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Abstract

In this paper we address the problem of explaining the recommendations returned by
a Markov decision process (MDP) that is part of an intelligent assistant for operator
training. When analyzing the explanations provided by human experts, we observed that
they concentrated on the “most relevant variable”, i.e., the variable that in the current
state of the system has the highest influence on the choice of the optimal action. We
propose two heuristic rules for determining the most relevant variable based on a factored
representation of an MDP. In the first one, we estimate the impact of each variable in the
expected utility. The second rule evaluates the potential changes in the optimal action for
each variable. We evaluated and compared each rule in the power plant domain, where
we have a set of explanations, including the most relevant variable, given by a domain
expert. Our experiments show a strong agreement between the variable selected by human
experts and that selected by our method for a representative sample of states.

1 Introduction

Intelligent systems should be capable of explain-
ing their decisions and reasoning process to the
user. This is particularly important in the case
of tutors and intelligent assistants. An im-
portant requirement for intelligent assistants is
to have an explanation generation mechanism,
so that the trainee has a better understanding
of the recommended actions and can general-
ize them to similar situations (Herrmann et al.,
1998).

Although there has been a lot of work in ex-
planation generation for rule-based systems and
other representations, there is very little work

on explanations using probabilistic representa-
tions, in particular for decision–theoretic mod-
els such as influence diagrams and Markov de-
cision processes (MDPs). We are particularly
interested in explaining the recommendations
obtained from an MDP that is part of an intel-
ligent assistant for operator training. The assis-
tant has a set of recommended actions (optimal
policy) which compares to the ones performed
by a person in a training session, and based
on this gives advice to the user. In previous
work (Elizalde et al., 2005) we used a set of pre-
defined explanations produced by a domain ex-
pert, and these were given to the user according



to the current situation. A controlled user study
showed that operators trained with the expla-
nation mechanism have a better performance in
similar situations (Elizalde et al., 2005). But
obtaining the explanations from an expert is a
complex and time-consuming process, so it is
desirable that the assistant can generate the ex-
planations automatically from the MDP and its
solution.

When analyzing the explanations provided by
human experts, we observed that they concen-
trated on the most relevant variable, i.e., the
variable that in the current state of the system
has the highest influence on the choice of the op-
timal action. That is, the expert’s explanations
start from certain aspect of the process that is
the most important in the current situation and
this aspect is the core of the explanation. So a
first step towards automatic explanation based
on MDPs is to determine the most relevant vari-
able according to the current state and the op-
timal policy. The recommended action is also
important for the explanation; however, this is
directly obtained from the optimal policy that
gives the solution of the MDP.

We have developed a novel technique for se-
lecting the relevant variable for certain state-
action based on a factored representation of an
MDP. We propose two heuristic rules for ob-
taining the relevant variable, one based on util-
ity and other based on policy. The utility–based
rule evaluates how much the utility function will
change if we vary the value of one of the vari-
ables for the current state, keeping the other
variables fixed. The policy–based rule estimates
the potential changes in optimal action for each
of the variables. We compared the relevant vari-
ables obtained with these rules with the one
given by the expert for a representative sam-
ple of states of an MDP in the domain of power
plant operation. In general there was a strong
agreement, which contributes evidence to the
validity of the proposed approach.

The rest of the paper is organized as fol-
lows. Next we summarize related work on ex-
planations based on probabilistic and decision-
theoretic models. Then we present a brief re-
view of MDPs. In section 4 we describe the

proposed method for relevant variable selec-
tion. Experimental results are given in section
5, where we describe the test domain and the
intelligent assistant. We conclude with a sum-
mary and directions for future work.

2 Related Work

The work on explanations based on probabilis-
tic graphical models (PGMs) can be divided ac-
cording to the classes of models considered, ba-
sically Bayesian networks (BN’s) and decision
networks. BN’s (Pearl, 1988) graphically repre-
sent the dependencies of a set of random vari-
ables, and are usually used for estimating the
posterior probability of some variables given an-
other. So the main goal of explanations is to
try to understand this inference process, and
how it propagates through the network. Two
main strategies have been proposed for expla-
nation with BN’s. One strategy is based on
transforming the network to a qualitative repre-
sentation, and using this more abstract model
to explain the relations between variables and
the inference process (Druzdzel, 1991), (Renooij
and van der Gaag, 1998). The other strategy
is based on the graphical representation of the
model, using visual attributes (such as colors,
line widths, etc.) to explain relations between
nodes (variables) as well as the the inference
process (Lacave et al., 2000). The explanation
of links represents qualitative influences (Well-
man, 1990) by coloring the links depending on
the kind of influence transmitted from its tail to
its head. Another possibility for static explana-
tion consists of explaining the whole network.

