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Abstract

Attribute clustering has been previously employed to detect statistical dependence be-
tween subsets of variables. Clusters of variables can be appropriately used for detecting
highly dependent domain variables and then reducing the complexity of learning Bayesian
networks. We propose a novel attribute clustering algorithm motivated by research of
complex networks, called the Star Discovery algorithm. The algorithm partitions and in-
directly discards inconsistent edges from a maximum spanning tree by starting appropri-
ate initial modes, therefore generating stable clusters. It discovers sound clusters through
simple graph operations and achieves significant computational savings. We compare the
Star Discovery algorithm against earlier attribute clustering algorithms and evaluate the
performance in several domains.

1 Introduction

Probably one of the widest use of clustering
in the past years has been the task of select-
ing genes (variable selection) in Bioinformatics.
The use of attribute clustering can be extended
to any domain in the search for statistical cor-
relation of variables. Several conventional clus-
tering algorithms have been applied to re-group
and reveal subsets of correlated attributes such
as: the k-means algorithm (Smet et al., 2002),
fuzzy clustering (Madeira and Oliveira, 2004)
and hierarchical clustering (Eisen et al., 1998).

Recently, the k-modes algorithm (Au et al.,
2005) has been proved as one of the most effi-
cient approaches for performing attribute clus-
tering. However, it is subject to local optima
due to random selection of initial modes. In
a parallel line, clustering based on tree parti-
tion receives more and more attention since it is
firmly rooted in classical graph partition meth-
ods (detailed methods will be presented soon in
the next section). More precisely, the clustering
methods firstly build a maximum spanning tree
(MAST) and then get the clusters using appro-
priate partition methods. For convenience, we
call the methods as MAST-based clustering al-

gorithms in this paper. Since the standard tree
partition method is not directly oriented toward
attribute clustering it may not produce com-
petitive results. However, it avoids heavy com-
putation in contrast with k-modes algorithm.
Accordingly, the MAST-based clustering algo-
rithms contribute to the growing line of research
on attribute clustering.

For the effect of this investigation we focus
on the MAST-based clustering method. Specif-
ically, we introduce the Star Discovery (SD)
algorithm that is inspired by the research of
complex networks (Cohen and Havlin, 2002).
We adopt the assumption that all variables can
be seen as points in an Euclidean space (close
points have a high correlation) because we have
complete information regarding pairwise prox-
imities. The SD algorithm sections the tree by
detecting nodes which have a strong connectiv-
ity; then, it pulls neighboring nodes into clusters
based in a simple heuristic. We compare our
approach against both earlier tree-based clus-
tering algorithms and the k-modes algorithm in
comprehensive experiments.

The rest of this paper is organized as follows:
In Section 2 we present relevant algorithms for
attribute clustering. Section 3 introduces the



novel SD algorithm. Section 4 exposes exper-
imental findings. Section 5 provides a conclu-
sive view of the work and discusses the use of
attribute clustering for Bayesian networks.

2 Background

Given n domain attributes, X = {x1, · · · , xn},
clustering methods aim to group a set of at-
tributes1 into clusters based on a similarity
measure. In general, attributes in a clus-
ter are more correlated to each other than
to those ones belonging to different clusters.
For this study, the data was statistically mea-
sured in terms of the interdependency redun-
dancy measure R(xi, xj) = I(xi,xj)

H(xi,xj)
; whereas

I(xi, xj) =
∑

xi,xj∈X p(xi, xj) log P (xi,xj)
p(xi)p(xj)

is
the mutual information and H(xi, xj) =∑

xi,xj∈X p(xi, xj) log p(xi, xj) is the joint en-
tropy for the discrete random variables xi and
xj (Au et al., 2005). The R(·, ·) measure dis-
criminates a variable (containing many states)
which has a weak statistical correlation with re-
spect to another variable.

Without loss of generality, given a set of do-
main variables X, the objective of attribute
clustering is to find a disjoint set of clusters
C = {Ci|(i = 1, · · · , k) ∧ (∀i�=jCi ∩ Cj = ∅)}
that maximizes Eq. 1; where woi,xj denote the
attached weight (measured by R(oi, xj)) from
the center oi to other variables xj in the cluster
Ci.

