Yifeng for help and valuable
comments during this work. We also thank the
anonymous reviewers for their useful feedback
on this work

References

G. F. Cooper. 1988. A method for using belief net-
works as influence diagrams. In Fourth Wrokshop
on Uncertainty in Artificial Intelligence, pages
55–63.

Piotr J. Gmytrasiewicz and Prashant Doshi. 2005.
A framework for sequential planning in multi-
agent settings. Journal of Artificial Intelligence
Research, 24:49–79.

P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe.
1991. A decision theoritic approach to coordinat-
ing multiagent interactions. In Proceedings of the
Twelfth International Joint Conference on Artifi-
cial Intelligence (IJCAI 91), pages 62–68.

Hugin Expert A/S. 2007. Hugin api reference
manual version 6.7. http://download.hugin.com/
documents/manuals6.7/api-manual.pdf.

F. Jensen, F. V. Jensen, and S. L. Dittmer. 1994.
From influence diagrams to junction trees. In R.L.
Mantaras and D. Poole, editors, Proceedings of
the Tenth Conference on Uncertainty in Artificial
Intelligence, pages 367–374. Morgan Kaufmann.

D. Koller and B. Milch. 2003. Multi-agent influ-
ence diagrams for representing and solving games.
Games and Economic Behavior, 45(1):181–221.

S. Lauritzen and D. Nilsson. 2000. Evaluating in-
fluence diagrams using LIMIDs. In Proceedings of
the 16th Conference on Uncertainty in Artificial
Intelligence, pages 436–445.

J. Nash. 1950. Equilibrium points in N-person
games. In Proceedings of the National Academy
of Sciences of the United States of America, vol-
ume 36, pages 48–49.

R. D. Shachter. 1986. Evaluating influence dia-
grams. Operations Research, 34(6):597–609.

P. P. Shenoy. 1992. Valuation-based systems for
Bayesian decision analysis. Operations Research,
40(3):463–484.

N. Søndberg–Jeppesen and F. V. Jensen. 2008. Act-
ing under interference by other agents with un-
known goals. In Proceedings of the 10th Scandina-
vian Conference on Artificial Intelligence (SCAI).



Arithmetic circuits of the noisy-or models

Jǐŕı Vomlel
Institute of Information Theory and Automation of the ASCR

Academy of Sciences of the Czech Republic
Pod vodárenskou věž́ı 4,

182 08 Praha 8. Czech Republic.
e-mail: vomlel@utia.cas.cz

Petr Savicky
Institute of Computer Science

Academy of Sciences of the Czech Republic
Pod vodárenskou věž́ı 2,

182 07 Praha 8. Czech Republic.
e-mail: savicky@cs.cas.cz

Abstract

Arithmetic circuits can be used to represent the process of probabilistic inference in
Bayesian networks using methods for which the structure and complexity of the process
does not depend on the evidence. For example, for the well-known junction tree meth-
ods, there is an arithmetic circuit which represents calculation with the same complexity
(Darwiche, 2003). However, arithmetic circuits are more flexible and also allow represen-
tation of calculations using different types of computational savings, for example when
the conditional probability tables of the Bayesian network have a certain local structure
(Darwiche, 2002).

In this paper we use the size of arithmetic circuits to compare the effect of prepro-
cessing Bayesian networks with noisy-or gates using parent divorcing and tensor rank-one
decomposition. For this purpose, we use the inference methods implemented in Ace by
Chavira and Darwiche for several examples of two-layered networks with noisy-or gates
(BN2O type networks) in two situations. First, we use Ace on the original network directly,
which means that a kind of parent divorcing is used. Second, before the application of
Ace the network is preprocessed using a noisy-max decomposition, originally proposed by
Dı́ez and Galán and generalized as tensor rank-one decomposition by Savicky and Vomlel.
The size of the resulting circuits depends mainly on the size of the largest clique in the
triangulated graph of the network. The treewidth of the optimally triangulated graph of
the transformed model is provably never larger than the treewidth of the model prepro-
cessed using parent divorcing. Hence, one may expect that tensor rank-one decomposition
produces circuits which are usually not larger than the ones from parent divorcing, even
if heuristic triangulation is used. Our experiments with Ace confirm this conclusion on
average. However, there are also cases where the transformed network provides a signifi-
cantly larger circuit. Using a better triangulation computed by Hugin instead of the one
computed by Ace we reduced the deterioration factor to at most three. This is much
smaller than the best improvement factors, which exceed 100.



1 Introduction

Noisy-or models are probably the most popular
examples of canonical Bayesian network mod-
els. The canonical models differ from general
Bayesian network (BN) models in that they
have a certain local structure within the con-
ditional probability tables (CPTs). Canonical
models were introduced by Pearl in (Pearl, 1988,
Section 4.3.2). In literature they are also called
causal independence models or models of inde-
pendence of causal influence (ICI).

A basic task solved by BNs is the probabilis-
tic inference, typically, the computation of all
one-dimensional marginals of the joint proba-
bility distribution (represented by a BN) given
evidence on a subset of network variables. The
conditional independence structure of the mod-
els enables efficient probabilistic inference using
the standard methods, e.g. the junction tree
method (Jensen et al., 1990). It was observed
by several authors that one can also benefit from
the local structure of the CPTs and further im-
prove the computational efficiency of the prob-
abilistic inference.

In this paper we focus on the noisy-or models.
A well-known family of noisy-or models are two-
level noisy-or networks, abbreviated as BN2O
networks. A BN2O network is a BN having the
structure of a bipartite graph with all edges di-
rected from one part (the top level) toward the
other (the bottom level) and where all CPTs
are noisy-or gates. See Figure 1 for an example
of a BN2O network structure. An example of
a real BN2O network is the decision theoretic
version of the Quick Medical Reference model
(QMR-DT) (Shwe et al., 1991). This model
consists of approximately 600 nodes correspond-
ing to diseases (top level) and 4000 nodes corre-
sponding to findings (bottom level). Each find-
ing has a subset of diseases as its parents. An
algorithm tailored for the BN2O networks is the
Quickscore algorithm (Heckerman, 1990), where
the computations are optimized with respect to
evidence on findings.

A different approach that does not assume
evidence to be known in advance and that can
benefit from the local structure of CPTs is

Y4

X2 X3 X4

Y1 Y2 Y3

X1

Figure 1: An example of a BN2O model struc-
ture.

the compilation of a BN into an arithmetic
circuit (AC) (Darwiche, 2003). An AC is a
rooted, directed acyclic graph whose leaf (in-
put) nodes correspond to circuit inputs (vari-
ables) and whose other nodes are labeled with
multiplication and addition operations. The
root (output) node corresponds to circuit out-
put. The variables are evidence indicators and
parameters of the CPTs. An arithmetic cir-
cuit may be used to represent the computation
determined by a junction tree (Jensen et al.,
1990) in a clustering method, which consists of
a fixed sequence of elementary arithmetic oper-
ations (additions and multiplications) with real
numbers. However, arithmetic circuits are more
flexible and may be used to represent different
types of computational savings, if they are pos-
sible due to specific properties of the initial BN.
We use the two methods for constructing an AC
implemented in Ace, namely c2d and tabular,
see (Chavira and Darwiche, 2006; Chavira and
Darwiche, 2007) for more detail. The size of the
circuit is used as a measure of complexity of the
inference, which is more objective than the run-
ning time; the latter is influenced not only by
the algorithm, but also by the efficiency of its
software implementation.