Influence diagrams extend BNs by incorpo-
rating decision nodes and utility nodes. The
main objective of these models is to help in the
decision making process, by obtaining the de-
cisions that maximize the expected utility. So
explanation in this case has to do with under-
standing why some decision (or sequence of de-
cisions) is optimal given the current evidence.
There is very little work on explanations for de-
cision networks. Bielza et al. (2003) propose
an explanation method for medical expert sys-
tems based on influence diagrams. It is based



on reducing the table of optimal decisions ob-
tained from an influence diagram, building a list
that clusters sets of variable instances with the
same decision. They propose to use this com-
pact representation of the decision table as a
form of explanation, showing the variables that
are fixed as a rule for certain case. It seems
like a very limited form of explanation, difficult
to apply to other domains. The explanation fa-
cilities for Bayesian networks proposed by La-
cave et al. (2000) were extended to influence
diagrams and integrated in the Elvira software
(Lacave et al., 2007). The extension is based in
a transformation of the influence diagram into
a Bayesian network by using a strategy for the
decisions in the model. Lacave et al. (2007) de-
scribe several facilities: incorporating evidence
into the model, the conversion of the influence
diagram into a decision tree, the possibility of
analyzing non-optimal policies imposed by the
user, and sensitivity analysis with respect to the
parameters.

Markov decision processes can be seen as an
extension of decision networks, that consider a
series of decisions in time (dynamic decision net-
work). Some factored recommendation systems
use algorithms to reduce the size of the state
space (Givan et al., 2003) and perform symbolic
manipulations required to group similarly be-
having states as a preprocessing step. (Dean
and Givan, 1997) also consider top-down ap-
proaches for choosing which states to split in
order to generate improved policies (Munos and
Moore, 1999). Recently (Khan et al., 2008) pro-
posed an approach for the explanation of recom-
mendations based on MDPs. They define a set
of preferred scenarios that correspond to set of
states with high expected utility, and generate
explanations in terms of actions that will pro-
duce a preferred scenario based on predefined
templates. They demonstrate their approach
in the domain of course selection for students,
modeled as a finite horizon MDP with three
time steps. Thus, their is very limited previ-
ous work on explanation generation for decision-
theoretic systems based on MDPs. In particu-
lar, there is no previous work on determining
the relevant variable, which is the focus of this

paper.

3 Factored Markov decision
processes

A Markov decision process (MDP) (Puterman,
1994) models a sequential decision problem, in
which a system evolves in time and is controlled
by an agent. The system dynamics is governed
by a probabilistic transition function Φ that
maps states S and actions A to new states S’.
At each time, an agent receives a reward R that
depends on the current state s and the applied
action a. Thus, the main problem is to find a
control strategy or policy π that maximizes the
expected reward V over time.

For the discounted infinite-horizon case with
any given discount factor γ, there is a policy π∗

that is optimal regardless of the starting state
and that satisfies the Bellman equation (Bell-
man, 1957):

V π(s) = maxa{R(s, a)+γ
∑
s′∈S

P (s′|s, a)V π(s′)}

(1)
Two methods for solving this equation and

finding an optimal policy for an MDP are: (a)
dynamic programming and (b) linear program-
ming (Puterman, 1994).

In a factored MDP, the set of states is de-
scribed via a set of random variables S =
{X1, ..., Xn}, where each Xi takes on values in
some finite domain Dom(Xi). A state x de-
fines a value xi ∈ Dom(Xi) for each variable
Xi. Thus, when the set of states S = Dom(Xi)
is exponentially large, it results impractical to
represent the transition model explicitly as ma-
trices. Fortunately, the framework of dynamic
Bayesian networks (DBN) (Dean and Kana-
sawa, 1989) gives us the tools to describe the
transition model concisely. In these representa-
tions, the post-action nodes (at the time t+1)
contain smaller matrices with the probabilities
of their values given their parents’ values under
the effects of an action. For a more detailed de-
scription of factored MDPs see (Boutilier et al.,
1999).



4 Relevant Variable Selection

As mentioned before, our strategy for automatic
explanation generation based on MDPs consid-
ers as a first step to find the most relevant vari-
able VR for certain state s and action a. All
the explanations we obtained from the experts
are based on a variable which they consider
the most important under the current situa-
tion (state) and according to the optimal pol-
icy. Examples of some of these explanations in
the power plant domain are given later on the
paper. We expect that something similar may
happen in other domains, so discovering the rel-
evant variable is an important first step for pol-
icy explanation based on MDPs.

