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Abstract

We utilize recent results concerning a complete axiomatization of stable conditional inde-
pendence (CI) relative to discrete probability measures to derive perfect model properties
of stable CI structures. We show that stable CI can be interpreted as a generalization of
undirected graphical models and establish a connection between sets of stable CI state-
ments and propositional formulae in conjunctive normal form. Consequently, we derive
that the implication problem for stable CI is coNP-complete. Finally, we show that SAT
solvers can be employed to efficiently decide the implication problem and to compute non-
redundant representations of stable CI, even for instances involving hundreds of variables.

1 Introduction

The importance of stable conditional indepen-
dence for reducing the complexity of representa-
tion of conditional independence structures has
recently been established (de Waal and van der
Gaag, 2004). Stable CI is an alternative to
graphical models in representing and reasoning
with conditional independence. A good under-
standing of its logical and algorithmic proper-
ties could lead to new theoretical insights and
applications in the field of uncertain reasoning
and data mining. While several results regard-
ing the characteristics of stable CI structures
exist (Matus, 1992)(de Waal and van der Gaag,
2004)(de Waal and van der Gaag, 2005), no
study has investigated its logical properties as
it was done for general CI and graphical mod-
els relative to the class of discrete probability
measures (Geiger and Pearl, 1993). We use
recent results concerning a complete axiomati-
zation of stable CI relative to discrete proba-
bility measures (Niepert et al., 2008) to show
that (1) stable CI has perfect models relative to
discrete probability measures, (2) for some sets
of stable CI statements there exists no perfect
model relative to binary probability measures,
and (3) the number of distinct stable CI struc-
tures grows at least double exponentially with

the number of statistical variables. We also de-
rive that stable CI structures can be interpreted
as a generalization of undirected graphical mod-
els: for every UG model there exists a stable CI
structure, and if a discrete probability measure
is (perfectly) Markovian w.r.t. the UG model,
then it satisfies (exactly) all the CI statements
of the stable CI structure. We establish a di-
rect connection between sets of stable CI state-
ments and propositional formulae in conjunctive
normal form and use this connection to show
that the implication problem for stable condi-
tional independence is coNP-complete. Finally,
we show that existing SAT solvers can be em-
ployed to efficiently decide the implication prob-
lem and to compute non-redundant representa-
tions of stable CI, even for instances involving
hundreds of variables.

2 Preliminaries

Definition 1. Throughout this paper, S will be
a finite, implicit set of attributes (discrete sta-
tistical variables). The expression I(A, B|C),
with A, B, and C' pairwise disjoint subsets of .S,
is called a conditional independence (CI) state-
ment. If ABC = S, we say that I(A, B|C) is
saturated. If A = () or B = () or both, we say
that I(A, B|C) is trivial.



Al: I(A4,B|C) — I(B,A|C)

A2: I(A,BD|C) — I(A,D|C)

A3: I(A,B|CD)AI(A,D|C) — I(A, BD|C)

A4: I(A, B|C) — I(A, B|CD)

A5:  I(A,B|C) AI(D,E|AC) A I(D, E|BC)
— I(D, E|C)

Figure 1: The inference rules of system .A.

The set of inference rules in Figure 1 will be
denoted by A. The symmetry (Al), decomposi-
tion (A2), and contraction (A3) rules are part of
the semi-graphoid axioms (Pearl, 1988). Strong
union (A4) and strong contraction (A5) are ad-
ditional inference rules. The derivability of a CI
statement ¢ from a set of CI statements C un-
der the inference rules of system A is denoted
by C F ¢. The closure of C under A, denoted
C*, is the set {c | C I~ ¢}. Even though trivial-
ity is a sound inference rule, we will not mention
it explicitly in the rest of the paper. Trivial CI
statements are assumed to be implicitly present.

Definition 2. A probability model over S =
{s1,...,8,} is a pair (dom, P), where dom is a
domain mapping that maps each s; to a finite
domain dom(s;) and P is a probability measure
having dom(s1) x -+ x dom(s,) as its sample
space. For A = {ay,...,a;} C S we will say
that a is a domain vector of A if a € dom(a;)

- x dom(ay). If dom(s;) = {0,1} we say that
the probability model is binary.

In what follows, we will only refer to proba-
bility measures, keeping their underlying prob-
ability models implicit. The class of discrete
probability measures will be denoted by P and
the class of binary probability measures by B.

Definition 3. Let I(A, B|C) be a CI statement
and let P be a probability measure. We say
that P satisfies 1(A, B|C) if for every domain
vector a, b, and c of A, B, and C, respectively,
P(c)P(a,b,c) = P(a,c)P(b,c).

Relative to the notion of satisfaction we can
now define the conditional independence impli-
cation problem.

Definition 4 (Probabilistic CI implication
problem). Let C be a set of CI statements, let
¢ be a CI statement, and let P be the class of

discrete probability measures. We say that C
implies c relative to P, and write C = ¢, if each
measure P € P that satisfies the CI statements
in C also satisfies the CI statement c. The set
{c| C & ¢} will be denoted by C*.

A powerful tool in deriving results about the
CI implication problem is the association of
semi-lattices with CI statements (Niepert et al.,
2008). Given subsets A and B of S we write
[A, B] for the lattice {U | A C U C B}.
Definition 5. Let I(A, B|C) be a CI state-
ment. The semi-lattice of I(A, B|C) is defined
by L(A, B|C) = [C,S] — ([4,S]U[B,S]).
Example 1. Let S = {a,b, c,d} and let I(a,b|c)
be a CI statement. The semi-lattice of this
statement is {c, cd}.