In this paper we investigate transformations
of CPTs representing a noisy-or model before
the BN is compiled to a circuit. The stan-
dard approach to this problem is parent divorc-
ing (Olesen et al., 1989). We propose to use a
transformation based on the decomposition pro-
posed in (Dı́ez and Galán, 2003; Vomlel, 2002).
It is a special case of tensor rank-one decom-
position of CPTs and, according to the result



of (Savicky and Vomlel, 2007), it uses the min-
imum possible number of additive components
in the case of noisy-max. We show that prepro-
cessing of BN using the above-mentioned trans-
formation before a compiler from BN to AC is
used may significantly reduce the size of the re-
sulting circuit obtained by Ace. We system-
atically tested a range of parameters of artifi-
cial networks with randomly generated edges
and compared the size of the resulting circuit
with parent divorcing as implemented in Ace
and with tensor rank-one decomposition. In
most cases, the transformed network provided
a smaller model. Sometimes, the improvement
ratio exceeds 100. There were also cases where
the transformed network provided a larger cir-
cuit. Analysis of these cases revealed that the
tabular method is quite sensitive to the choice
of an elimination order of the variables, whereas
Ace uses a suboptimal order. Hence, we re-
calculated some of the cases with the largest
deterioration using the optimal order provided
by Hugin. Using this more careful method, the
transformation never caused an increase of the
size of the circuit compared with parent divorc-
ing by a factor larger than 3.

The paper is organized as follows. Necessary
notation is introduced in Section 2. Section 3
describes the suggested transformation of a BN
as a preprocessing step before an AC compiler
is used. In Section 4 we present the necessary
information on arithmetic circuits (ACs) and
give an example of an AC for the noisy-or gate.
In Section 5 we present the experiments which
demonstrate the effect of the preprocessing step
on the size of the resulting circuit in several ran-
domly chosen examples. Section 6 contains con-
clusions and a remark on possible directions of
future work.

2 Preliminaries

Let N be a set of discrete random variables. The
variables will be denoted by capital letters (e.g.,
Xi, Y , A, etc.) and their states by lowercase let-
ters (e.g., xiji

, y, a). For both the variables and
their states boldface letters will denote vectors.

X1 X2 . . . Xn

Y

Figure 2: Graph of the noisy-or gate.

Bayesian network (BN) is defined by a pair
N = (G,P), where

• G = (N,E) is an acyclic directed graph
(DAG), the nodes of the graph G are vari-
ables from the set N , and E is the set of
directed edges.

• P is a system of conditional probability ta-
bles {P (X|pa(X)), X ∈ N}, where pa(X)
denotes the vector of parents of X in G.

The joint probability distribution satisfying just
the conditional independence statements im-
plied by the DAG and having the probabilities
from P as its (conditional) marginals is uniquely
determined by

P (X) =
∏

X∈N

P (X|pa(X)) .

A specific example of a BN that we will use in
this paper is the noisy-or gate.

Example 1 (Noisy-or gate). Assume a BN of
n+1 Boolean variables X1, . . . ,Xn and Y repre-
senting the noisy-or relation of Y to X1, . . . ,Xn.
The structure of the model is depicted in Fig-
ure 2 and the CPT of Y has a local structure
defined for (x1, . . . , xn) ∈ {0, 1}n by

P (Y = 0|X1 = x1, . . . ,Xn = xn) =

n∏

i=1

pxi

i , (1)

where pi ∈ [0, 1], i = 1, . . . , n represent the
noise.

3 Tensor rank-one decomposition for

noisy-or models

The decomposition suggested in (Dı́ez and
Galán, 2003) is applicable to any noisy-max



gate; however, let us describe it only for net-
works with noisy-or gates. The transforma-
tion is applied to each noisy-or gate separately.
A noisy-or gate as depicted in Figure 2 is re-
placed by a subgraph with one additional node
B and undirected edges connecting this node
with the original nodes as presented in Figure 3.
Then, the CPT P (Y |pa(Y )) is removed from
the network and replaced by |pa(Y )| + 1 two-
dimensional tables for the new edges, which are
as follows.

Let pa(Y ) = {X1, . . . ,Xn}. The interac-
tions between B and Xi and between B and
Y are represented by ϕi(B,Xi) for i = 1, . . . , n
and ξ(B,Y ), respectively, chosen so that for all
(x1, . . . , xn, y) ∈ {0, 1}n+1 we have

P (Y = y|X1 = x1, . . . ,Xn = xn) (2)

= (1 − 2y)
n∏

i=1

pxi

i + y
n∏

i=1

1 (3)

=
1∑

b=0

ξ(b, y) ·
n∏

i=1

ϕi(b, xi) , (4)

where the two summands in (3) correspond to
the choices b = 0 and b = 1 in (4). Equality
between (2) and (3) follows from (1) and the
fact that the sum of (3) for y = 0 and y = 1 is
1 independently of the values of the remaining
variables. Note that the decomposition above
uses tables which contain also negative num-
bers. The original BN may be achieved simply
by marginalizing out the auxiliary variable B.

The decomposition is equivalent to the de-
composition of P (Y = y|X1 = x1, . . . ,Xn = xn)
understood as an n + 1 dimensional tensor into
a sum of tensors of rank one (De Lathauwer
and De Moor, 1996). In particular, the mini-
mum number of states of B for which such a
decomposition is possible is equal to the rank of
P (Y = y|X1 = x1, . . . ,Xn = xn). For noisy-or,
this rank is 2, if pi < 1 for at least one index
i. Tensor rank-one decompositions are available
also for some other canonical models, see (Sav-
icky and Vomlel, 2007).

In Figure 4 we give the transformed structure
of BN2O model from Figure 1.

X1 X2 . . . Xn

B

Y

Figure 3: Noisy-or gate from Figure 2 after the
transformation using tensor rank-one decompo-
sition

Y4

X2 X3 X4

B1 B2 B3 B4

Y1 Y2 Y3

X1

Figure 4: The BN2O model structure from Fig-
ure 1 after the transformation using tensor rank-
one decomposition.

4 Arithmetic circuits

Let e be evidence (XA = x
∗
A) = (Xi = x∗

i )i∈A.
Arithmetic circuits as described in the introduc-
tion are used to efficiently calculate the proba-
bility P (e), whose value is given by the multi-
linear polynomial (Darwiche, 2003)

P (e) =
∑

x

∏

X

λx θx|u ,

where the polynomial variables are:

• BN parameters: for each variable X and its
parents U = pa(X) we have for all values x
of X and all values u of U a variable θx|u,
which represents the value

θx|u = P (X = x|U = u)



λx1
, λx̄1

P (X1) P (Xn)
λxn

, λx̄n

. . .

B

B, Y B, X1 B, Xn

BBB

ϕ1(B, X1) ϕn(B, Xn)ξ(B, Y )
λy, λȳ

Figure 5: A join tree for the transformed noisy-
or gate from Figure 3.

• evidence indicators: for each variable X
and for each value x of X we have the vari-
able λx. The values of the indicator vari-
ables encode the given evidence e as fol-
lows. The variable λx equals one if state x
is consistent1 with the evidence e and zero
otherwise. In particular, if there is no ev-
idence for variable X, then λx = 1 for all
states x of X.

The structure of the circuit is usually very dif-
ferent from the expression above in order to
achieve efficiency.

Example 2 (AC for the noisy-or gate). Let the
states of Boolean variables Xi (i = 1, . . . , n) be
denoted xi (if Xi is true) and x̄i (if Xi is false)
and similarly for the Boolean variable Y .

An AC of a noisy-or gate can be constructed
directly from a join tree of the transformed
noisy-or gate from Figure 3 (which is a decom-
posable model) using the construction described
in (Darwiche, 2003, Definition 5). We present a
join tree2 of the transformed noisy-or model in
Figure 5. Note that each model parameter and
each evidence indicator is attached to a node of
the join tree.

