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Abstract

A probabilistic network built for an application domain eft has a single output variable of
interest, for which either the posterior probability of oofits values or its most likely value is
reported and used for subsequent decision making. For auamhoof application, however, we
are interested primarily in how well the network distingués between various compound output
values of interest for different diagnostic variables. Eptre this, we introduce a concept of
discrimination, and illustrate a measure to this end, bagwuh joint posterior probabilities. In
addition, we address the sensitivity of discriminationradcuracies in a network’s parameters
and show that standard sensitivity functions suffice fodgig the effects of such inaccuracies.

1 Introduction concerned. Therefore, we introduce the concept of
evidence-specific discriminatidretween values of
A probabilistic network designed for diagnostic one or more variables. Various measures involv-
support in an application domain often has a sining posterior probabilities for the diagnoses of in-
gle output variable of interest, capturing the pos-terest can be used to capture such discrimination. In
sible diagnoses. Our application domain of classithis paper we illustrate the concept of discrimination
cal swine fever, however, aims at multiple-disorderby defining the absolute difference between poste-
diagnosis. To this end, we have two output vari-rior probabilities as a simple discrimination mea-
ables of interest: a main diagnostic variable to desure: the further these probabilities are apart, the
tect classical swine fever, and a secondary variableetter the network discriminates between the asso-
to capture primary other infections. Although out- ciated diagnoses.
breaks of classical swine fever occur seldomly, it We note that the term discrimination is somewhat
is a very serious infectious disease which warrantgverloaded; it is, for example, often used in the
early detection to prevent rapid spreading. Early decontext of classification problems: “can our model
tection, however, is hampered by close resemblancgiscriminate between pigs that have classical swine
of the early symptoms of the disease to those ofever and pigs that have not?” This question, al-
common infections, and by the simultaneous presthough relevant, concerns discrimination between
ence of such infections. A model for early detectioncases and not between diagnoses in an individual
of classical swine fever, therefore, needs to be ablgase, which is the problem we address here.
to distinguish between classical swine fever in an posterior probabilities can be highly sensitive to
early stage and a primary other infection. Moreover,changes in a probabilistic network’s numerical pa-
it should be capable of diagnosing classical swingameters (Van der Gaag & Renooij, 2001). As the
fever in combination with common infections. parameters are generally estimated from (incom-
In order to determine how well a probabilis- plete) data or assessed by human experts in the
tic network can distinguish between different di- domain of application, they are inevitably inaccu-
agnoses in an individual case, it does not alwaysate. To study the robustness of discrimination to
suffice to consider the most likely value of a vari- parameter inaccuracies, we can study the sensitiv-
able of interest, or its posterior distribution, espe-ity of the output probabilities involved to parame-
cially when more than one diagnostic variable ister changes by means of a sensitivity analysis. To
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Figure 1: The network for early detection of classical swieser (csf).

