A Score Based Ranking of the Edges for the PC Algorithm

A. Cano, M. Gémez-Olmedo, and S. Moral
Department of Computer Science and Artificial Intelligence
University of Granada
18071 - Granada, Spain

Abstract

The result of applying the PC learning algorithm can depend of the order in which in-
dependence tests are carried out. Even if these tests are ordered by increasing size of
conditional sets, the PC algorithm does not take into account which edges are weaker in
order to be considered to be removed before the stronger edges. This paper proposes a
new learning algorithm which scores the edges according to a Bayesian metric and adds
them to the final graph according to this score. Then, conditional independence tests are
carried out to remove edgess as in the PC algorithm. Also, this algorithm is hybridized
with a variation of the PC algorithm consisting in determining minimum size cut sets
between two nodes to study the deletion of an edge. Some experiments are carried out to
evaluate the performance of the new proposals against the PC algorithm.

1 Introduction

There are two main approaches to learning
Bayesian networks from data. One is based on
scoring and searching (Cooper and Herskovits,
1992; Heckerman, 1995). Its main idea is to
define a global measure (score) which evaluates
a given Bayesian network model as a function
of the data. The problem is solved by search-
ing in the space of possible Bayesian network
models trying to find the network with optimal
score. The other approach (constraint learning)
is based on carrying out several independence
tests on the database and building a Bayesian
network in agreement with tests results. The
main example of this approach is the PC algo-
rithm (Spirtes et al., 1993).

In the past years, searching and scoring pro-
cedures have received more attention, due to
some clear advantages (Heckerman et al., 1999).
One is that constraint based learning makes
categorical decisions from the very beginning.
These decisions are based on statistical tests
that may be erroneous and these errors will af-
fect all the future algorithm bahaviour. On the
other hand, the PC algorithm has some advan-
tages. One of them is that it has an intuitive

basis and under some ideal conditions it has
guarantee of recovering a graph equivalent to
the one being a true model for the data. It can
be considered as a smart selection and ordering
of the questions that have to be done in order
to recover a causal structure.

In this paper, our basic idea is to combine
the PC strategies with additional procedures to
improve its performance. In this line, we can
cite the work of van Dijk et al. (2003) who pro-
pose a combination of order 0 and 1 tests of
the PC algorithm with a scoring and searching
procedure; Dash and Druzdzel (1999) carry out
several PC algorithms with different orders of
the variables, which are scored afterwards with
a Bayesian metric. In Abelldn et al. (2006) we
studied several variations of the basic PC strat-
egy. Of them, the best performance was ob-
tained by considering the minimum cut sets to
carry out independence tests and changing the
Chi-square based tests to Bayesian tests.

In this paper, we propose an algorithm, which
considers two graphs: a graph of candidate
edges and a graph of added edges (final graph).
Each link in the candidates graph is scored
with a Bayesian metric. While there are edges
with a positive score, the edge with great-

est score is added to the final graph. Each
time that an edge is added to the final graph,
some conditional independence tests are car-
ried out to deleted links from the candidates
graph as in the PC algorithm. These tests
are used to update the scores of the candi-
dates graph. We will also test an hybridized
version of this algorithm with the algorithm
presented in Abelldn et al. (2006), consisting in
applying the new algorithm but doing only tests
of order 0 and 1, and then the final graph is
used as the initial structure for the algorithm
presented in Abelldn et al. (2006) considering
minimum cut sets for the independence tests.
Tsamardinos et al. (2006) follow a similar idea,
but with some differences: the candidate links
are locally computed for each single node (in-
stead of following a global procedure) and the
procedure finishes with a greedy optimization of
a Bayesian score (without the orientation phase
of the PC algorithm).

We will describe the new algorithms and we
will make some experiments showing their per-
formance when learning Asia and Alarm net-
works (Beinlich et al., 1989). The quality of the
learned networks will be measured by the num-
ber of missing-added links and the Kullback-
Leibler distance of the learned network to the
original one.