First, we create one output addition node for
the root cluster {B} of the join tree. It has as its

1Value x of X is consistent with evidence either if
x = x

∗ or if variable X is not present in evidence e.
2Note that Darwiche’s definition (Darwiche, 2003,

Section 5.1) of the join tree is more general than the
usual one in that it does not require nodes of the join
tree to correspond to a maximal clique of the chordal
graph.

children two multiplication nodes – one for each
state of the variable B. Both multiplication
nodes have as their children one addition node
from every child separator {B} of the root clus-
ter with the compatible state of B. Every ad-
dition node from every separator {B} has as its
children two multiplication nodes from its child
cluster ({B,Y } or {B,Xi} for i ∈ {1, . . . , n})
with the compatible state of B, one for each
state of the other variable of the cluster (Y or
Xi for i ∈ {1, . . . , n}). Finally, each multiplica-
tion node of a leaf cluster has as its children all
model parameters and evidence indicators with
the compatible states attached to that cluster.

The AC shown in Figures 6 and 7 is the result
of the following construction:

1. construct the join tree in Figure 5 for the
transformed noisy-or model from Figure 3,

2. use the construction described above to get
an AC from the join tree,

3. substitute network parameters from tables
ξ, ϕ1, . . . , ϕn by their values +1,−1, 0 and
pi, i = 1, . . . , n, set λb and λb̄ to 1,

4. simplify the AC by omitting multiplica-
tions by one and zero additions, and

5. coalesce parts of the AC that compute the
same value so that they are present only
once.

The structure of the obtained AC may also be
represented by the following formula.

P (e) = λy

n∏

i=1

(λx̄i
θx̄i

+ λxi
θxi

)

+(λȳ − λy)

n∏

i=1

(λx̄i
θx̄i

+ λxi
θxi

pi) .

Note that the size of this formula is linear in n,
while the number of monomials in the expanded
polynomial represented by the formula is 2n+1.

If we want to compute all one-dimensional
marginals using an AC we can use methods
for computing partial derivatives of functions of
several variables, e.g., Sawyer (1984). Similarly



λx̄i
λxi

pi

αi βi

+

×

+

×

θx̄i
θxi

×

Figure 6: The part of the AC for a noisy-or
model corresponding to the variable Xi.

×

+

×

αnα1 . . .

. . . βnβ1

λȳ −1 λy

×

+

Figure 7: The part of the AC for a noisy-or
model that joins the parts of each variable Xi

from Figure 6.

to the junction tree methods after two passes
through the AC (one upward and one downward
pass) we get marginal probabilities for all vari-
ables given the evidence e. Therefore, in order
to get efficient inference it is crucial to have the
arithmetic circuit as small as possible. The size
of an AC is typically measured by the number of
its edges since it is approximately proportional
to the number of binary operations.

5 Experimental comparisons

For the experiments we used a development re-
lease of Ace (2008). Ace is a package that com-
piles a BN into an AC using one of two available
methods – c2d (Chavira and Darwiche, 2006)
or the tabular compilation (Chavira and Dar-
wiche, 2007) – see the Ace manual for details.
We carried out experiments with BN2O models
of various sizes. The name of the BN2O model

in the form of bn2o-x-y-e-i contains informa-
tion about the BN2O structure:

• x is the number of nodes in the top level,

• y is the number of nodes in the bottom
level,

• e is the total number of edges in the BN2O
model, and e/y defines the number of par-
ents for each node from the bottom level.

For each x-y-e type (x, y = 10, 20, 30, 40, 50
and e/y = 2, 5, 10, 20, excluding those with
e/y > x) we generated randomly ten mod-
els (indexed by i = 0, . . . , 9). For every
node from the bottom level we randomly se-
lected e/y nodes from the top level as its par-
ents. All models and results are available at:
http://www.utia.cz/vomlel/ac/

3 4 5 6 7 8 9

3
4

5
6

7
8

9

log10 of the original AC size

lo
g1

0 
of

 th
e 

tr
an

sf
or

m
ed

 A
C

 s
iz

e

Figure 8: Logarithm of the AC size for the
original (o) and transformed (t) models. The
straight lines correspond to t/o ratios equal to
10, 1, 1/10, 1/100.

In Figure 8 we plot the pairs of values of log10

of the ACs’ size of the original model3 (horizon-
tal axis) and the transformed model4 (vertical

3The original model is the model constructed by Ace
using parent divorcing.

4The transformed model is model obtained using ten-
sor rank-one decomposition.



axis). Since randomness is used during the Ace
compilation process, Ace often provides differ-
ent circuits for the same input model. Therefore
every value presented in the plot is the mini-
mum over ten runs – five runs of c2d plus five
runs of the tabular method – for both the orig-
inal and the transformed models.

The AC of the transformed model was smaller
in 88% of the BN2O models solved by Ace for
both - the original and the transformed models.
In several cases we got significant reductions in
the AC size (in a few cases multiple order of
magnitude), in most of the remaining cases we
got smaller reductions. There are also a few
cases where the AC of the transformed model is
significantly larger. We comment on these cases
below. For some of larger models Ace ran out of
memory5 – for 26% of the original models and
21% of the transformed models. For 85% of the
tested BN2O models the tabular method led to
smaller ACs than c2d.

It is well-known that the efficiency of the in-
ference in BN depends on the size of the largest
clique in the triangulated graph of the network
or, more exactly, on the total size of the tables
in the resulting network. We observed this also
in our experiments with Ace; the size of the AC
is significantly influenced by the total table size
corresponding to the triangulated graph of the
models.

The triangulated graph of the transformed
model may be obtained from the triangulated
graph of the original model by contracting edges
between the nodes in the groups of nodes, which
are added by parent divorcing for each node in
the bottom level. It can be shown that contract-
ing edges does not increase the treewidth of the
graph. Hence, the treewidth of the optimally
triangulated graph of the transformed model is
never larger than the treewidth of the original
model. However, if a (non-optimal) heuristic
method is used for triangulation then it may
happen that we get larger treewidth for the tri-
angulated graph of the transformed model. We
believe this is the main reason behind the few

5All experiments were done with the maximum pos-
sible memory for 32 bit Ace, which is 3.6 GB RAM.

large losses of the transformed model.
We conducted additional experiments with all

models where Ace provided ACs of the trans-
formed model at least three times larger. In
all of these eleven cases we were able to re-
duce the deterioration factor to less than three
using a better triangulation method. Let us
have a closer look at a BN2O model having
the largest loss for the transformed model –
bn2o-20-30-300-6. The AC size for the orig-
inal model was 21 539 918 edges, while the
AC of the transformed model generated by Ace
when using the minfill heuristics for triangula-
tion had 999 809 342 edges, i.e. about 46 times
larger. But, when we constructed the AC of
the transformed model using an elimination or-
dering minimizing the total table size found by
Hugin (2008), the AC size dropped to 25 117
892 edges.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
1

0
1

2
3

log10(x/y)

lo
g1

0 
of

 th
e 

ra
tio

 o
f c

irc
ui

t s
iz

es

Figure 9: log10(o/t) with respect to log10(x/y).

From the plot in Figure 9 we can see that
there is a higher probability of larger gains when
using the transformed model if there are more
nodes in the first level than in the second level
of the BN2O network since the log-ratio of the
AC sizes of the original and transformed model
log10(o/t) has more often higher values with a
positive log-ratio of the number of nodes in the
first and the second level log10(x/y).



We should mention that in (Chavira et al.,
2005) the authors perform experiments with
BN2O networks, but unlike them we do not as-
sume evidence to be known before the AC is
constructed.