this end, we show how to derive a function that cap-abilities, and 41 variables of which 24 can be ob-
tures thesensitivity of discriminationio parameter served upon clinical investigation. The variables
changes. In addition, we demonstrate that we cawapture processes in the underlying pathogenesis,
efficiently compute a sensitivity function for joint risk factors, relevant clinical signs, and alternative
posterior probabilities, required in order to study theexplanations for these signs.
dynamics, and therefore robustness, of discrimina- The main diagnostic variable CSF Viraemia in
tion between values of two or more variables. the network models the presence or absence of csfin
The paper is organised as follows. In Section Zan individual pig. The extremely low prior for the
we describe an application which motivates the neegyresence of csfo(0000016), in combination with
for a concept of discrimination and introduce a pre-the common occurrence of other infections resem-
liminary measure to this end. In Section 3, we estabypling csf, both in pigs with and without csf, makes
lish functions that allow for studying the robustnessthat these diseases cannot all be modelled in a sin-
of discrimination to parameter inaccuracies. Thegle variable: csf would never be diagnosed. A sec-
paper ends with conclusions and directions for fur-ondary diagnostic variable in the network therefore
ther research in Section 4. models primary other infections as possible alterna-
tive explanations of a pig’'s symptoms. As a result,
for a given pig, not only the network’s prediction
Classical swine fever (csf) is a serious infectiousof the probability of csf is of interest, but our pri-
disease and, although outbreaks occur seldomly, itg1ary interest is to know how well the network dis-
rapid spreading warrants early detection. Classicalinguishes csf in an early stage, with or without an-
swine fever is hard to diagnose in an early stageother infection being present, from just a primary
due to the high variation in its associated clinicalother infection.
patterns, which strongly resemble those of common Known concepts as the most likely value of a
other infectious diseases. To support the early devariable of interest, or its posterior distribution, do
tection of csf, a probabilistic network is being de- not always suffice to determine how well a prob-
veloped (Geenen, Elbers, Van der Gaag & Loeffenabilistic network can distinguish between different
2006). The network, shown in Figure 1, currently diagnoses in an individual case, especially when
includes 82 directed edges, 2113 conditional probmore than one diagnostic variable is concerned. To

2 The Concept of Discrimination



capture this, we therefore introduce the novel connetwork has some difficulty distinguishing csf from
cept of evidence-specific discriminatiobetween a common infection in this pig. Discrimination
two combinations of values for one or more vari- can even be studied for value assignments to more
ables. To measure discrimination, we use a functhan one variable. For example, discrimination be-
tion of the posterior probabilities of the (compound) tween the presence and absence of classical swine
values of interest. Thisneasure of discrimination fever in combination with an airway infection in pig
preferably has the property of obtaining a maximum304: d(csf, ai;—esf, ai | 304) = | Pr(esf, ai |
value when one of the posteriors equals zero an804) — Pr(—csf, ai|304) | =]0.01—0.15| = 0.14;

the other 1: it is then easy to discriminate betweerthis indicates that the network is capable of diagnos-
the two associated diagnoses; likewise, the measuiag csf in combination with another infection in this
should obtain a minimum value when the posteriorgig. O

are equal. Possible measures of discrimination can S

be based on (odds) ratios, or more complex func3 Robustness of Discrimination

tions. In this paper, for the purpose of illustration, Sensitivity analysiss a powerful tool for study-

we use a simple and straightforward measure of dispq the robustness of a probabilistic network’s out-
crimination, defined below. In the remainder of this put probabilities to inaccuracies in the network pa-
paper, we will writePr(a | ¢), to denote an output rameters. Since discrimination is defined in terms
probability under study, where s a specific value o gutput probabilities, its robustness to parameter
assignment to one or more variablésof interest  changes is a relevant matter, and can be studied by
ande denotes the available evidence. means of the functions that result from a sensitivity
Definition 1. Let Pr(a | ¢) andPr(b | €) be two  analysis. We now review some known properties of
output probabilities of interest. The amountdi$-  such sensitivity functions.

crimination of the network between andb in the
context of evidence:, written d(a;b | e), equals
| Pr(a|e) — Pr(be)|. Sensitivity analysis of a probabilistic network
amounts to establishing, for each of the network’s

The above measuré(a;b | e) takes on values : L .
. o numerical parameters, theensitivity functiornthat
between zero and 1, with larger values indicating a o . .
S . e expresses an output probability of interest in terms
larger amount of discrimination. This specific mea-

: , - .~ of that parameter. Let = p(b | 7) be a parame-
sure also has the benefit of being symmetric in it . .
. er under study, whergis a value of some variable
arguments, that isi(a;b|e) = d(b;a | e).