The paper is organized as follows: Section 2
is devoted to describe the fundamentals of the
PC algorithm and the variations introduced in
Abelldn et al. (2006). Section 3 introduces the
new algorithm and its hybridization; in Section
4 the results of the experiments are reported
and discussed; Section 5 is devoted to the con-
clusions.

2 The PC Algorithm

Assume that we have a set of variables X =
(X1,...,Xy) with a global probability distribu-
tion about them P. By an uppercase bold letter
A we will represent a subset of variables of X.
By (A L B|C) we will denote that sets A and
B are conditionally independent given C.

The PC algorithm assumes faithfulness. This
means that there is a directed acyclic graph, G,

such that the independence relationships among
the variables in X are exactly those represented
by G by means of the d-separation criterion
(Pearl, 1988). The PC algorithm is based on
the existence of a procedure which is able to say
when (A L B|C) is verified in graph G. It first
tries to find the skeleton (underlying undirected
graph) and on a posterior step makes the orien-
tation of the edges. Our variations are mainly
applied to the first part (determining the skele-
ton). So we shall describe it with some detail:

1. Start with a complete undirected graph G’
2.1=0
3. Repeat
4. For each X € X
5. For each Y € ADJx
6.Test whether 3S C ADJx —{Y'}
with |[S| =4 and (X L Y|S)
7. If this set exists
8. Make Sxy =S
9. Remove X — Y edge from G’
10. 1 =141
11. Until [ADJx| <i, VX

In this algorithm, ADJy is the set of nodes
adjacent to X in graph G’. The basis is that if
the set of independencies is faithful to a graph,
then there no link between X and Y, if and
only if there is a subset S of the adjacent nodes
of X such that (X L Y|S). For each pair of
variables, Sxy will contain such a set if it is
found. This set will be used in the posterior
orientation stage.

The orientation step will proceed by looking
for sets of three variables {X,Y, Z} such that
edges X — ZY — Z are in the graph by not the
edge X — Y. Then, if Z € Sxy, it orients the
edges from X to Z and from Y to Z creating a
v-structure: X — Z < Y. Once, these orienta-
tions are done, then it tries to orient the rest of
the edges following two basic principles: not to
create cycles and not to create new v-structures.
It is possible that the orientation of some of the
edges has to be arbitrarily selected.

If the set of independencies is faithful to a
graph and we have a perfect way of determin-
ing whether (X L Y'|S), then the algorithm has

guarantee of producing a graph equivalent (rep-
resents the same set of independencies) to the
original one.

However, in practice none of these conditions
are verified. Independencies are decided in the
light of statistical tests based on a set of data
D. The usual way of doing these tests is by
means of a chi-square test based on the cross en-
tropy statistic measured in the sample (Spirtes
et al., 1993). Statistical tests have errors and
then, even if faithfulness hypothesis is verified,
it is possible that we do not recover the original
graph. The number of errors of statistical tests
increases when the sample is small or the cardi-
nality of the conditioning set S is large (Spirtes
et al., 1993, p. 116). In both cases, due to the
nature of frequentist statistical tests, there is
a tendency to always decide independence (Co-
hen, 1988). This is one reason of doing statis-
tical tests in increasing order of the cardinality
of the sets to which we are conditioning.

In the PC algorithm it is possible that we
delete the link between X and Y by testing
the independence (X L Y[S), when S is a set
containing nodes that do not appear in a path
(without cycles) from X to Y. The inclusion
of these nodes is not theoretically wrong, but
statistical tests make more errors when the size
of the conditioning set increases, then it can be
a source of problems in practice. For this rea-
son, Steck and Tresp (1999) proposed to reduce
ADJx — {Y} in Step 6, by removing all the
nodes that are not in a path from X to Y. In
(Abellén et al., 2006), we considered any subset
CUTYx y disconnecting X and Y in the graph in
which the link X — Y has been deleted, playing
the role of ADJx — {Y'}. Consider that in the
skeleton, we want to see whether link X — Y
can be deleted, then we first remove it, and if
the situation is the one in Figure 1, we consider
CUTxy = {Z}. This version of the algorithm
will be called BPC algorithm. The computa-
tion of this set needs some extra time, but it
can be done in polynomial time with a modi-
fication of Ford-Fulkerson algorithm (Acid and
de Campos, 1996).