6 Conclusions and future work

The performed experiments suggest that ten-
sor rank-one decomposition can help to find
smaller ACs for BN2O type networks. In some
cases it may even find a solution that could
not be found without the transformation. Fu-
ture work should determine whether similar sav-
ings are possible for other canonical models for
which a compact tensor rank-one decomposition
is known.

Acknowledgments

We are grateful to Mark Chavira for his flex-
ible support of Ace and to Frank Jensen and
Anders Madsen for providing us with the opti-
mal triangulation method used in Hugin.

The authors were supported by the Min-
istry of Education of the Czech Republic un-
der the projects 1M0545 (P. Savicky), 1M0572,
and 2C06019 (J. Vomlel). J. Vomlel was also
supported by the Eurocores LogICCCC Project
FP005 (LcpR) and by the project 201/08/0539
of the Grant Agency of the Czech Republic.

References

Ace. 2008. A Bayesian network compiler.
http://reasoning.cs.ucla.edu/ace/.

M. Chavira and A. Darwiche. 2006. Encoding CNFs
to empower component analysis. In Proceedings
of the 9th International Conference on Theory
and Applications of Satisfiability Testing (SAT),
Lecture Notes in Computer Science, Volume 4121,
pages 61–74. Springer Berlin /Heidelberg.

M. Chavira and A. Darwiche. 2007. Compiling
bayesian networks using variable elimination. In
Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages
2443–2449.

M. Chavira, D. Allen, and A. Darwiche. 2005. Ex-
ploiting evidence in probabilistic inference. In
Proceedings of the 21st Conference on Uncertainty
in Artificial Intelligence (UAI), Edinburgh, Scot-
land.

A. Darwiche. 2003. A differential approach to infer-
ence in Bayesian networks. Journal of the ACM,
50:280–305.

L. De Lathauwer and B. De Moor. 1996. From
matrix to tensor: multilinear algebra and signal
processing. In 4th Int. Conf. on Mathematics in
Signal Processing, Part I, IMA Conf. Series, pages
1–11, Warwick. Keynote paper.

F. J. Dı́ez and S. F. Galán. 2003. An efficient factor-
ization for the noisy MAX. International Journal
of Intelligent Systems, 18:165–177.

D. Heckerman. 1990. A tractable inference algo-
rithm for diagnosing multiple diseases. In Pro-
ceedings of Fifth Conference on Uncertainty in
Artificial Intelligence, Windsor, Ontario, pages
163–171. Elsevier.

Hugin. 2008. Decision engine, version 6.7.
http://www.hugin.com/.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen.
1990. Bayesian updating in causal probabilistic
networks by local computations. Computational
Statistics Quarterly, (4):269–282.

K. G. Olesen, U. Kjærulff, F. Jensen, F. V. Jensen,
B. Falck, S. Andreassen, and S. K. Andersen.
1989. A MUNIN network for the median nerve
— a case study on loops. Applied Artificial Intel-
ligence, 3:384–403. Special issue: Towards Causal
AI Models in Practice.

J. Pearl. 1988. Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan
Kaufmann Publishers Inc., San Francisco, CA,
USA.

P. Savicky and J. Vomlel. 2007. Exploiting tensor
rank-one decomposition in probabilistic inference.
Kybernetika, 43(5):747–764.

J. W. Sawyer. 1984. First partial differentiation by
computer with an application to categorical data
analysis. The American Statistician, 38(4):300–
308.

M. Shwe, B. Middleton, D. Heckerman, M. Hen-
rion, E. Horvitz, H. Lehmann, and G. Cooper.
1991. Probabilistic diagnosis using a reformula-
tion of the INTERNIST–1/QMR knowledge base
I. The probabilistic model and inference algo-
rithms. Methods of Information in Medicine,
30:241–255.

J. Vomlel. 2002. Exploiting functional dependence
in Bayesian network inference. In Proceedings of
the 18th Conference on Uncertainty in AI (UAI),
pages 528–535. Morgan Kaufmann Publishers.



Tightly and Loosely Coupled Decision Paradigms in Multiagent
Expedition

Yang Xiang and Franklin Hanshar
University of Guelph

Ontario, Canada

Abstract

Frameworks for multiagent decision making may be divided into those where each agent
is assigned a single variable (SVFs) and those where each agent carries an internal model,
which can be further divided into loosely coupled frameworks (LCFs) and tightly coupled
frameworks (TCFs). In TCFs, agent communication interfaces render their subdomains
conditionally independent. In LCFs, either agents do not communicate or their messages
are semantically less restricted. SVFs do not address the privacy issue well. LCF agents
cannot draw from collective knowledge as well as TCF agents. However, disproportional
effort has been dedicated to SVFs and LCFs, which can be attributed partially to unaware-
ness of the computational advantages of TCFs over performance, efficiency and privacy.
This work aims to provide empirical evidence of such advantages by comparing recursive

modeling method (RMM) from LCFs and collaborative design network (CDN) from TCFs,
both of which are decision-theoretic and the latter of which is a graphical model. We apply
both to multiagent expedition (MAE), resolve technical issues encountered, and report our
experimental evaluation.

1 Introduction

We consider frameworks for online decision
making (rather than offline policy making, e.g.,
(Becker et al., 2004)) in cooperative multiagent
systems. They may be divided into SVFs where
each agent is assigned a single variable in the do-
main and those where each agent carries an in-
ternal model over a subdomain. Frameworks us-
ing internal models can be further divided into
LCFs and TCFs. In TCFs, agents communicate
through messages over agent interfaces that are
semantically rigorously defined to render sub-
domains conditionally independent. In LCFs,
either agents do not communicate but rely on
observing other agents’ actions to coordinate, or
their messages are semantically less restricted.

SVFs do not address the issue of private ver-
sus public variables well, as they do not have
infrastructure to differentiate variables as such.
LCFs are often motivated by tasks where agents
cannot communicate. Given the proliferation of
distributed and wireless computing, it is hard
to find task domains where cooperative agents

cannot communicate (except a few of military
nature). Due to tightly controlled agent inter-
face, joint belief of team agents is well defined
and a TCF agent’s belief is consistent with the
joint belief. This is generally not true in LCFs
even when agents do communicate (see Proposi-
tion 4.5 and Theorem 8.10 in (Xiang, 2002) for a
formal treatment). In other words, a TCF agent
draws from collective knowledge better than a
LCF agent in general. However, significant re-
search efforts have been dedicated to SVFs, e.g.,
(Modi et al., 2005; Petcu and Faltings, 2005),
and LCFs, e.g., (Gmytrasiewicz et al., 1998;
Gmytrasiewicz and Durfee, 2001; Maes et al.,
2001; Shen and Lesser, 2006), in comparison
with those to TCFs (Xiang, 2002; Xiang et al.,
2005). This can be attributed at least partly to
unawareness of the computational advantages of
TCFs over performance, efficiency and privacy.
Hence, empirical evidence of such advantages
will contribute to the due adoption of TCFs. In
this work, we select one representative, RMM
(Gmytrasiewicz et al., 1998), from LCFs and



one, CDN (Xiang et al., 2005), from TCFs, both
of which are decision-theoretic and the latter
of which is a graphical model. We apply both
to the same multiagent decision problem, MAE
(Xiang and Hanshar, 2007), resolve technical
issues encountered, especially those related to
RMM, and compare them experimentally.

Sec. 2 reviews background on MAE, CDN and
RMM. Sec. 3 presents technical issues on apply-
ing RMM to MAE. Sec. 4 reports experimental
results. We discuss the generality issues of this
research in Sec. 5.