W C =
∑

Ci

∑

xj∈(Ci−{oi})
woi,xj (1)

Two paradigms of clustering were taken in
order to find optimal clusters of discrete ran-
dom variables. The first technique is the k-
modes algorithm that optimize Eq. 1 directly
(Au et al., 2005). The k-modes can be seen as
a graph partitioning algorithm. Thus, a set of
discrete random variables are exhibited as nodes
in a complete graph (K = (V,E), where V de-
notes a set of nodes representing variables X,

1Discrete random variables (attributes) are seen as
nodes in a graph (V = X, where V denotes a set of
nodes). We will use any of these terms indifferently
throughout this paper.

and E includes all edges that are associated
with all pair-wise R(·, ·) estimates). Another
clustering method is the MAST-based cluster-
ing algorithm which partitions and clusters a
tree instead of the complete graph. The over-
head of constructing a maximum spanning tree
is in the order of O(n log n) using the Kruskal’s
algorithm.

All of the clustering methods presented in
this investigation input a set of weights W K =
{wxi,xj = R(xi, xj)|i, j = 1, · · · , n; i �= j} from
the complete graph K.

2.1 The k-modes algorithm

The k-modes algorithm (also known as the k-
medoids algorithm (Kaufman and Rousseeuw,
1990)) is basically an implementation of the k-
means algorithm. It identifies the real points in
the space as centers or modes rather than geo-
metric centers. In fact, the k-modes is optimal
in order to find well-shaped clusters since it has
complete information among all pairwise inter-
actions in the domain.

The k-modes algorithm works as follows:
First, it initializes k random modes as clus-
ter centers O = {o1, · · · , ok}, and assigns ev-
ery mode in a 1 to 1 correspondence to clusters
C. Then, for every variable xj ∈ (X − O), it
adds xj to Ci iff ∀ol∈{O−oi}wxj ,oi > wxj ,ol

. Once
the clusters C are constructed, a new variable
xj ∈ Ci is selected as mode oi in every cluster Ci

iff
∑

xj∈(Ci−{oi}) woi,xj is maximal. The process
is repeated (all clusters in C are deleted and
a new set of clusters is created containing only
the new modes) for a given number of iterations
r or when no change in the modes is achieved.
The complexity of this algorithm is polynomial
O(r(((n − k)k) + sk)) where s is the maximal
number of variables inside a cluster.

The k-modes algorithm is prone to falling into
local optima due to the random mode selection
in the initialization phase. A straightforward
improvement could be done by feeding appro-
priate initial modes. We will show that our pro-
posed algorithm may improve k-modes in this
way.



2.2 MAST Partitioning Algorithms

The MAST-based clustering algorithms are
commonly based on heuristics that aim at re-
moving a set of inconsistent edges from a MAST
(Chow and Liu, 1968). An important factor
in this technique is the selection of a heuristic
or process that decides which arcs are relevant
(and will remain) and which edges are incon-
sistent with the topology and shall be removed.
These algorithms do not require many param-
eters to perform bisections over a tree. More-
over, this class of algorithms are faster than the
k-means type of algorithms at the price of qual-
ity of the solution. We contemplated our study
over three previous tree partitioning algorithms
for attribute clustering as follows.

SEMST(The standard Euclidean maximum
spanning tree (Asano et al., 1988)): The
SEMST algorithm applies the principle of sep-
arability which states that two sets of points
which are connected in a MST are separated by
stabbing line. In other words, k sets of points
can be isolated in a MAST if we remove the k−1
inconsistent edges whose weight is minimal.

By dividing the MAST G into k sub-trees,
G = {G1, · · · , Gk}, the SEMST algorithm
aims to maximize the sum of weights W G =∑k

l=1

∑
xi,xj∈Vl

wxi,xj where Vl is a set of vari-
ables in each sub-tree Gl. At the end, every set
Vl becomes a cluster Cl.