The PC algorithm performs a chi-square
statistical test to decide about independence.

Figure 1: An small cut set

However, as shown by Moral (2004), sometimes
statistical tests make too many errors. They
try to keep the Type I error (deciding depen-
dence when there is independence) constant to
the significance level. However, if the sample
is large enough this error can be much lower
by using a different decision procedure, without
an important increase in Type II error (decid-
ing independence when there is dependence).
Cooper (1997) had proposed a different inde-
pendence test based on a Bayesian score, but
only when conditioning to 0 or 1 variable. In
(Abellan et al., 2006) we proposed to do all the
statistical tests by using a Bayesian Dirichlet
score (Heckerman, 1995) with a global sample
size s equal to 1.0. The test (X L Y|S) is car-
ried out by comparing the scores of X with S as
parents and of X with SU{Y } as parents. If the
former is larger than the later, the variables are
considered independent, and in the other case,
they are considered dependent. The score of X
with a set of parents Pa(X) = Z, denoted as
BDe(X,Z) is the logarithm of:

(s I'(Ngz +8")
H (F(Nz + ') H I(s"))

z x

where N, is the number of occurrences of [Z =
z] in the sample, N, , is the number of occur-
rences of [Z = z, X = z] in the sample, s’ is s
divided by the number of possible values of Z,
and s” is equal to s’ divided by the number of
values of X.

We considered other variations as refinement
and triangle resolution, but they did not prove
to be very effective to recover the causal struc-
ture.

3 The Score Based PC Algorithm

This algorithm could be carried out with clas-
sical statistical tests or with Bayesian scores.
In preliminary experiments, the statistical tests
did not show a good performance in measuring
the strength of an edge, so finally only Bayesian
scores have been finally considered.

Instead of starting with a full graph G’, now
we start with two graphs: a full graph of can-
didate links G, and an empty graph of added
links G,. We also have an array 7T in which
we store a numerical value for each link X —Y,
representing its strength.

The following steps are carried out:

e First, we compute the strength T[X —Y] of
each edge, by measuring the Bayesian score
of Y conditioned to X minus the score of
Y (conditioned to the empty set).

e If the score of an edge is negative, then it is
removed from the graph of candidates G..

e While there are links in G,., we select the
edge with greatest score X — Y. This edge
is removed from G, and added to G,.

e Once X — Y is added to G,, we make all
the new necessary independence tests for
all the candidate edges Z — V in G.. This
is done in the following way:

— We consider one of the extreme nodes,
Z, of the edge Z —V and compute the
set of its adjacent nodes in graph G,
such that there is a path from each one
of these nodes to the other extreme,
V', before adding link X — Y (denoted
as PADJyz) and the set of adjacent
nodes to Z such that there is a path
from these nodes to V' after adding link
X — Y, but they are not in PADJy,
(denoted as NewPADJz).

— For each S C PADJ; U NewPADJ,
such that S N NewPADJz; # () we
compute the degree of dependence of
Z and V given S, by means of the ex-
pression: Dep(Z,V|S) = BDe(Z,S U
{V}) — BDe(Z,S).

If this value is less or equal to zero,
we can consider that Z is independent
of V given S and the link Z — V is
removed from G,.

If Dep(Z,V'|S) is positive, then T[Z —
V] is set to the minimum of its present
value and Dep(Z,V'|S).

— If the link is not removed, we repeat
above computations for the other ex-
treme V of Z — V.

To compute NewPADJy, we consider the
nodes U in ADJz; — PADJz, then this node
is included in NewPADJy if there is a path
from one of the extremes of X —Y to V and a
path from U to the other extreme.

The PC algorithm makes the statistical tests
in increasing order of the cardinality of the con-
ditional sets, but for the same cardinality the
order is arbitrary. It can be the case that we
have two links X — Y and U — V and that for
a given cardinality, the link that is removed de-
pends of whether X or U is considered first in
step 4 of PC algorithm. Here, we try to make
less arbitrary this selection, by measuring the
strength of the links and adding the strongest
links first, leaving the others for candidates to
be removed.