2 Background

2.1 Multiagent Expedition

We consider MAE in an area represented as a
grid of cells. At any cell, an agent can move to
an adjacent cell by actions north, south, east,
west or remain there (halt). The effect of an ac-
tion is uncertain. The desirability of an object
(located at a cell) is indicated by a numerical
reward. A cell that is neither interesting nor
harmful has a reward of a base value. The re-
ward at a harmful cell is lower than the base
value. The reward at an interesting cell is higher
than the base value and can be further increased
through agent cooperation.

When a physical object at a given location is
to be manipulated (e.g., digging), cooperation
is often most effective when a certain number
of agents are involved, and the per-agent pro-
ductivity is reduced with more or less agents.
Suppose that the most effective level is 2. The
reward that can be collected by a single agent
from a given cell may be 0.3, and we denote this
as a unilateral reward. If two agents cooperate
at the cell, each receives 0.4, and we denote this
as a bilateral reward. If three or more agents
meet at the cell, two of them each receives 0.4
reward and others receive the base value. This
feature promotes effective cooperations and dis-
courages unproductive ones.

After a cell has been visited by any agent, its
reward is decreased to the base value. As a re-
sult, wandering within a neighborhood is unpro-
ductive. Agents have no prior knowledge how
rewards are distributed in the area. Instead, at
any cell, an agent can reliably perceive the cell’s

absolute location (e.g., through GPS or triangu-
lation) and reward distribution within a small
radius. An agent can perceive the location and
communicate with another agent if the latter is
within a small radius.

The objective of the agents is to move around
the area, cooperate as needed, and maximize
the team reward over a finite horizon. They
must do so based on local observations and lim-
ited communication.

2.2 Collaborative Design Networks

CDN is motivated by collaborative industrial
design in supply chains. An agent respon-
sible for a component encodes design knowl-
edge and preference into a design network (DN)
S = (V,G, P ). The domain is a set of discrete
variables V = D ∪ T ∪ M ∪ U . D is a set of
design parameters. T is a set of environmental

factors of the product under design. M is a set
of objective performance measures and U is a
set of subjective utility functions of the agent.

The dependence structure G = (V,E) is a di-
rected acyclic graph whose nodes are mapped to
elements of V and whose set E of arcs encode
design constraints, dependency of performance
on design and environment, and dependency of
utility on performance.

P is a set of potentials, one for each node
x, formulated as a probability distribution
P (x|π(x)), where π(x) are parent nodes of x.
P (d|π(d)), where d ∈ D, encodes a design
constraint. P (t|π(t)) and P (m|π(m)), where
t ∈ T,m ∈ M , are typical probability dis-
tributions. Each utility variable has a space
{y, n}. P (u = y|π(u)) is a utility function
u(π(u)) ∈ [0, 1]. Each node u is assigned a
weight k ∈ [0, 1] where

∑
U k = 1. With P thus

defined,
∏

x∈V \U P (x|π(x)) is a joint probabil-
ity distribution (JPD) over D ∪ T ∪ M . With
the assumption of additive independence among
utility variables, the expected utility of a design
d is EU(d) =

∑
i ki(

∑
m

ui(m)P (m|d)), where
d (bold) is a configuration of D, i indexes util-
ity nodes in U , m (bold) is a configuration of
parents of ui, and ki is the weight of ui.

Each supplier is a designer of the supplied
component. Agents, one per supplier, form a



collaborative design system. Each agent em-
bodies a design network called a design sub-

net and agents are organized into a hypertree:
Each hypernode corresponds to an agent and
its subnet. Each hyperlink (called agent inter-

face) corresponds to design parameters shared
by the two subnets, which renders them condi-
tionally independent. They are public variables
and remaining variables in each subnet are pri-

vate. The hypertree specifies whom an agent
can communicate directly. Each subnet is as-
signed a weight wi, representing a compromise
of preferences among agents, where

∑
i wi = 1.

The collection of subnets {Si = (Vi, Gi, Pi)}
forms a CDN.

The product
∏

x∈V \∪iUi
P (x|π(x)) is a JPD

over ∪i(Di ∪ Ti ∪ Mi), where P (x|π(x)) is
associated with node x in a subnet. The
expected utility of a design d is EU(d) =∑

i wi (
∑

j kij (
∑

m
uij(m) P (m|d))), where d

is a configuration of ∪iDi, i indexes subnets,
j indexes utility nodes {uij} in ith subnet, m

is a configuration of parents of uij , and kij is
the weight associated with uij. Hence, given
a CDN, a decision-theoretical optimal design
is well defined. Optimal design (Xiang et al.,
2005) is obtained by communicating messages
over agent interfaces along the hypertree. Af-
ter communication, all agents have local designs
that are globally optimal (collectively maximiz-
ing EU(d)). Computation (incl. communica-
tion) is linear on the number of agents (Xiang
et al., 2005) and is efficient for a non-trivial class
of CDNs (Xiang, 2007).

The general problem of MAE is exponentially
complex on the number of agents and the length
of horizon. A more efficient solution of MAE for
limited horizon can be devised based on CDN
(Xiang and Hanshar, 2007) (see Fig. 2 in Sec 4).
An agent team is divided into groups. It allows
group members to cooperate at the most effec-
tive level. At the same time, different groups
can stay apart so that the area is explored more
effectively and planning computation is made
more efficient with less group interaction.

Within group, a hypertree organization is im-
posed to support tightly-coupled communica-
tion and reduce agent interaction. For instance,

if the most productive level of cooperation is
two, a group size of three and an organization
A− B −C for agents A, B and C can be used.
In each agent subnet, movement actions form
design nodes, agent locations form performance
nodes, and rewards form utility nodes.

As mentioned above, planning is made more
efficient by ignoring inter-group interaction and
some inner-group interaction. The computation
is sound only if unconsidered interactions do
not exist. Such desirable behavior of agents is
promoted through modifying the distribution of
each utility node. The reward of a location is
initialized to the perceived value. If the location
is part of a group configuration where intended
agent interactions are negatively affected (e.g.,
group members are too far apart) or unintended
interactions are possible (e.g., members of dif-
ferent groups are too close), the reward value
will be reduced. With grouping, planning com-
plexity is unchanged as the team size grows.

2.3 Recursive Modeling Method
RMM (Gmytrasiewicz et al., 1998) uses a pay-
off matrix to encode an agent’s preference over
consequences of joint actions of team agents.
With a total of n agents, a payoff matrix for an
agent A has n dimensions, with one correspond-
ing to each agent. The width of each dimension
is equal to the number of alternative actions of
the agent. Each cell of the matrix corresponds
to the outcome of a joint action by all agents
and is filled with the sum of rewards.

Agents do not communicate and reason about
each other through a hierarchy of models (see
Fig. 1 in Sec. 3.2). For instance, in a system
with agents A and B, the top level model in A is
its own payoff matrix. Each model in the second
level represents what A believes to be the payoff
matrix of B, assuming a specific state of B. The
state is associated with a prior probability of
A, and is updated through Bayesian learning
(Gmytrasiewicz et al., 1998) based on observed
actions of B.
3 Recursive Modeling for MAE

3.1 Payoff Matrix

Grouping, as proposed in CDN-based solution
of MAE, was not a component in the original
RMM. To allow a fair comparison, we apply



grouping to RMM as well (otherwise, its com-
putational cost would be much worse). This
implies that additional measures in the CDN-
based solution should also be applied to ensure
soundness of group-based planning, e.g., reward
adjustment. Let the group size be g and the
length of planning horizon be k. The payoff
matrix for each RMM agent has a dimension g,
the width of each dimension is 5k, and the total
number of cells in the matrix is 5kg.