The complexity of the SEMST algorithm is
trivial since it takes O(n log n) to construct the
Maximum Spanning Tree. If we use Kruskal’s
algorithm to build the initial MAST G then
we already have sorted arcs according to their
weights, in such case it will take constant time
O(k − 1) to remove the inconsistent edges. For
assembling of clusters it takes at most O(kb)
steps whereas b is the highest number of vari-
ables in a sub-tree Gl.

CEMST(The maximum cost spanning
tree (Ye and Chao, 2004)): The algorithm
works exactly as SEMST. However, the search
for the k inconsistent edges is done by substi-
tuting the edge weights by the routing costs and
then removing those edges that have maximal
costs. A routing cost associated with an edge

connecting the endpoints xi and xj is defined
as: Cost = wxi,xj ∗ Deg(xi) ∗ Deg(xj), where
Deg(xi) denotes the degree of xi. Edges that
connect leaf variables with the rest of the tree
have higher probability of being discriminated
since its own cardinality is low. The CEMST
algorithm takes the same objective as that in
the SEMST algorithm. Its complexity behaves
in the same order as in the SEMST algorithm.
Evidently, this algorithm as well as the SEMST
algorithm do not directly optimize a specific
objective function of attribute clustering.
However, they indirectly aim to isolate clusters
of highly related variables.

ZEMST(The Zahn’s maximum spanning
tree (Zahn, 1971)): Both the SEMST and
CEMST algorithms perform a greedy blind
search over the tree G in order to form clus-
ters. In a parallel fashion, the ZEMST algo-
rithm takes into account not only a given edge
(xi, xj) but its relevance neighborhoods Ni, Nj

respectively. A neighborhood Ni = (VNi , ENi)
of a variable xi in an edge (xi, xj), is a sub-tree
that includes all reachable nodes VNi and arcs
ENi of depth d (excluding paths starting from
(xi, xj)).

In order to decide whether an edge (xi, xj)
is inconsistent two tests are performed.
First an attached weight wxi,xj is removed
if it is smaller than any of the means
(w̄Ni = 1

|ENi
|
∑

(xr,xs)∈ENi
wxr ,xs and w̄Nj =

1
|ENj

|
∑

(xt,xu)∈ENj
wxt,xu) minus their standard

deviations (σNi = ( 1
|ENi

|
∑

(xr ,xs)∈ENi
(wxr ,xs −

w̄Ni))
1
2 and σNj = ( 1

|ENj
|
∑

(xt,xu)∈ENj
(wxt,xu −

w̄Nj ))
1
2 ) respectively. Second, all edges whose

attached weight is higher than the mean in all
the remaining sub-trees are removed.

Finally, the pruning process obtains the set of
sub-trees {G1, · · · , Gk}. Every set of nodes in
each sub-tree is mapped to a single cluster. No-
tice that the ZEMST algorithm automatically
clusters the domain without receiving an initial
number of partitions k. The complexity of this
algorithm has to do with the search of neighbor-
hoods among arcs. It has to perform a search
of at most d − 1 adjacent variables; thus, the



algorithm has a lower boundary in O(nd) and
a worst case scenario in O(n2) whenever d ≈ n.
The gathering of clusters is achieved (as in the
previous algorithms) in a time O(mb).

3 The Star Discovery Algorithm
We can intuitively realize that, as the rules for
partitioning become more elaborated, then the
final clustering has a better quality. Thus, the
search for inconsistent edges is directed to iso-
late good clusters. In this section we introduce
the robust Star Discovery (SD) algorithm. We
iteratively partition a MAST and form clusters
until all nodes xi ∈ X are assigned to clusters.
The SD algorithm (as well as the ZEMST algo-
rithm) clusters the domain in an unsupervised
fashion (no initial number k of clusters is pro-
vided).