Intuitively we can think that the relevant
variable is the one with greater effect on the
expected utility, given the current state and the
optimal policy. So as an approximation to esti-
mating the impact of each factor Xi in the util-
ity, we estimate how much the utility, V , will
change if we vary the value for each variable,
compared to the utility of the current state.
This is done by maintaining all the other vari-
ables, Xj , j 6= i, fixed. The process is repeated
for all the variables, and the variable with the
highest difference in value is selected as the rel-
evant variable. An alternative criteria is to con-
sider the action changes. That is, if the optimal
action, a∗, in the current state, s, will change if
a variable, Xi, has a different value. The vari-
able that implies more changes will be in this
case the relevant variable.

Thus, we propose two heuristic rules to de-
termine the most relevant variable for an MDP,
one rule based on utility and other rule based
on policy. Next we describe in detail each rule.

4.1 Rule 1: Impact on utility

The policy of an MDP is guided by the util-
ity function, so the impact of a variable in the
utility is an important aspect regarding its rel-
evance for certain state. The idea is to evaluate
how much will the utility function will change if
we vary the value of one of the variables for the
current state, keeping the other variables fixed.
We analyze this potential change in utility for

all the variables, and the one with the highest
difference will be considered the most relevant
variable.

Let us assume that the process is in state
s, then we measure the relevance of a variable
Xi for the state s based on utility, denoted by
relVs (Xi), as:

relVs (Xi) = max
s′∈neighXi

(s)
V (s′)− min

s′∈neighXi
(s)

V (s′)

(2)
where neighXi(s) is the set of states that take
the same the values as s for all other variables
Xj , j 6= i; and a different value for the variable
of interest, Xi. That is, the maximum change
in utility when varying the value of Xi with re-
spect to its value under the current state s. This
expression is evaluated for all the variables, and
the one with the highest value is considered the
most relevant for state s, according to the value
criteria:

XV
R = argmaxi(relVs (Xi)),∀(i) (3)

4.2 Rule 2: Impact on the optimal
action

The second heuristic rule for determining the
most relevant variable consists in exploring the
optimal policy to detect changes in the optimal
action for the state. That is, for each variable
we verify if the optimal action will change if we
vary its current value, keeping the other vari-
ables fixed. The variable that has more poten-
tial changes in policy will be considered more
relevant.

Let us assume that the MDP is in state s,
then we measure the relevance of a variable Xi

for the state s according to its impact on policy,
denoted by relAs (Xi), as:

relAs (Xi) = #s′ : s′ ∈ neighXi(s)∧π∗(s) 6= π∗(s′)
(4)

where neighXi(s) is the set of states that take
the same values as s in all the variables except in
variable Xi, π∗(s) is the optimal action under
the current state, s, and π∗(s′) is the action
that will be taken in the other states such that



s′ ∈ neighXi(s). In other words, this function
measures how much the actions change when
varying the value of Xi with respect to its value
under the current state s. This expression is
evaluated for all the variables, and the one with
the highest value is considered the most relevant
for state s, according to the policy criteria:

XA
R = argmaxi(relAs (Xi)),∀(i) (5)

We evaluated and compared both rules in a
real scenario for training power plant operators,
as described in the next section.

5 Experimental Results

First we describe the intelligent assistant in
which we tested our method for explanation
generation, and then the experiments compar-
ing the automatic relevant variable selection
against a domain expert.

5.1 Intelligent assistant for operator
training

We have developed an intelligent assistant for
operator training (IAOT) (Figure 1).

Figure 1: The intelligent assistant (IAOT) con-
sists of 3 main parts: process side, operator side
and central module. Based on the optimal pol-
icy obtained from the MDP a temporal plan is
generated. The operator actions are compared
to the plan and according to this the Adviser
generates explanations

The input to the IAOT is a policy generated
by a decision-theoretic planner (MDP), which

establishes the sequence of actions that will al-
low to reach the optimal operation of a steam
generator (Reyes et al., 2006). Operator actions
are monitored and discrepancies are detected re-
garding the operator’s expected behavior.

The process starts with an initial state of the
plant, usually under an abnormal condition; so
the operator should return the plant to its op-
timum operating condition using some controls.
If the action performed by the operator devi-
ates from the optimal plan, either in the type
of action or its timing, an advice message is
generated. Depending on the operator’s perfor-
mance, the adviser presents a new case through
the case generator module.

We considered a training scenario based on
a simulator of a combined cycle power plant,
centered in the drum (a water tank) and the re-
lated control valves. Under certain conditions,
the drum level becomes unstable and the oper-
ator has to return it to a safe state using the
control valves. The variables in this domain
are: (i) drum pressure (Pd), (ii) main steam
flow (Fms), (iii) feed water flow (Ffw), (iv) gen-
eration (G), and (v) disturbance (this variable
is not relevant for the explanations so is not in-
cluded in the experiments). There are 5 possible
actions: a0–do nothing, a1–increase feed water
flow, a2–decrease feed water flow, a3–increase
steam flow, and a4–decrease steam flow.