Each cell is the payoff of the corresponding
joint plan mv with k actions for each agent
in the group G. Let the sequence of joint ac-
tions of agents in G be mv = (mv1,...,mvk).
Notation mvi denotes the joint action at the
ith step and consists of the ith action of each
agent, i.e., mvi = {mvi

x|x ∈ G}. Let a re-
sultant group trajectory be t = (c1, ..., ck),
where ci is the group configuration after joint
action mvi. Configuration ci consists of the
position of each agent, i.e., ci = {psi

x|x ∈
G}. The payoff can be computed as the ex-
pected group accumulative reward erwG(mv) =∑

y∈G(
∑

t(P (t|mv)
∑k

i=1 rwy(c
i))), where the

second summation is over all possible group tra-
jectories, and rwy(c

i) is the reward y receives
at the group configuration ci. Since the group
configuration ci is dependent only on the pre-
vious configuration ci−1 and joint action mvi,
we have P (t|mv) =

∏k
i=1 P (ci|ci−1,mvi), where

c0 = null. Furthermore, since the position of
each agent x in group configuration ci is depen-
dent only on its own action mvi

x and its own pre-
vious position psi−1

x , we have P (ci|ci−1,mvi) =∏
x∈G P (psi

x|psi−1
x ,mvi

x). Combining the above,
we have erwG(mv) =

∑

y∈G

[
∑

t

((
k∏

i=1

∏

x∈G

P (psi
x|psi−1

x ,mvi
x)) ·

k∑

i=1

rwy(c
i))].

3.2 Recursive Model Structure

For an agent to use a payoff matrix to plan
its actions, it needs the probability of each
joint plan, determined by the likelihood of other
agents’ taking corresponding actions. We iden-
tify the key issue for agent B to predict actions
of agent A as whether A will move closer to
B for cooperation, which is determined by re-

ward distribution around A. Since the reward
distribution in the other side of A may be un-
observable to B, and RMM agents do not com-
municate, the above probability must be com-
puted by considering all possible cases of A’s
neighbourhood. We use recursive modeling as
follows:

We characterize the unobservable neighbor-
hood of A by whether it contains high unilateral
reward cells. If so, A is more likely to move away
from B. Otherwise, A is more likely to move to-
wards B for the benefit of a cooperation. In par-
ticular, let nbpy

x summarize unilateral rewards
in neighborhood of agent y that is unobservable
to agent x, where nbpy

x ∈ {allLow,¬allLow}.
If the unobservable area has at least one high
reward, it is labeled ¬allLow. In general, there
are g − 1 unobservable neighborhoods one per
group member, and they form 2g−1 possible
cases. Each case forms a model at the second
level of RMM tree, and is associated with x’s be-
lief P (nbp1

x, nbp2
x, ..., nbpg−1

x ). A two-level RMM
tree is used in this work as knowledge at deeper
levels cannot be reasonably assumed and deeper
models have little effect on performance (Gmy-
trasiewicz et al., 1998). Fig. 1 shows a RMM
tree with g = 3 and k = 2.

3.3 Bayesian Belief Update

As agents move around, agent x’s belief
P (nbp1

x, nbp2
x, ..., nbpg−1

x ) needs to be updated
based on observations of other agents’ last ac-
tions. Let lmvy

x be the last move of agent
y observed by x, where lmvy

x ∈ {towards,

¬towards} and towards means that y moved
closer to x. To simplify discussion, we assume
that g = 3, the group consists of agents A, B

and C, and x = B. Hence, B needs

P (nbp
A
, nbp

C |lmv
A

, lmv
C), (1)

we have omitted subscript B to aid readability.
It is difficult, if not impossible, to specify (1)

directly as a joint probability of unobserved ar-
eas. What can be practically specified is the
following as it refers to local dependencies:

P (nbp
A|lmv

A) · P (nbp
C |lmv

C). (2)

In general, (1) is not equivalent to (2). We
show below assumptions needed to obtain (1)



A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.50

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.50

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.40

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.40

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

A B C u

(N,N) (N,N) (N,N) 0.85
(N,N) (N,N) (N,S) 0.70

...
...

(H,H) (H,H) (H,W) 0.41
(H,H) (H,H) (H,H) 0.72

P (nbpA

B = ¬allLow, nbpC

B = ¬allLow)P (nbpA

B = allLow, nbpC

B = allLow)

P (nbpA

B = allLow, nbpC

B = ¬allLow) P (nbpA

B = ¬allLow, nbpC

B = allLow)

Figure 1: RMM tree of agent B. Payoff matrices shown in table format.

by computing (2). (1) can be rewritten as
P (nbpA|nbpC , lmvA, lmvC)P (nbpC |lmvA, lmvC).
If we assume that unobservable neigh-
borhoods of A and C are conditionally
independent given their movements, de-
noted I(nbpC , {lmvA, lmvC}, nbpA), the
above probability can be expressed as
P (nbpA|lmvA, lmvC) · P (nbpC |lmvA, lmvC).
With the additional assumptions
I(nbpC , lmvC , lmvA) and I(nbpA, lmvA, lmvC),
we obtain (2). Each factor in (2), say,
P (nbpA|lmvA), can be computed as
P (lmvA|nbpA)P (nbpA)

P (lmvA),
where P (nbpA) is from

the last belief update and P (lmvA) is a
normalizing constant. P (lmvA|nbpA) can be
obtained by reasoning by case based on how
rewards in the area between A and B are
distributed. Let mA

B ∈ {allLow,¬allLow}
summarize rewards in this area. We have
P (lmvA|nbpA) =

∑
mA P (lmvA,mA|nbpA) =∑

mA P (lmvA|mA, nbpA)P (mA|nbpA), where
the first factor can be directly specified and
the second factor can be estimated based on
observed dependence between nearby rewards.

The above relies on the assumptions:

• I(nbpA, {lmvA, lmvC}, nbpC),

• I(nbpA, lmvA, lmvC) and I(nbpC, lmvC , lmvA).

They often do not hold. For the first, when un-
observable neighborhoods of A and C overlap,
we have nbpA = nbpC and the independence
no longer holds. The second also fails in this
situation since lmvC is directly dependent on
nbpA. Requirement of these strong assumptions
to make (1) computable in practice appears to
be a limitation of the RMM framework.

4 Experimental Evaluation

We setup the environment such that the most
productive level of cooperation is at two agents.

The radius of agent perception and communi-
cation is 10 cells. Three types of environments
of distinctive natures are simulated. In Barren

type, each high reward cluster is less than 6× 6
in size and is at least 20 cells away from any
other high reward cluster. This type is useful
to evaluate how well agents can avoid wander-
ing in a low reward area and can migrate to
locations with high reward. In Dense type, at
least every 10× 10 square of cells has a high re-
ward cell. In Path type, high reward cells form
a path and each high reward cell on the path
has at least one other high reward cell within a
distance of 2 cells.

We set up the CDN-based agent team with
group size three, two groups per team, and plan-
ning horizon two. Agents, A, B and C, in a
group are organized into a chain A − B − C.
Subnets for A and B are shown in Fig. 2, where
design, performance and utility nodes are shown
as squares, ovals and diamonds, respectively.

1
A

B,1
A

2
A B,2

A

B
A,1 ps

mv

mv mv mvmv

C,2

ps

rw ps

ps

rw ps
A
B,1

A
B,2

B
A,1 B

C,1

B B
A,2

mvA
2 B,2

A

A,1
B B

1 C,1
B

A,2 C,2
B B B

2

Amv mv mv mv

B
B,1

B
C,1

A,2
B

B
2

B
C,2

1
A

B,1 B

(a) (b)

G G

ps

rw rw

ps

ps

rw

rw

ps ps

A

Figure 2: Subnets for group members A and B.

