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Bayesian Networks 

Conditional independence 
assumptions 

Factorization of a joint 
probability distribution: 
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•  Bayes (BDe) 
•  BIC & AIC 
•  MDL 
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Bayesian Score 

The state-of-the-art model selection criterion: 

Bayesian Dirichlet equivalent (BDe) score 

Assumes Dirichlet prior on model parameters θ. 

Evaluate marginal likelihood of data given model 

Depends on hyper-parameter α. 
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BIC & AIC 

BIC: Asymptotic approximation of marginal likelihood: 

AIC: Asymptotic approximation of estimated 
prediction error: 

10/30 



+
MDL 

Minimum Description Length (MDL) Principle: 

Choose the model that yields the shortest 
description of the data together with the model. 

Too simple model   data long, model short  

"Just right"    data short, model short  

Too complex model  data short, model long 
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Flavours of MDL 

1.  "Pedestrian" 
Asymptotic two-part code-length same as BIC. 
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Flavours of MDL 

1.  "Pedestrian" 
Asymptotic two-part code-length same as BIC. 

2.  "Sophisticated" 
Bayesian marginal likelihood. 

3.  "Champions League" 
Modern (minimax regret optimal) code 

normalized maximum likelihood (NML) 

Problem: NML computationally very hard. 

14/30 



+
Bayes vs. MDL (minimax regret) 

The Bayesian decision principle is minimization of 
expected loss: 

minA EX [loss(A,X)] 

MDL (especially NML) is based on minimization of 
worst-case regret: 

minA maxX [loss(A,X) – minA' loss(A',X)] 

"regret" 
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•  fNML = "factorized NML" 
•  computation 
•  consistency 
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fNML Score 

We propose a new MDL score, factorized NML, which 
is 

1.  easy to compute, 

2.  decomposable (allowing fast search), 

3.  robust (experimentally). 
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NAME GENDER PROFESSION CHILDREN 

Teemu male researcher 2 
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fNML vs. NML: what's new? 

D 

NML: Minimax code applied 
to whole data as one block 
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fNML vs. NML: what's new? 

D2 

fNML: minimax code applied 
column by column 
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fNML: Conditional minimax 
code when parent(s) exist. 
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NAME GENDER PROFESSION CHILDREN 

Teemu male researcher 2 

Clark male reporter 0 

Margrethe female queen 2 

: : : : 

fNML vs. NML: what's new? 
fNML: Conditional minimax 
code when parent(s) exist. 

D4 

Each column is encoded using the minimax code for multinomials. 

Using fast NML algorithms, this takes O(n log n) per column. 
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fNML: Consistency 

(Haughton, 1988): Any penalized likelihood score of 
the form 

where an satisfies                         and                       ,  is 
consistent. 

Theorem: fNML behaves asymptotically like BIC, i.e., 
an = log n. 

Hence, fNML is consistent. 
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Robustness 

BIC 

BDe, fNML 
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+
Robustness 

BDe optimal when 
prior "correct". fNML 

almost as good. 

BIC 

BDe, fNML 
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Robustness 

fNML 
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+
Robustness 

fNML 

BDe much worse when 
prior "incorrect". 

fNML more robust. 
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Questions? 
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Decomposable Scores 

Problem: Super-exponential search space. 

Solution:  Decomposable scores 

SCORE(G,D) = ΣS(Di,DGi) 

For decomposable scores, exact search (global 
optimum) can be done for about m ≤ 30 nodes 
(Koivisto & Sood, 2004; Silander and Myllymäki, 2006). 

i=1 

m 