Guiding the search for centers by only exam-
ining the topology or single weights is proba-
bly not a good idea since the whole domain is
not taken into account. The ZEMST algorithm
bases the clustering in a simplistic search in-
volving topology and weights in neighborhoods.
We exploit further features in this way. A sound
and clear approach is to look for subgraphs from
the MAST that could reveal information about
the ”nature” of the domain. One abstraction
of our technique is to look for spanning stars
as subgraphs contained in the MAST. A span-
ning star (Gallian, 2007) is a sub-tree over the
MAST, S = (VS , ES), and is composed of q
nodes. It has a center o ∈ VS with a degree q−1
and all other nodes have a degree of one. The
spanning star is our fundamental graph theoret-
ical resource for expressing clusters that reside
in a two dimensional Euclidean space.

Detecting the set of k-stars whose global
weight is maximal(following Eq. 1) from a com-
plete graph K requires expensive computation.
Similar to the previous MAST partitioning al-
gorithms, the SD algorithm aims to detect a set
of spanning stars, SS = {S1, · · · , Sk}, such that
the objective function in Eq. 2 is maximized.

W =
∑

Sl∈SS

(
∑

xi∈Adjl

(wxi,ol
)+

∑

xj∈Adjl,xh∈Leafl

(wxj ,xh
))

(2)

where ol is the star(cluster) center, Adjl is a
set of adjacent nodes to the center node ol, and
Leafl a set of leaf nodes that connect to either
ol or Adjl.

Notice that we extend the notion of a star to
include some leaf nodes (nodes whose degree is 1
in the graph). In the experimentation we found
that leaf nodes have a higher correlation to the
center of its adjacent node than to any other
center in any other star. The SD algorithm op-
timizes the later function by ranking every vari-
able according to its ability to serve as modes.
The search heuristic will only select a star as a
mode if its mode has not been used before in
any other clusters. At the end we will acquire
the set of clusters whose structure (modes, ad-
jacent and leaf nodes) is maximal according to
Eq. 2 and the heuristic presented in Fig. 1 2.

Star Discovery (SD) Algorithm

Input: G = (V, E), W G

Output: C = {C1, C2, . . . , Cl}

1: V aux = V, V cont = ∅, l = 1
2: FOR r = 1 to n
3: or = xr

4: Adjr ⇐ xi iff (xi, or) ∈ E
5: ESr ⇐ (or, xi)
6: Leafr ⇐ xh iff (xi, xh) ∈ E ∧ Deg(xh) = 1
7: ESr ⇐ (xi, xh)
8: VSr = (or ∪ Adjr ∪ Leafr)
9: Sr = (VSr , ESr )

10: W Sr =
∑

(xi,xj)∈ESr

wxi,xj

11: SS ⇐ Sr

12: W SS ⇐ W Sr

13: Sort SS decreasingly according to W SS

14: WHILE V aux �= ∅
15: Cl = VSl − V cont

16: V aux = (V aux − VSl)
17: V cont ⇐ VSl

18: C ⇐ Cl

19: l = l + 1

Figure 1: The Star Discovery Algorithm.

The SD algorithm receives a MAST G and
the set of weights W G. At the very beginning
the algorithm initializes an auxiliary set of vari-
ables V aux and the counter l (line 1). After

2Note that X ⇐ x indicates the addition of an ele-
ment x to a given set X.



that, we build n = |V | different stars, Sr ∈ SS,
by specifying each variable xr as the center or

(line 3). For each star Sr, we include the ad-
jacent nodes Adjr to the center and leaf nodes
Leafr (Deg(·) denotes the node degree in the
tree) (lines 4 and 6). Simultaneously, the edges
are added (lines 5 and 7). Hence, the star Sr

is a tuple having two sets: a set of nodes VSr

and a set of edges ESr (line 9). In addition, we
calculate the weight W Sr in each star by adding
all the weights attached to the star edges (line
10). Following, the auxiliary star Sr is kept in
SS (line 11) as well as its corresponding weight
W Sr in W SS (line 12).