B andr is a combination of values fdB’s parents.
Example 1. Discrimination can be measured be- We now usef¢(z) to denote the sensitivity function
tween different values of the same variable. Forthat expresses the output probabilRy(a | ¢) in
example, discrimination between a gastro-intestinaterms of the parameter.
infection (value ¢gi of variable POI, modelling Any one-way sensitivity functiorf¢(z) is a quo-
primary other infections) and an airway infection tient of two linear functions in the parametemn-
(valueai of variable POI) in pig 14 is given by der study (Castillo, Guéirrez & Hadi, 1997; Coup

d(gi;ai|14) = | Pr(gi|14) — Pr(ai|14) | & Van der Gaag, 2002). More formally, the function

— 0.54—0.10 = 0.44 takes the form
indicating that the network can easily distinguish ~ f¢(z) = Pr(a, e)(z) _c1-z+e
between these two types of infection in this pig. Pr(e)(z) 3T+ C4
Discrimination can also be studied for values of dif-\where the constants, j = 1,...,4, are built from
ferent variables. For example, discrimination be-the assessments for the parameters that are not be-
tween classical swine fever (valugf of variable ing varied. Efficient algorithms exist to compute
CSF) and a gastro-intestinal infection in pig 169 is ———— .
We assume that the parameters pertaining to the same con-

given byd(csf; gi|169) = | Pr((.:sf.| 169) —Pr(gi]  gitional distribution as the parameter under study areaed
169) | = 0.20 — 0.13 = 0.07, indicating that the proportionally (Kjeerulff & Van der Gaag, 2000).

3.1 Sensitivity Functions




changes in a parameter can be captured by con-
e e sideringd(a; b| e) as a function ofc. In this section
t<1 t<1 we assume that and b are simplevalues, that is
" | values for a single variabld and a single variable
B; the case where andb arecompoundvalues is
considered in Section 3.3. In this paper we assume
thatd(a; b | e) itself is a function involving simple
operators as the sum, the difference, and/or the ratio

cente

r>0 of posterior probabilities. We will demonstrate, for
f:ol our choice of measure, thdiscrimination sensitiv-

ity d(a;ble)(x) can now again be described in terms

Figure 2: Two hyperbolas with their branches and®f @ rectangular hyperbola.

associated constants (the constraintss@md¢ are  Proposition 1. Let f$(z) = r./(x — s) + t, and

specific for sensitivity functions). fi(x) = ry/(x—s)+t, be two sensitivity functions.
Then

the constants of any sensitivity function relating a (2) — fE(z) = (ra —rp)
(posterior) probability for a value of a single output 7@ b T e s

variable to a network parameter (Caug Van der he ab i diatelv foll ¢ having th
Gaag, 2002; Kjeerulff & Van der Gaag, 2000). The above immediately follows from having the
same constantin both sensitivity functions, which

is justified by the following lemma.

+ (ta — tp)

The sensitivity functionfS(z) can take one of
three general forms. The functionlisear for prior
probabilities of interest, or iPr(e) is unaffected by Lemma 1. For a fixed parameter and evidence
the parameter variatiore{ = 0); if ¢4 = 0, then e, all sensitivity functiong’§ (=) for any variableA
co = 0 and the function reduces tccanstant Inall ~ have the same vertical asymptote.

other cases the function is a fragment eéetangu- Recall that the constantfor a sensitivity func-
lar hyperbola which takes the general form tion f¢(z) equalss = —c4/c3, Wherecs - x + ¢4 =
r Pr(e)(x). Given a parameter, constant therefore
f(x) = PR +1 relates to just the available evidence and is indepen-
dent of the output variable of interest.
where, for a sensitivity function withy, ..., cs as Although the difference function from Proposi-