We started by defining a set of explanation
units with the aid of a domain expert, to test
their impact on operator training. These expla-
nation units are stored in a data base, and the
assistant selects the appropriate one to show to
the user, according to the current state and op-
timal action given by the MDP. An example of
an explanation unit is given in Figure 2. Each
explanation unit has three main components:
(i) the recommended action (upper left side),
(ii) a verbal explanation of why this is the best
action (lower left), and (iii) the relevant vari-
able (VR) highlighted in a schematic diagram
of the process (right side). In this example the
relevant variable is generation, VR = G, as the
absence of generation is the main reason to close
the feed–water valve. Something similar occurs
in all the explanation units.



Figure 2: An example of an explanation unit.

To evaluate the effect of the explanations on
learning, we performed a controlled experiment
with 10 potential users with different levels of
experience in power plant operation. The users
were divided into two groups: G1, with expla-
nations; G2, without explanations. Each par-
ticipant has to control the plant to reach the
optimal state under an emergency condition us-
ing a simulator and with the aid of the IAOT.
During each session, the suggested actions and
detected errors are given to the user, and for
G1, also an explanation.

After some training sessions with the aid of
the IAOT, the users were presented similar sit-
uations without the aid of the assistant. An
analysis of the results (Elizalde et al., 2005)
shows a significant difference in favor of the
group with explanations. These results give ev-
idence that explanations help in the learning of
skills such as those required to operate an in-
dustrial plant.

As mentioned before, the explanations pro-
vided by the domain experts focus on the most
relevant variable. In the next section we com-
pare the relevant variables obtained by our
method against those established by the human
experts.

5.2 Results

Our main objective is to generate explanations
that are similar to those given by a human
expert, and in particular the identification of
the most relevant variable. So to evaluate our

methodology, we take as a reference the expla-
nations given by the domain experts.

In the power plant domain there are 5 state
variables (three binary variables, one with 6 val-
ues and other with 8 values), which makes a
total of 384 states. We analyzed a random sam-
ple of 30 states, nearly 10% of the total number
of states 1. For the 30 cases we obtained the
most relevant variable(s) based on both rules,
according to their impact on utility and on pol-
icy; and compared these with the relevant vari-
ables given in the explanation units provided by
the expert.

Figure 3 summarizes the results of the evalu-
ation of the 30 cases. For each case we show: (i)
the current state, (ii) the value, (iii) the optimal
action, (iv) the variable selected according to
the change in utility, including this change, (v)
the number of changes in action for each vari-
able (the highest are highlighted), and (vi) the
relevant variable(s) given by the expert. Note
that for some cases the expert gives two relevant
variables.

From the table we observe that the rule based
on the utility impact selects in 100% the most
relevant variable according to the expert. The
other rule, based on changes in policy, detects
more than one variable in several cases. If we
consider the subset of variables with highest
number of changes in policy, at least one of the
relevant variables given by the expert is con-
tained in this subset for 80% of the cases. Both
rules give a good match with the experts’ selec-
tions, although the one based on utility is more
specific and also more accurate. These are very
promising results, as the method is giving, in
general, the expected relevant variable, which is
an important first step for producing automatic
explanations based on MDPs.

1In our current implementation of the method its
takes about half an hour to evaluate the impact on utility
and policy per state, as we are transforming the MDP
to an influence diagram and doing the calculations in
Elvira (Elvira-Consortium, 2002); so it is not practical
to consider all the states. In the future we plan to imple-
ment the method directly on the MDP to make it more
efficient.



Figure 3: This table summarizes the 30 cases in which we compared the relevant variable selected
be each rule against those given by the expert.

6 Conclusions and Future Work

In this paper we have developed a method for
determining the most relevant variable for gen-
erating explanations based on a factored MDP.
The explanations provided by human experts
are based on what they consider the most rel-
evant variable in the current state, so obtain-
ing this variable is an important first stage for
automatic explanation generation. For deter-
mining the most relevant variable we proposed
and compared two heuristic rules, one based on
the impact on utility of each variable, and other
based on their impact on the policy. We devel-
oped a method for finding the relevant variable
based on these rules, and apply it to a realistic
scenario for training power plant operators.

The experimental evaluation in the power
plant domain shows that the methodology is
promising, as the relevant variables selected
agreed, in general, with those chosen by the ex-
pert. The rule based on utility impact seems
more appropriate, at least in this domain, as

it gives more specific results with a very high
accuracy.

As future work we plan to integrate domain
knowledge with the relevant variable obtained
from the MDP to construct explanations; and
test our method in other domains.
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