Another source of inconsistencies is the fol-
lowing: the PC algorithm starts with a full net-
work and then it removes the links in subse-
quent steps. When in step 6 of the algorithm,
we are testing the independence of X and Y
given a subset S C ADJx — {Y}, then it is
possible that the result is independence and the
link X —Y is removed, but later some link con-
necting X with a node of S is also removed. So,
link X — Y is removed by making a test con-
ditional to a set containing nodes that are not
adjacent to X in the final learned graph. This
would not be a problem if all the tests were al-
ways correct, but the errors are more probable
when the size of the conditional sets increases.
So, this is a real problem in practice.

The new algorithm has some similarities with
K2 greedy algorithm (Cooper and Herskovits,
1992) as adds the edges in increasing order of
scoring, but there are some differences: first

it keeps the idea from PC algorithm of carry-
ing out independence tests to remove candidate
edges; and it leaves the orientation of the edges
for a posterior step (K2 adds oriented links and
our algorithm non-oriented edges).

The algorithm does not have the guarantee
of recovering a directed acyclic graph under the
faithfulness hypothesis and assuming that the
statistical tests make always the right decision,
as when a link is added to the final graph, it is
never considered for deletion again. For having
guarantee, it would be necessary that given a
graph, the maximum of the scores T computed
by the algorithm for a subset of the edges of the
candidates graph is always obtained for an edge
that is present in the original graph. However,
the guarantee can be recovered if after our al-
gorithm, the PC algorithm is applied to graph
G, (instead of starting with a full graph). This
is precisely the basis of our hybridized version
of the algorithm (called MPC algorithm):

1. To apply our algorithm, but doing only
tests of order 1: instead of testing indepen-
dence for each S C PADJ;UNewPADJy,
such that SN NewPADJy # (), the inde-
pendence is tested for every set S = {U},
where U € NewPADJy.

2. To apply BPC algorithm, starting with
graph G' = G, instead of the full graph,
and considering minimum size cut sets.

That is, the idea of links strength is only ap-
plied to order 0 and 1 statistical tests. The rest
works as in BPC algorithm. The basis is that
in the experiments, we can observe that a great
numbers of links are deleted precisely with these
types of tests. Also, our algorithm had lost the
property of doing the statistical tests in increas-
ing cardinality of the conditional sets, and this
new hybridized version recovers this property
as the first part only carry out tests of order 0
and after order 1 tests. Then we apply BPC
algorithm to carry our tests in increasing cardi-
nality (starting with 1, as order 0 tests are not
necessary).

4 Experiments

We have done some experiments with the Asia
and Alarm networks for testing the PC varia-
tions. In all of them, we have generated sam-
ples of different sizes by simulation using logic
sampling (Henrion, 1988). Then, we have tried
to recover the original network from the sam-
ples by using the different variations of the PC
algorithm including the orientation step. We
have considered the following measures of error
in this process: number of missing links, num-
ber of added links, and the Kullback-Leibler dis-
tance of the learned probability distribution to
the original one'. Kullback-Leibler distance is
a more appropriate measure of error when the
objective is to approximate the joint probability
distribution for all the variables and the mea-
sures of number of differences in links is more
appropriate when our objective is to recover the
causal structure of the problem. We do not
consider the number of wrong orientations as
our variations are mainly focused in the skele-
ton discovery phase of the PC algorithm.

Experiments have been carried out in Elvira
environment (Elvira Consortium, 2002). The
sample sizes we have used are: 100, 500, 1000,
5000, 10000, and for each sample size, we have
repeated the experiment 100 times. The algo-
rithms we have tested are the following:

e The classical PC algorithm with tests done
by comparing Bayesian scores.

e The BPC algorithm as introduced in
(Abellan et al., 2006) with minimal sepa-
rating sets and score based tests.

e The new algorithm (HPC) consisting in
adding edges in increasing strength value.

e The hybridized version (MPC).

Table 1 contains the average number of miss-
ing links, Table 2 the average number of added
links, Table 3 the average Kulback-Leibler dis-
tance, and finally Table 4 contains the average
running times of the different algorithms for the
Asia network, whereas Tables 6, 7, and 8 con-
tain the same data for the Alarm network.