Once the set of stars, SS, have been built
from the MAST we proceed to sort them de-
creasingly in terms of the star weights (line 13).
The sorting forms a ranking of potential modes
and those ones with a higher weight W Sr will be
selected to form clusters (this way we form only
one possible arrangement of clusters). We elect
the star as the cluster Cl that has the largest
star weight among the remained stars (line 15).
We use V cont to exclude variables already con-
tained in previous clusters (line 17). This avoids
possible overlapping nodes between any pair of
clusters. A set of clusters C are completed until
no nodes are left.

Assuming that there are n variables and the
highest cardinalities of adjacent Ar and leaf Lr

nodes are t and u respectively; then, the com-
plexity in the first phase is O(ntu) (lines 2-12)
operations to search for all the adjacent nodes
and leaves. The sorting operation takes at most
O(n log n) if we use a merge-sort algorithm (line
13). The construction of clusters takes at most
O(l(t + u)) operations (lines 14-19). There-
fore the algorithm has a polynomial complexity
O((ntu)+(n log n)+(l(t+u))). This polynomial
complexity is better than the one in k-modes
since the number of variables t and u is fairly
low. Moreover, the SD algorithm is executed for
a single time and not for a number of iterations
as in the k-modes algorithm.

The SD algorithm always provides solutions
that are deterministic. On the other hand, SD
might not offer results that are better in qual-
ity than the ones given from the k-modes algo-

rithm. However, k-modes could obtain better
solutions in some cases, but it has the risk of
falling into local optima (the solution depends
of the initial modes).

4 Experimental Results
We discuss the reliability of the k-modes algo-
rithm and then compare the performance of the
SD algorithm against the aforementioned algo-
rithms. A sound estimate to evaluate the good-
ness of a set of clusters uses Eq. 1. In other
words, we are concerned to calculate the local
degree of dependency between the centers or
”modes” oi of each cluster Ci against its other
elements. Then, a global weight adds up ev-
ery local weight in the clusters to obtain a total
weight W C .

For each experiment, we artificially generated
datasets from some well known Bayesian net-
works such as: the Alarm (37 nodes), Barley
(48 nodes), HeparII (70 nodes), Hailfinder (56
nodes) and Pathfinder (109 nodes) 3 (we abbre-
viated them as Al. Bar. Hep. Hai. and Pat. re-
spectively). In this paper, we will only show the
performance of the SD algorithm against earlier
algorithms; a detailed discussion of some spe-
cific application of attribute clustering is sub-
ject to future work.

Reliability of the k-modes algorithm:
Indeed, the k-modes algorithm can detect the
optimal clustering given our objective. How-
ever, there is a drawback by using this approach.
Since the formulation of the k-modes algorithm
is greedy, there is the risk of falling into local op-
tima. In order to test the susceptibility of the
k-modes algorithm to fall into local optima, we
fed initial modes (k = 2) in each domain with
all the possible

(
n
2

)
combinations of variables,

then we ran the experiment until it converges.
For this experiment, we generated a dataset for
each domain with a sample size Ω = 10000. Ta-
ble 1 presents the results.

We found that k-modes does fall in local op-
tima. For example, in the Alarm domain, it was
interesting to see that k-modes converges into
the optimal value of 6.13 with modes VentAlv
and HR. However, it falls into 17 local optima

3http://genie.sis.pitt.edu/networks.html



Table 1: Number of local optima in which the
k-modes algorithm falls.

Domains vs Local Optima
Al. Hep. Hai Path.
17 130 91 117

having modes (VentAlv, LVEDVolume), (Ven-
tAlv, Shunt), etc. In the optimal result, the
size of the clusters is about n

2 . In many lo-
cal optima, one cluster becomes relatively small
(10 variables). Clearly, a small cluster is iso-
lated because of the sub-optimal initial mode.
Whenever LVEDVolume or Shunt are selected
as a mode, then no improvement is made. These
modes dominate their neighborhoods. The pre-
vious analysis is a straightforward example of
techniques based solely on an iterative greedy
search. As shown in Table 1, the k-modes algo-
rithm falls in more local optima values in larger
domains. These findings are a strong motiva-
tion for developing an algorithm that could de-
tect the right initial modes.