before,s = —c4/c3,t = c1/c3, andr = (c2/c3) +  tion 1 again is a fragment of one hyperbola branch
s - t. In the remainder of the paper, we assume anyor = < [0, 1], it will in general not be a sensitivity
sensitivity function to be hyperbolic. function since it can be negative ¢@, 1]; for our
Figure 2 illustrates that a rectangular hyperbolachoice of measuref(a;b | e)(z) is the absolute
in general has two branches, and two asymptotesalue of this difference. For a fixed parameteaind
defining its cente(s, t). We observe that a sensitiv- evidencee, establishing the constants of all sensitiv-
ity function is defined by) < z, f(z) < 1;the two- ity functions f§ (z) for any single variablel, rather
dimensional space of feasible points thus defined, ishan for one specifiel, comes at no additional com-
termed thaunit window Since a sensitivity function putational expense. Establishid(:; b|e)(x) hence
moreover should be continuous fore [0, 1], its  requires no additional network propagations.
vertical asymptote necessarily lies outside the unit The functiond(a;b | €)(x) now details how dis-
window. A hyperbolic sensitivity function therefore crimination is affected by parameter variation. Dis-
is a fragment of a single hyperbola branch. crimination is robust to parameter inaccuracies if its
change upon varying a parameter is limited. To as-
sess robustness, we now define different intervals
The robustness of a network’s discrimination be-of parameter values having different effects on dis-
tweena and b, in the context of evidence, to  crimination.

3.2 Discrimination Dynamics: Simple Values
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Figure 4: Discriminationd(csf ; gi | 169)(x) for
a parameter: with zo = 0.075; x;x = 0.11 and
Lsim — 0.16.

functions, which are continuous and monotone for

x € [0, 1], we have that maximum discrimination is
found on the boundaries of the unit window, that is,
for eitherxz = 0 orz = 1. The value of parametar

where discrimination is maximised will be denoted

by xmax:

Tmax = argmax d(a;b|e)(z) € {0,1}
z€[0,1]

If the two sensitivity functionsf$(z) and ff (x)

for the posterior probabilities under consideration
intersect within the unit window, such as in Fig-
ure 3, then minimum discrimination is attained at
this intersection point. Assuming that the two
hyperbolas are truly different functions, that is
fé(x) # fg(x), they intersect for at most one value
of z, denotedz;,;. For our choice of discrimina-

value of z¢i,, can be easily established frofg =
fa(zo) — fy(@o):
Ta — T

_— S
tb_ta_d0+

Tsim =
We now note thaty andzg;, necessarily lie on op-
posite sides af;,; if the latter two lie within the unit
window. As a result, forz-values between, and
Tsim, discrimination will become smaller than its
original value atry; we will then say that discrim-
ination decreases, even though it is not a decreas-
ing function ofzx; for z-values outside the interval
bounded byzy and zg;,, discrimination increases.

If zsim & [0, 1], for example as in Figure 3 with
xo = 0.10 andzg,, = 1.70, then, necessarily;,ax

lies on the same side af,; asxg, so variation of
z from zg towardsz .« iNcreases discrimination,

tion measure this minimum value equals zero and i%/vhereas discrimination will become less wheis

attained at

Ta —Tb

d(a;b|e)(zing) =0 <= Tt =
ty — tq

If zine € (0,1), then parameter values on op-
posite sides of,; will result in the same amount
of discrimination between the valuesandb under
consideration (see Figure 4). Let;, denote the
value ofz for which discrimination equals the orig-
inal amount of discrimination betweanandb in
contexte, that is

d(a;ble)(zsim) = d(a; b e)(xo),

where z is the original value of the parameter

varied in the opposite direction.

The intersection point of the two hyperbolas does
not necessarily lie within the unit window (see for
example Figure 5). If the intersection point lies out-
side the unit window, or if the hyperbola branches
do not intersect at all, then discriminatiaita; b |
e)(x) is monotone for: € [0, 1], obtaining its min-
imum value atl — zpax.

We now have all the ingredients to describe the
effect of parameter variation on discrimination.