Each movement variable mvi
x or mvy,i

x gener-
ally has 5 possible values denoting the five ac-
tions. Each position variable ps1

x or psy,1
x has

5 possible values and each position variable ps2
x

or psy,2
x has 13 possible values. The conditional

probability table (CPT) associated with a posi-
tion node encodes uncertain dependency of the
position on movement action. The node ps2

x

is also dependent on the previous location ps1
x.

Utility node rw
A,i
B represents rewards that agent



Table 1: Experimental results. Highest means
bolded.

Barren Dense Path
µ σ µ σ µ σ

CDN 55.84 4.21 25.14 3.27 20.41 3.39
GRDU 48.56 0.56 12.32 0.20 12.20 0.15
GRDB 48.64 0.62 18.57 1.10 16.80 2.39
RMM 50.35 5.95 18.50 3.39 18.71 2.79

B receives due to cooperation (or lack of) with
A. Its associated CPT encodes the reward as
a utility distribution. We set up the RMM-
based agent team with the same group size,
team size and horizon. Both CDN and RMM
teams use sophisticated reasoning. To evaluate
its benefit, we also implemented two versions of
simple greedy agents. One version (GRDU) is
based on unilateral reward rwu and selects ac-
tions for agent x that maximize

∑k
i=1 rwu(psi

x),
where rwu(psi

x) is the unilateral reward at the
intended position of i’th action. Another ver-
sion (GRDB) considers bilateral reward rwb as
well and maximizes

∑k
i=1(rwu(psi

x)+rwb(psi
x)).

Each agent acts independently without commu-
nication. No group formation is applied as in
RMM and CDN. For each version, we set the
team size to six.

4.1 Performance Comparison

Tbl. 1 shows experimental performance of each
agent team in different environments. For Bar-

ren type (base value 0.1), each team executes
40 time-steps (80 actions planned) in each run.
For Dense (Fig. 3(a)) and Path (Fig. 3(b)) types
(base value 0.05), each team executes 20 time-
steps (40 actions planned) in each run. Each
team performs 30 runs in each type of environ-
ment. The table gives the mean µ and standard
deviation σ of the accumulative team reward.

CDN agents outperform other agents. The
difference is significant at the 1% significance
level when two-tailed t-test is used for all in-
stances except Path, where CDN is better than
RMM at the 5% significance level.

The Path type represents environments where
all agents can perform well easily due to an
abundance of clues. The Barren type rep-
resents those where all agents would perform
poorly because of the lack of opportunities. The

Dense type represents those where sound plan-
ning would best utilize the existing opportuni-
ties. Here the CDN shows the most gain in per-
formance compared with alternatives.

(b)(a)

Figure 3: Environment types. High rewards are
shown as taller peaks.

CDN agents outperform greedy agents since
they coordinate actions to meet at high bilateral
reward cells, whereas greedy agents have no co-
ordination. CDN agents also outperform RMM
agents, which can be attributed to two limita-
tions of the latter. Firstly, estimation of neigh-
borhood rewards of other agents through behav-
ior observation and Bayesian update is inaccu-
rate, which hinders effective cooperation. The
second limitation is due to existence of multiple
optimal joint plans. These joint plans promise
the same maximal expected reward, but each
agent must choose one in the plan. Without
communication, each agent may commit to a
different plan such that the resultant joint plan
is sub-optimal. Note that this problem can-
not be solved by social convention in a LCF as
we show in the next section. CDN agents do
not suffer from this problem as the interface be-
tween agents is composed of movement nodes,
which explicitly communicates agent actions.

4.2 On Social Convention

A social convention defines, for each agent,
without resorting to communication, the action
to take when multiple optimal actions exist.
We show that no such convention exists that
guarantees collectively optimal actions in MAE.
Consider S1 in Fig. 4, where each cell is la-
belled with its coordinates, the occupying agent
A,B or C, the cooperative per-agent reward b

and unilateral reward u < b, and no agent can
perceive beyond two cells. Let the convention
be lexicographical, i.e., goto(v, z) ≻ goto(w, z)



(≻ reads is-preferred-over) whenever rewards in
cells (v, z) and (w, z) are identical but v < w.
Hence, B would prefer goto(2, 0) to meet A over
goto(4, 0) to meet C, because both actions have
the same reward. A would prefer goto(2, 0) to
meet B and C would prefer goto(4, 0) to meet
B, since b > u. The joint action is optimal,
though C is unable to meet B.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0)

A B Cu b, u b, u uS1 :

S2 : A B Cu b, u b, u
b + u

2

Figure 4: Two scenarios S1 and S2 for planning

Next consider S2 in Fig. 4, where reward for
(6, 0) is slightly increased. Preferences of A and
B do not change. C still prefers goto(4, 0) to
meet B since b > b+u

2 . The joint action is sub-
optimal, as C would be better off with goto(6, 0)
as shown by the hollow arrow. Without commu-
nication, C has no way of knowing the reward at
(2, 0) and predicting B’s action. Hence, social
convention is incapable of coordinating agents
with partial observations.

4.3 Efficiency Comparison

CDN, RMM and GRD teams (team size six)
use 57, 16, and 0.8 seconds, respectively, for
each round of planning. Below, we consider
their scalability. Since greedy agents act inde-
pendently, their efficiency is unaffected by the
team size.

With grouping, each payoff matrix in a RMM
agent has the size 5kg, where g is the group size
and k is the length of horizon. Hence, the space
and time complexity of RMM planning grows
exponentially with group size.

In comparison, each CDN-based agent group
is organized into a hypertree. The necessity of
the hypertree organization for exact multiagent
probabilistic reasoning is formally established in
(Xiang, 2002). The hypertree, together with
required agent interfaces, are essential compo-
nents of tight coupling and ensure optimal de-
cision making in CDN. Hypertree organization
also contributes to efficiency. It guarantees that
the computational complexity of a CDN-based

group is no worse than that of a RMM-based
group in the worst case, and is more efficient
when the CDN dependency structure is sparse.
Fig. 5 shows a possible hypertree organization
for MAE with g agents, where the subnet for
agent A2 is similar to that in Fig. 2 (b). The
degree of any agent on the hypertree determines
the number of agents whose interaction must
be modeled and critically determines planning
complexity of the agent. As long as this degree
is bounded, complexity of computation at each
group member does not increase with group size
and complexity of planning only grows linearly
with group size.

1

2 4 6 g−1

g−253

gA

A

A

A

A

A

A

A

A
...

Figure 5: Possible hypertree structure for MAE

5 Discussion

This work is motivated by the disproportional
research effort allocated among SVFs, LCFs
and TCFs, which forms an odd contrast with
the proliferation of distributed/wireless com-
puting, societal emphasis on privacy, and the-
oretically established advantage of TCFs in uti-
lizing collective knowledge. To improve aware-
ness, we implemented CDN and RMM as rep-
resentatives of TCFs and LCFs, respectively, in
MAE, to allow experimental comparison. The
application of RMM to MAE is a novel and non-
trivial attempt. The study provided empirical
evidence of advantages of CDN over RMM on
performance and efficiency. Below we general-
ize this comparison to other domains and the
advantage of CDN over SVFs on privacy.