Clustering quality and sensitivity: We
ran all of the algorithms SEMST (SE.), CESMT
(CE.), ZEMST (ZE.), k-modes(k-m) and SD
(using k = 8); then, we compared the quality
of the clustering results in terms of its global
weight W C . For the effects of this experiment
and to avoid local optima we fed the k-modes
algorithm with the resulting modes of the SD al-
gorithm (notice that we also fed k-modes with
the final modes which were obtained by the
other methods, but it fell into local optima).
On the other hand, It is interesting to investi-
gate the response of the clustering algorithms
using different sample sizes (k was set to 8).
As the sample size Ω decreases, the lectures of
the R(·, ·) measure become less accurate. De-
pending on the domain (D) in study, there is
a denominated level of sufficient statistics that
determines the true nature of the MAST and re-
veals the true structure of correlated variables.
Table 2 depicts the clustering results.

The SD algorithm performs better than the
other tree-based clustering algorithms. Indeed,
sometimes the SD algorithm is as effective as the

Table 2: Performance( W c) of the algorithms
(Al.) in four domains over different sample sizes
Ω. The k-modes algorithm is optimal when fed
with the right initial modes.

Ω
D Alg. 10000 8000 6000 4000

Al.

SE. 4.13 18.41 21.61 22.99
CE. 5.4 18.78 22.07 23.52
ZE. 6.11 19.10 22.85 24.66
SD 7.85 21.30 23.95 25.38
k-m 8.35 21.30 23.95 25.38

Bar.

SE. 2.33 14.67 19.03 22.23
CE. 2.55 14.85 19.24 22.48
ZE. 3.85 14.91 20.70 24.20
SD 4.88 15.39 21.02 25.41
k-m 5.61 15.39 21.02 25.41

Hep.

SE. 50.97 50.32 51.49 52.32
CE. 51.21 50.55 51.71 52.89
ZE. 51.27 51.43 52.55 53.54
SD 55.57 56.98 58.34 59.56
k-m 55.57 56.98 58.34 59.56

Hai.

SE. 30.26 31.33 32.42 33.65
CE. 31.02 32.00 33.01 34.16
ZE. 32.41 33.28 33.81 34.97
SD 32.48 33.58 34.69 35.96
k-m 32.48 33.58 34.69 35.96

Pat.

SE. 85.98 87.53 88.75 89.82
CE. 88.63 88.22 89.40 90.19
ZE. 88.315 88.75 89.64 90.61
SD 86.61 89.31 89.71 91.03
k-m 90.33 89.41 91.32 92.72

k-modes algorithm. The later is true because
if we consider the whole MAST in the cluster
identification then we easily detect the strong
components in the space. A highly connected
variable in a MAST is very likely to be the best
center in a given region. We can also conclude
that more elaborated algorithms perform a bet-
ter clustering. Clearly, the search spaces of the
ZEMST and SD algorithms are relatively larger
than the ones in the SEMST and CEMST ap-
proaches. Nevertheless, the search space of the
SD algorithm is bigger than the one of ZEMST.

The SEMST, CEMST and ZEMST algo-
rithms perform a local search on the MAST



for clustering. For example, in the SEMST al-
gorithm we completely disregard the inner rel-
evance of an arc given the MAST topology.
Thus, in practice, SEMST normally selects arcs
connecting to leaf nodes as inconsistent (which
in turn produces unbalanced bad clusters). In
the CEMST algorithm, we take into account
both weights and (up to some extent) the struc-
ture of the MAST. In this case, the inconsis-
tent arcs have a maximal cost (which biases
the search towards those arcs that are likely
linked to highly connected nodes). The pre-
vious search technique is not enough since the
search of inconsistent arcs is limited to a path
of length 1. On the other hand, the ZEMST
extends the search space by comparing the im-
pact of removing an arc given some neighbor-
ing arcs and variables. Ultimately, the SD algo-
rithm outperforms all the other tree-based algo-
rithms because it calculates the clusters by con-
sidering both the weight and topology in the
search. From the star formulation we realize
that we could avoid local optima by discrimi-
nating those nodes that have a low connectivity
and weight.