!The parameters are estimated with a Bayesian
Dirichlet approach with a global sample size of 2.

100 | 500 | 1000 | 5000 | 10000
BPC | 3,07 | 1,75 | 1,43 | 0,56 | 0,45
HPC | 2,88 | 1,78 | 1,20 | 0,5 | 0,36
PC | 4,46 | 3,35 | 3,23 | 2,77 | 2,62
MPC | 3,01 | 1,74 | 1,34 | 0,51 | 0,41

Table 1: Average number of missing links (Asia)

100 500 1000 5000 10000
BPC | 2,8917 | 8,4428 | 16,6012 | 92,8290 | 197,5764
HPC | 0,0107 | 4,7952 | 10,5295 | 62,3101 | 132,7068

PC | 1,1023 | 6,8248 | 16,2425 | 114,1656 | 252,8078
MPC | 1,881 | 6,6508 | 13,1989 | 76,6548 | 168,1496

Table 8: Average time (Alarm)

In these results we highlight the following

facts:

100 | 500 | 1000 | 5000 | 10000
BPC | 1,61 | 0,79 | 0,73 | 0,19 | 0,25
HPC | 14 | 052 | 0,31 | 0,15 | 0,13
pPC |0,36 | 0,17 | 0,18 | 0,03 | 0,06
MPC | 1,51 | 0,87 | 0,64 | 0,16 | 0,18

Table 2: Average number of added links (Asia)

100 500 1000 5000 10000
BPC | 0,2034 | 0,0842 | 0,0500 | 0,0209 | 0,0248
HPC | 0,2147 | 0,0678 | 0,0344 | 0,0175 | 0,0192
PC 0,2934 | 0,1883 | 0,1957 | 0,2042 | 0,2020
MPC | 0,2248 | 0,1644 | 0,1444 | 0,117 | 0,076

Table 3: Aver. K-L distance (Asia)

100 500 1000 5000 10000
BPC | 0,0540 | 0,2548 | 0,5327 | 2,9321 | 6,1866
HPC | 0,0414 | 0,2408 | 0,5098 | 2,8342 | 6,1092
PC | 0,0567 | 0,3508 | 0,7404 | 4,3041 | 9,3542
MPC | 0,052 | 0,2784 | 0,6056 | 3,3988 | 7,1766

Table 4: Average time (Asia)

100 500 1000 5000 10000
BPC | 22,1 | 11,3333 | 7,8666 | 4,5 | 3,833
HPC 18,3 10,3 7,733 | 5,4666 5
PC 27,833 | 18,533 | 14,566 | 8,466 | 7,066
MPC 19,6 9,5 6,1 4,033 | 3,666

Table 5: Aver. number of missing links (Alarm)

100 500 1000 | 5000 | 10000
BPC | 13,0666 | 7,0333 | 4,9 | 3,7666 | 3,6333
HPC | 9,1333 | 5,6666 | 4,8666 | 5,066 | 5,1333
PC 3,7 0,66 | 0,3660 0 0,033
MPC | 11,2 55 | 2,8666 | 2,3 3

Table 6: Aver.

number of added links (Alarm)

100 500 1000 5000 10000

BPC | 4,4597 | 2,3188 | 1,7611 | 0,8902 | 0,6839
HPC | 3,9895 | 1,8093 | 1,3292 | 0,6411 | 0,6009
PC 5,0719 | 3,2705 | 2,5012 | 1,1374 | 0,7460
MPC | 4,3594 | 2,5936 | 1,8357 | 0,7917 | 0,6289

Table 7: Aver. K-L distance (Alarm)

e In the simple Asia network new algorithm

(HPC) has a better performance than BPC
in terms of added links, deleted links and
Kulback-Leibler distance, being more effi-
cient in time, for all the sample sizes. With
respect to PC algorithm and the Asia net-
work, HPC has more errors in terms of
added links, but the total number of errors
(added + missing links) is lower in the new
HPC algorithm.