Proposition 2. Let f¢(x), ff(2), Tmax, Tint, and
ZTsim D€ as before. Then the network’s discrimina-
tion d(a;b | e) betweena andb in the context of
evidence: changes as follows, upon varying param-

under consideration. For our example measure, theterz:



14 —0.39
’ « ()= g
shown in Figure 5. From the formulas we find that
Tine = 2.08 andzg, = —1.17. We conclude that
discrimination decreases for any parameter value
larger thar).20, and increases otherwise. O

+0.38

For our example measure we have studied the dif-
ference between two sensitivity functions, each de-
scribing a posterior probability for a simple output
value as a function of a network parameter. We note
Figure 5: Discriminationd(gi;ai | 14)(x) for a that the difference between two such posterior prob-
parameter: with zy = 0.20; ziy = 2.08, 4y =  abilities in relation to changes in a network param-
—1.17, andxyax = 0. eter has been studied before by Chan & Darwiche
(2002) in the context of parameter tuning. They
demonstrated that parameter values which enforce
a constraint on the difference, or on the ratio, of two
posterior probabilities can be computed from par-
tial derivatives established from the network with-
» if 7y € [0,1] and zg, € [0,1], then dis- outexplicitly determining a sensitivity function. Es-

crimination is non-decreasing ifr is var- tablishing the constants of the sensitivity function,

iedtox < v ortox > 4, where[y,0] however, is just as efficient and has the benefit of
= [min{xg, Tsim }, max{zo, Tsim }], @nd non-  providing insight in the effects of arbitrary parame-
increasing otherwise. ter changes on an output of interest.

> if xiy & [0, 1] OF 2gim & [0, 1], then discrimi-
nation is non-decreasing if is varied towards
Tmax, @and non-increasing otherwise.

Example 2. Reconsider the network for early de- 3.3 Discrimination Dynamics: Compound
tection of csf and its discrimination between csf and Values

a gastro'-intgs"[ina! infection for pig 168(csf; gi | In this section, we extend the results on the robust-
169). Discrimination between these two values asyegs to parameter inaccuracies of discrimination be-

a function of a parameter pertaining to the suc- , an simple values, to apply to compound value

cess of treatment with antibiotics( = 0.075), i compinations for two or more variables. This type
captured by the following two sensitivity functions: of robustness is relevant in case we need to dis-

169, ~  0.12 416900y —0.54 ) tinguish between diagnoses for multiple disorders,
Jo () = 2 055 U (@) =~ 1055 modelled in separate diagnostic variables. In prac-
tice, the number of variables under consideration

and shown in Figure 4. From these functions Weshouldt ically be small, for computational reasons
find thatz;y = 0.11 andzg,, = 0.16. As a result, ypically ' b

. as well as for interpretability. Although results in
if a more accurate assessment of the parameter turns. .
) this section apply to compound values for any num-
out smaller than 0.075, then the network will be able . o . )
ber of variables, we limit the discussion to only two.

to better discriminate between the two infections in We consider the variables and 3 and the poste-

this pig; if a more accurate assessment is larger, but I
' N " “rior pr ility P fth mpound val
not as large as 0.16, then discrimination becomes0 probability Pr(a, b | ) of the compound value

worse. Similarly, discriminationl(gi ai | 14) be- ab. A sensitivity functionf?, (x) for ab in the con-

. : . : .. text of evidences, as a function oft, is readily de-
tween a gastro-intestinal and an airway infection in

pig 14, as a function of a parametepertaining to termined by one of the following two approaches:

faeces samples;¢ = 0.20), is captured by the fol- 1) Extend the network with a new variablg,
lowing two sensitivity functions: with parents4 and B and all their compound
0.69 values as possible values for, for the CPT,

5 (¥) = —7g + 005, and definep(y | a,b) = 1 iff y = ab, and



p(y | a, b) = 0 otherwise. Enter evidence
into the new network and compufé _ , ().

