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Classification trees (CT) are one of the most used 
supervised classification models. But one of their main 
problems is the poor estimates of the class probabilities 
they produce [1].

Good class probability estimates are essential in many 
tasks such as probability based ranking problems [2].

This work proposes a Bayesian approach to build CT 
with excellent class probability estimates (CPE).

1. Introduction

3. Bayesian Tree Averaging  (BMA)
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In this work, CT induction is faced as a Bayesian model 
selection problem [3]. 

At each step it is selected the tree with MAP probability 
given the data. These options are evaluated: 

Branch by a non-used node X in this branch:                  . 
Stop the branching:                  .

Eq. for selecting the splitting node or stop branching:

2. Bayesian Tree Induction  (BTI)

In many cases, branching by a node is only a little more 
probable than stopping the branching. So, there is 
uncertainty in this decision: Bayesian model averaging (BMA) 
[4] is an approach to deal with this uncertainty. 

Our application of BMA is an alternative of pruning the final 
tree. The probability at leaves are estimated as follows:

4. Non-Uniform Priors (NUP)
In previous analysis, uniform alpha values has been considered 

for Dirichlet prior distributions over the parameters.
We test here a heuristic to define non-uniform alpha values.
It is based on the fact that trees partition data and create 

subsets where there is no sample for some classes.
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Step 1: Tree Induction

- Firstly, the classification tree is induced following the 
classic recursive partitioning method for building CT. Each 
attribute is evaluated following the equation of Section 2.

- Let us see as there is no sample  at the red bounded leaf. 
So there is no associated decision for that leaf.

- Secondly, for each node it is computed its associated 
weight accordingly to the red bounded quotient of Section 3.

- The weight of “Petal Width” is much higher than “Petal 
Length” because the partition of “Petal Width” is better than 
the partition of “Petal Length”.

Figure 1: Example Iris Data Classification

Step 2: Intermediate Tree
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- Finally, the probabilities are weighted and updated following the 
summation equation of Section 3. 

- As we can see, at the red bounded leaf there is now an 
associated decision. This effect would be the same than a  post-
pruning process, but the CPE are more precise with this approach.

Step 3: Averaged Tree

5. Experiments & Conclusions
Methods were evaluated in 27 UCI data sets.
We compare the following 5 methods:

C4.5 of Quinlan with (C4.5p) and without pruning (C4.5¬p).
BTI of Section 2, BTI+BTA of Section 3 and BTI + BMA + NUP.
Several S values were evaluated: S=1, S=2 and S=|C|.

Two evaluated scores: the classic % of correct  classification and the 
log-likelihood of the true class (log-Score), this last score is introduced 
with the aim of evaluate the quality of CPE.

Results are presented in Figure 2: the mean value of both scores and 
the outputs of a corrected paired t-test are plotted. For simplicity, only 
models with S = 2 are showed.

The main conclusions are:
BTI, BTA and NUP supposes an improvement in CPE and maintain the accuracy of 

C4.5p.
The Bayesian approach is a promise technique to deal with model uncertainty in CT.

Figure 2:  Results

• % Percentage of correct classifications.   
• |Log-Score| Absolute Value of log-score.

As lower it is as better the class probability 
estimates are. 

• W/D/L The number of databases where there is 
a statistically significant (at 1% level) improvement 
respect to the score (% or |Log-S|) of C4.5p (it is set 
as reference method).

• A Dirichlet prior distribution 
over the parameters is assumed 
with uniform alphas = S/|C|.
• S is considered the global 
sample size.
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