At the modeling level, RMM and LCFs are
limited by the need to model agent interac-
tions without sufficient information. This is ev-
idenced by the need for strong and often invalid
assumptions in order to update belief on possi-
ble states of team agents (Sec. 3.3). This limita-
tion also applies to communicative LCFs, e.g.,
(Gmytrasiewicz and Durfee, 2001). Agents in
noncommunicative LCFs coordinate by observ-
ing other agents’ actions. Since messages are
speech acts, communicative LCFs are not fun-



damentally different. In contrast, CDN-based
agents and TCFs in general do not suffer from
this problem as agent interfaces are required to
render agent subdomains conditionally indepen-
dent. RMM is also limited by its matrix-based
representation of exponential complexity. This
can be remedied by adopting a graphical model
in each agent as in MAID (Koller and Milch,
2001), although the above limitation stands.

At the decision making level, RMM and LCFs
are limited by having to guess about the states
and decisions of other agents based on observa-
tions. The inaccuracy in estimation can degrade
agent performance through two distinct mech-
anisms: Firstly through misjudgement of other
agents’ states, which in turn leads to misjudge-
ment of the optimal joint plan. Secondly, mul-
tiple optimal joint plans can degrade agent per-
formance due to independent choice of agents.
Social conventions cannot solve this problem as
we have shown through a counterexample.

On the other hand, conditional independence
rendering interfaces in TCFs convey sufficient
states and decisions, resulting in improved coor-
dination and superior performance. Compared
to SVFs, an infra-structure exists within each
CDN agent to differentiate variables into public
and private. Only information on public vari-
ables are communicated through an agent inter-
face. Private internal representations and pref-
erences are not disclosed. Therefore, TCFs such
as CDN provide superior performance, more ef-
ficient computation and a higher degree of pri-
vacy. Although a cost of communication must
be paid (relative to non-communicative LCFs),
since the communication is efficient (when the
CDN is sparse), the price will be worthwhile
for many applications. If communication is
noisy/lost the performance degrades gracefully
as agents can continue to work in smaller groups
(see Sec. 8.9 in (Xiang, 2002)).

Regarding the generality of this work, we
draw attention to key features of CDN and
RMM. Both are decision-theoretic. RMM is
proposed as a general framework for cooperative
multiagent decision making. CDN is proposed
in the context of collaborative design, but is in
fact a general framework, whose applicability

to MAE, a domain very different from design,
is a clear indication. The generality of CDN
and RMM and their common decision-theoretic
foundation point to the source of difference in
their experimental evaluation, i.e., their differ-
ence in agent coupling, and promise that our
empirical results in MAE are generalizable.

References

R. Becker, S. Zilberstein, V. Lesser, and C.V. Goldman.
2004. Solving transition independent decentralized
Markov decision processes. J. Artificial Intelligence
Research, 22:423–455.

P.J. Gmytrasiewicz and E.H. Durfee. 2001. Rational
communication in multi-agent enviroments. Auto.
Agents and Multi-Agent Systems, 4(3):233–272.

P.J. Gmytrasiewicz, S. Noh, and T. Kellogg. 1998.
Bayesian update of recursive agent models. User Mod-
eling and User-Adapted Interaction, 8(1):49–69.

D. Koller and B. Milch. 2001. Multi-Agent Influence
Diagrams for Representing and Solving Games. In
Proc. 17th Inter. Joint Conf. on Artificial Intelligence,
pages 1027–1034.

S. Maes, K. Tuyls, and B. Manderick. 2001. Mod-
eling a multi-agent enviroment combining influence
diagrams. In M. Mohammadian, editor, Proc. of
IAWTIC, pages 379–384.

P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. 2005.
Adopt: asynchronous distributed constraint optimiza-
tion with quality guarantees. Artificial Intelligence,
161(1-2):149–180.

A. Petcu and B. Faltings. 2005. A scalable method for
multiagent constraint optimization. In Proc. 19th In-
ter. Joint Conf. on Artificial Intelligence, pages 266–
271.

J. Shen and V. Lesser. 2006. Communication manage-
ment using abstraction in distributed Bayesian net-
works. In Proc. 5th Inter. Joint Conf. on Autonomous
Agents and Multiagent Systems, pages 622–629.

Y. Xiang and F. Hanshar, 2007. Advances in Artificial
Intelligence, LNCS, volume 4509, chapter Planning
in Multiagent Expedition with Collaborative Design
Networks, pages 526–538. Springer-Verlag.

Y. Xiang, J. Chen, and W.S. Havens. 2005. Optimal de-
sign in collaborative design network. In Proc. 4th Int.
Joint Conf. on Auto. Agents and Multiagent Systems,
pages 241–248. ACM.

Y. Xiang. 2002. Probabilistic Reasoning in Multiagent
Systems: A graphical models approach. Cambridge
University Press.

Y. Xiang. 2007. Tractable optimal multiagent collabo-
rative design. In Proc. IEEE/WIC/ACM Inter. Conf.
on Intelligent Agent Technology, pages 257–260.



Author Index

Agosta, J.M., 1

Antonucci, A., 17

Ammar, S., 9

Arias, M., 25

Aussem, A., 81

Bolt, J. H., 33

Cano, A., 41, 49

Chen, T., 57

Cobb, B., 65

Cordero H., J., 73

Daneshkhah, A.D., 265

de Campos, C. P., 17

de Morais, S.R., 81

de Waal, P.R., 89

Defourny, B., 9

D́ıez, F.J., 25, 97

Druzdzel, M.J., 1, 185

Elizalde, F., 97

Fernández, A., 105

Flesch, I., 113

François, O.C.H., 121

Gámez, J. A., 129, 137

Gardos, T.R., 1

Gómez-Olmedo, M., 41

Gómez-Villegas, M.A., 145

Hanshar, F., 305

Jensen, F.V., 153, 177, 233, 289

Kontkanen, P., 257

Kwisthout, J., 161

Langseth, H., 169

Leray, P., 9

Lozano, J.A., 249

Lucas, P.J.F., 113

Luque, M., 97, 177

Maaskant, P.P., 185

Madsen, A., 193, 201

Main, P., 145

Masegosa, A., 49

Mateo, J. L., 129, 137

Mendiburu, A., 249

Mononen, T., 209

Moral, S., 41, 49

Myllymäki, P., 209, 257

Nielsen, J.D., 105, 217

Nielsen, T.D., 129, 169, 177

Niepert, M., 225

Ottosen, T.J., 233

Puerta, J.M., 129, 137

Renooij, S., 241

Reyes, A., 97

Roos, T., 257

Rumı́, R., 169, 217

Salmerón, A., 105, 169, 217

Santana, R., 249

Savicky, P., 297

Silander, T., 257

Smith, J.Q., 265

Stefanini, F.M., 273

Studený, M., 281

Sucar, L. E., 97

Sun, Y., 17

Susi, R., 145

Søndberg-Jeppesen, N., 289

van der Gaag, L.C., 241

Van Gucht, D., 225

Vomlel, J., 281, 297

Wang, Y., 57

Wehenkel, L., 9

Xiang, Y., 305

Zaffalon, M., 17

Zeng, Y., 73

Zhang, N. L., 57


	1 Introduction
	2 Dealing with incomplete data
	2.1 Nature of missing data.
	2.2 Determining structure  when data are incomplete.
	2.3 General principle and scoring metric

	3 Tested structural learning algorithms
	3.1 Greedy Search
	3.1.1 SEM
	3.1.2 GS-ACA

	3.2 Greedy Equivalent Search
	3.2.1 GES-EM
	3.2.2 GES-ACA

	3.3 Maximum Weight Spanning Tree
	3.3.1 General principle of MWST-EM
	3.3.2 Trees as an initialisation of dags greedysearch:SEM+TandGS+T-ACA
	3.3.3 MWST-ACA
	3.3.4 Extension to classification problems : TAN-EM and TAN-ACA

	3.4 Experimental tests
	3.4.1 Datasets and evaluation techniques
	3.4.2 Results and interpretations


	4 Conclusions and prospects