II) Enter evidence: into the original network to
computefy(x), then enter additional evidence

b to computef’¢(x). Finally, multiply the two

functions:
be
+ tb>

a

(

ab()

() -

Ta

fy (@)
N ta) . <x Th

e

T — Spe

where
Ce

Sab —— = Se
Cs
C1 C1 €3

lap = —=—-—=1la"

Cs C3 Cs
C2 C2 C3

Tah = —+Se-tag-th = —+—+Se-ta-lp
Cs C3 Cp

= (Ta Sbe'ta)'tb+se’ta'tb

O

From the above observations, we have that all
properties for sensitivity functions and discrimina-

The first approach requires less propagations, butifjon gerived in the previous section readily apply to
a more complex network, and establishes the sens{he compound values case.

tivity functions for all compound values of the vari-
ables under consideration. The second approa

leaves the network as-is and provides all informa

tion for establishing the sensitivity functiorf§, ()
for all values of all variables! in the network. The
multiplication step is simplified by the observation

that the resulting function is again a sensitivity func-

tion and therefore a rectangular hyperbola. This in

deed follows after careful inspection of all constants

involved.

Proposition 3. Let f%¢(x) = r,/(z — spe) +t, and
fi(x) = rp/(x — se) + t, be two sensitivity func-
tions. Then

() =

is the sensitivity function relating the joint probabil-
ity Pr(a, b|e) to parameterr.

Ta th+ (Se — Spe) ~tg - T
T — Se

e

b
ab + 14ty

Proof. First we rewrite the formulas for the hyper-
bolic sensitivity functions in terms of a fraction of
linear functions:

Pr(a, b .
fcll)e(x) _ r(a, ) e)(a;) _ €1 T+ cC2
Pr(b, e)(z) c3-T+cy
where —c4/c3 = Spe, c1/c3 = tq, @andcea/cs =
Te — Spe - tg, aNd
ey Pr(bye)(z) ecz-wtcy
filw) = Pr(e)(z)  e5-7+cg

where—cg/c5 = se, c3/c5 = tp, andey/c5 = 1 —
Se - tp. NOw,

ab()

be e Cc1-T+Co
foe @) Ji ) = S

Tab
T — Sab

+ tap

Canmple 3. Reconsider the network for early de-

ection of csf. We study the network’s discrimina-

tion, and its robustness, between csf and one of the
primary other infections. More specifically, since
other infections are quite common in pigs, we are

interested in whether or not csf can be distinguished
from them. In this example, we focus on the differ-

ence betweelRr(csf, —gi | 169) andPr(—csf, gi |
169) for pig 169. The robustness of discrimina-
tion, as a function of a parameter can be stud-
ied by means of the corresponding sensitivity func-
tions: | 15 _ i (x) — f192; ,i(2) |- The constants for
the rectangular hyperbola representing this differ-
ence are found by applying Propositions 3 and 1 to
the functionsf.;" " (x), fL50% (), and £ 1% ()
and exploiting the fact that!%? (z) = 1 — f}(x).
From these constants;,; andzg;,, can be straight-
forwardly computed.

Examples of the sensitivity functions for the sim-
ple output values under consideration and a parame-
terx pertaining to the success of an antibiotics treat-
ment are given in Figure 6. The sensitivity functions
for the compound values of interest for the same
together with discrimination as a function of are
shown in Figure 7. Note that Figure 7 gives valu-
able insight into the dynamics of discrimination be-
tween csf and gastro-intestinal infections, which is
not obvious from Figure 6: although from Figure 6
we can see that changes in the posterior probabil-
ity of gi will pull the probabilities for its combina-
tion with csf towards the center of the probability
range, it is not immediately obvious from this fig-
ure that the functions for the compound values will
intersect, nor where this will occur. O
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Figure 6: Sensitivity functions for simple values of Figure 7: Sensitivity functions for compound val-

variables CSF and POI, for a parametgyertaining  ues of variables CSF and POI, for a parameter

to the success of an antibiotics treatment. pertaining to the success of an antibiotics treatment,
together with discriminationl(csf, —gi; —csf, gi |

4 Conclusions 169)(x) for parametet.
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