The hybridized algorithm (MPC) has an
intermediate behaviour between BPC and
HPC in terms of error and time in the Asia
network. The Kullback-Leibler distance is
worse than in both algorithms.

In the Alarm network, the new algorithm
is better in terms of total errors (added
+ missing links) than BPC for small or
medium sample sizes (less or equal than
1000). However, the behaviour deteriorates
for larger sample sizes. The hybridized al-
gorithm is the best in terms of total errors
for medium or larger sample sizes. How-
ever, the Kulback-Leibler distance is al-
ways lower for the new HPC algorithm.
This can be interpreted in the following
way: even if for large sample sizes, we can
make more errors than in the BPC or MPC
algorithms, these errors are less important
(for example the missing links represent
weaker dependencies).

The new algorithm is always more efficient
in time than all the other algorithms. This
may be due to the fact that adding first the
more important dependencies and making
tests taking them into account, makes these

tests more successful in removing candidate
links. The extra time necessary to compute
NewPADJyz is not as high as the time we
save making less independence tests.

We were a bit surprised by the fact that the
HPC algorithm does not show the best perfor-
mance in terms of total number of errors in
Alarm network for large sample sizes. Then, we
analyzed the type of errors that the algorithm
was doing in concrete cases. We have found
that the errors are almost the same (same miss-
ing or added links) for different databases. In
the case of missing links, these are usually one
link pointing to one variable with several par-
ents. Furthermore, only for a few combinations
of values of the other variables, this new variable
is really relevant (for the other combinations,
the missing parent has little influence). When
we make the test, it should produce dependence
and it produces independence in a systematic
way (with different databases). Our explana-
tion is the following: assume that we are testing
independence of X and Y given S, by compar-
ing the scores BDe(X,SU{Y'}) and BDe(X, S).
Both scores, can be expressed as a sum in the
different values s of S. If Y is relevant to X only
for some values of s, it is possible that for these
values, we have BDe(X,sU{Y}) > BDe(X,s),
but for the other values we may have the oppo-
site inequality BDe(X,s U {Y}) < BDe(X,s).
The final score is computed by adding in the
different values s. Then, the final result will de-
pend of which of the differences is larger. Then,
if we have asymmetrical independencies (or very
weak dependencies) for a majority of values of
s, then the test will produce an error. This is
due to the nature of the test. So, very little can
be done by playing with the strategy of ordering
the different independence tests.

The case of added links is different. As we
have said, even under the faithfulness hypoth-
esis and with no errors in the tests, our HPC
algorithm does not have guarantee of recover-
ing the original network, as it is possible that
some of the tests necessary for the deletion of
a link are never considered. When, this algo-
rithm is combined with the BPC algorithm in

the MPC algorithm, then the number of added
links decreases, as more additional tests are car-
ried out.

5 Conclusions

In this paper we have proposed two new strate-
gies to organize the statistical tests in the
PC algorithm: the HPC and the MPC algo-
rithms. In general, the results of the HPC
algorithm are better than in the classical PC
algorithm and BPC algorithm proposed in
Abelldn et al. (2006). Furthermore, the HPC
algorithm if the fastest in time. The MPC algo-
rithm is not as good, but it produces the least
number of errors in Alarm network for large
sample sizes.

We recognize that the experiments in this pa-
per are clearly insufficient and that more ex-
tensive experiments are necessary to determine
in which conditions is appropriate to apply the
new algorithms, but even that we want to high-
light two points:

The first one is that though, at the present,
general search algorithms are more common in
practice, we believe that it is very promising
to work in this type of PC based strategies.
We believe that there are good opportunities of
improving performance in terms of errors and
time. In general, algorithms in graphs are fast
compared with the time devoted to carry out
statistical tests, so it is worthy to make some
work in graph computations to save some sta-
tistical tests. We believe, that the orientation
step could also use some of the ideas of this pa-
per (sometimes there are conflicts among the
different rules used for orientation, and it could
be useful to decide with the help of an score).