Conclusively, we can learn that the MAST is
in fact a useful dependence graph whenever a
sound clustering method is applied to section
it. The same trend holds if we supply different
sample sizes or change the number k of clusters.

We can see that all algorithms have the same
behavior for different sample sizes. Clearly, the
SD algorithm outperforms any other MAST-
based clustering algorithms and obtains the
same results as k-modes. Thus, the extensive
search procedure of the SD algorithm secures
competitive clustering.

Elapsed times: Finally, we investigated the
running time of SD and other algorithms (Ω =
10000). We used a system Centrino Duo with
2Ghz and 2 Gigabytes of memory. From Table
3 we can confirm that the algorithms calculate
clusters obeying their complexity.

Logically, the SEMST algorithm is the fastest
approach since it discards edges with the sim-
plest rules. Ultimately, the elapsed times grow
as the search space increases. The SD algorithm
has a very competitive elapsed time (similar to

Table 3: Elapsed times (in seconds) for algo-
rithms in all domains.

D
Al. Bar. Hep. Hai. Pat.

SE 0.031 0.04 0.044 0.049 0.047
CE 0.04 0.042 0.056 0.05 0.062
ZE 0.078 0.057 0.065 0.07 0.094
SD 0.047 0.04 0.046 0.061 0.062
k-m 0.109 0.063 0.077 0.078 0.125

the SEMST algorithm). We can see that in
most cases, the SD clustering outperforms the
k-modes algorithm in terms of elapsed times by
a 50 percent ratio.

5 Discussion

In this paper, we illustrated a comprehensive
study between several clustering algorithms.
We found that the SD algorithm is able to ob-
tain clusters having a better quality than us-
ing other MAST-based clustering algorithms.
Hence, the SD algorithm can compete with the
k-modes algorithm in some cases; the advan-
tage of the SD algorithm over k-modes is that
we obtain a single good solution. The SD al-
gorithm can also be used to select the initial
modes to be fed to the k-modes algorithm for
further clustering. We aid the search of clusters
by revealing the nature of the domain through a
MAST structure. Therefore, the SD algorithm
can be either used to perform the sectioning of a
whole domain by itself, or to construct a hybrid
algorithm (merged with the k-modes algorithm)
which can find optimal clusterings. We also
showed that our approach is straightforward to
implement and fast to execute.

Attribute clustering is also relevant to the
field of Bayesian networks. A cluster of at-
tributes can be seen as a local set of vari-
ables in a large Bayesian network. Learning
a large Bayesian network from data is still a
difficult task since a large amount of computa-
tion is involved. Therefore, most learning al-
gorithms adopt the divide and conquer strat-
egy to alleviate the computational problem.
These algorithms learn a large Bayesian net-



work by recovering small clusters of variables.
For example, the Markov blanket is identified
in the sparse candidate algorithm (Friedman et
al., 1999) and the max-min hill climbing algo-
rithm (Tsamardinos et a., 2006), the module
framework in the learning module networks (Se-
gal et al., 2003), and the block in the block
learning algorithm (Zeng and Poh, 2004). The
key feature in those approaches is the identifi-
cation and union of components.

A component also represents reduced knowl-
edge in the domain. For instance, some experts
may be just interested in the specification of
the left ulnaris or right ulnaris in the MUNIN
network (Olensen et al., 1989) which consists of
thousands of nodes. Attribute clustering in this
case is a useful tool for variable selection in a
massive domain. By performing this selection
we may learn the structure of the desired vari-
ables in the domain or we could isolate only
those important variables related to a target
variable for study (this is useful because it helps
us to visualize and focus on those relevant vari-
ables even when we have a tremendous amount
of arcs in the network). Hence, the component
formulation deserves further study.

Future work is in the search for true cluster-
ing applications. We may use the SD algorithm
to discover knowledge in gene expression data.
A more interesting application is to exploit the
clustering algorithm for learning Bayesian net-
works. The key feature of such techniques will
be the learning of large domains (with thou-
sands of variables) by integrating small compo-
nents into a full network.
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