The second point is that some more work is
necessary to determine how to carry out the
statistical tests. Classical statistical tests have
known problems (Moral, 2004; Abellan et al.,
2006). But, as we have shown here, Bayesian
tests based on scores can produce systematic er-
rors, for example in the case of asymmetrical in-
dependencies (or situations in which some of the
dependencies are really weak). Perhaps, if for a
value s, we have BDe(X,sU{Y}) > BDe(X,s),

we should consider X and Y dependent given S,
with some correction given that we make mul-
tiple comparisons.

Acknowledgments

This work has been jointly supported by the
Spanish Ministry of Education and Science un-
der project TIN2007-67418-C03-03, by FEuro-
pean Regional Development Fund (FEDER),
and by the Spanish research programme Con-
solider Ingenio 2010: MIPRCV (CSD2007-
00018).

References

J. Abelldn, M. Gémez-Olmedo, and S. Moral. 2006.
Some variations on the PC algorithm. In Proceed-
ings of the Third European Workshop on Proba-
bilistic Graphical Models (PGM’ 06), pages 1-8.

S. Acid and L.M. de Campos. 1996. Finding min-
imum d-separating sets in belief networks. In
Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-96),
pages 3—10, Portland, Oregon.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and
G.F. Cooper. 1989. The Alarm monitoring sys-
tem: A case study with two probabilistic inference
techniques for belief networks. In Proceedings of
the Second European Conference on Artificial In-
telligence in Medicine, pages 247-256. Springer-
Verlag.

J. Cohen. 1988. Statistical power analysis for the
behavioral sciences (2nd edition). Erlbaum, Hills-
dale, NJ.

Elvira Consortium. 2002. Elvira: An environment
for probabilistic graphical models. In J.A. Gdmez
and A. Salmerdn, editors, Proceedings of the 1st
European Workshop on Probabilistic Graphical
Models, pages 222-230.

G.F. Cooper and E.A. Herskovits. 1992. A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning, 9:309-347.

G.F. Cooper. 1997. A simple constraint-based
algorithm for efficiently mining observational
databases for causal relationships. Data Mining
and Knowledge Discovery, 1:203-224.

D. Dash and M.J. Druzdzel. 1999. A hybrid any-
time algorithm for the construction of causal mod-
els from sparse data. In Proceedings of the Fif-
teenth Annual Conference on Uncertainty in Arti-

ficial Intelligence (UAI-99), pages 142-149. Mor-
gan Kaufmann.

D. Heckerman, C. Meek, and G. Cooper. 1999. A
Bayesian approach to causal discovery. In C. Gly-
mour and G.F. Cooper, editors, Computation,
Causation, and Discovery, pages 141-165. AAAI
Press.

D. Heckerman. 1995. A tutorial on learning with
Bayesian networks. Technical Report MSR-TR-
95-06, Microsoft Research.

M. Henrion. 1988. Propagating uncertainty by logic
sampling in Bayes networks. In J. Lemmer and
L.N. Kanal, editors, Uncertainty in Artificial In-
telligence, 2, pages 149-164. Horth-Holland, Am-
sterdam.

S. Moral. 2004. An empirical comparison of score
measures for independence. In Proceedings of the
Tenth International Conference IPMU 2004, Vol.
2, pages 1307-1314.

J. Pearl. 1988. Probabilistic Reasoning with Intelli-
gent Systems. Morgan & Kaufman, San Mateo.

P. Spirtes, C. Glymour, and R. Scheines. 1993. Cau-
sation, Prediction and Search. Springer Verlag,
Berlin.

H. Steck and V. Tresp. 1999. Bayesian belief net-
works for data mining. In Proceedings of the 2nd
Workshop on Data Mining und Data Warehous-
ing als Grundlage moderner entscheidungsunter-
stuetzender Systeme, pages 145—-154.

I. Tsamardinos, L. E. Brown, and C. F. Alif-
eris. 2006. The max-min hill-climbing Bayesian
network structure learning algorithm. Machine
Learning, 65:31-78.

S. van Dijk, L.C. can der Gaag, and D. Thierens.
2003. A skeleton-based approach to learning
Bayesian networks from data. In Proceedings of
the Seventh Conference on Principles and Prac-

tice of Knowledge Discovery in Databases, pages
132-143. Springer Verlag.