We will often write £(c) to denote the semi-
lattice of a CI statement ¢ and £(C) to denote
the union of semi-lattices, |Jy o £(¢'), of a set
of CI statements C.

3 Stable Conditional Independence

When novel information is available to a prob-
abilistic system, the set of associated, relevant
CI statements changes dynamically. However,
some of the CI statements will continue to hold.
Stable CI can be thought of as a subclass of
general CI: every set of stable CI statements is
a set of CI statements. Some of the properties
of stable CI were first investigated by Matus
(Matus, 1992) who named it ascending condi-
tional independence and later by de Waal and
van der Gaag (de Waal and van der Gaag, 2004)
who introduced the term stable conditional in-
dependence. Every set of CI statements can be
partitioned into its stable and unstable part. In
this section we recall an axiomatization of sta-
ble CI using inference rules and its relation to
the lattice-inclusion property. We will use these
results to show that stable CI has perfect mod-
els w.r.t. discrete probability measures, but not
w.r.t. binary probability measures.

Definition 6. Let C be a set of CI statements,
and let C5¢* be the semi-graphoid closure of
C. Then I(A, B|C) is said to be stable in C if
I(A,B|C") € C%C¢7 for all sets C' with C C
C'C8S.



Definition 7. A stable CI structure is a set
of stable conditional independence statements
C such that C = C*.

In the remainder of the paper, a set of stable
CI statements will be any set of CI statements
that are implicitly known to be stable. Hence,
a set of stable CI statements C can be different
from C*. We approach stable CI as a structural
representation of conditional independence
much like graphical models are possible repre-
sentations of conditional independence. Now,
let us turn to a crucial result for stable condi-
tional independence. The inference system A
was shown to be sound and complete for stable
conditional independence (Niepert et al., 2008).

Theorem 1. Let C be a set of stable CI state-

ments and let ¢ be a CI statement. Then the
following statements are equivalent:

(a) C = ¢;

(b) CFc; and

(¢c) L(C) 2 L(c).

Example 2. Let S = {a,b,d,e}, let

C = {I(a,b|0),I(d,ela),I(d,elb)} be a set
of stable CI statements, and let ¢ = I(d, e|().
We know by strong contraction that C F ¢
and, therefore, C = ¢ by Theorem 1. Now,
L) = {0,d,e,de} U {a,ab} U {b,ab} =
{0,a,b,d,e,ab,de} D {0,a,b,ab} = L(c).
Definition 8. Let C be a set of CI statements.
A probability measure is a perfect model for C
if it satisfies precisely the statements C*, that
is, all the statements that are implied by C and
none other.

The next result follows from the existence of
discrete perfect models with respect to CI state-
ments (Geiger and Pearl, 1993), a result which
was later strengthened by (Pena et al., 2006).

Proposition 1. For every set of stable CI
statements C there exists a discrete probability
measure P such that P satisfies exactly the
statements in C* and none other, that is, P is
a perfect model for C.

The previous result does not hold for the class
of binary probability measures and it follows

that stable CI shares the perfect model prop-
erties with general CI.

Proposition 2. There exists a set of stable
CI statements C for which no binary probabil-
ity model is perfect.

Proof. Let S = {a,b,c} and let C =
{I(a,b|0),I(a,blc)}. Clearly, C is a set of sta-
ble CI statements. By Theorem 1(c) neither
I(a,c|®) nor I(b,c|d) are implied by C. From
(Geiger and Pearl, 1993) we know that every
binary probability measure that satisfies the
elements in C also satisfies either I(a,c|0) or
I(b,c|0). Thus, no binary probability measure
is perfect for C. O

4 Graphical Models and Stable CI

Our goal is to relate stable CI to graphical mod-
els and more specifically undirected graphical
models. Ultimately, we will show that stable CI
can be seen as a generalization of undirected
graphical models. The following theorem es-
tablishes that the CI statements present in a
Markov network form a stable CI structure.

Theorem 2. Let G be a Markov network (i.e.,
an undirected graphical model) and let C(G) be
the set of all CI statements encoded in G. Then
C(G) is a stable CI structure.

Proof. 1t is well-known that strong union is a
sound inference rule for separation in undirected
graphs (Pearl, 1988). In addition, it can be ver-
ified that the inference rule strong contraction
is sound for undirected graph separation. Thus,
inference system A is sound for separation in
undirected graphs and the statement of the the-
orem follows. O

Corollary 1. For every Markov network G
there exists a stable CI structure C and every
discrete probability measure that is (perfectly)
Markovian w.r.t. G satisfies the elements in C
(and none other).

This shows that stable conditional indepen-
dence can be interpreted as a generalization of
Markov networks. In what follows, we inves-
tigate how much broader this representation is
compared to graphical models in general. First,



general Cl structures
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undirected graphical models

saturated CI structures

Figure 2: Inclusion relationships between dif-
ferent representations of conditional indepen-
dence. Every undirected graphical model is a
stable CI structure. Every saturated CI state-
ments is trivially a stable CI statement.

we provide an example which demonstrates that
there exists a stable CI structure that cannot be
represented with a Markov network.

Example 3. Let S = {a,b,c,d} and let C =
{I(a,bled), I(a,d|bc)} be a set of stable CI state-
ments. Note that by Theorem 1(c) no other
CI statements are implied by C and hence, C is
a stable CI structure. However, every Markov
network that represents these two CI statements
also represents the CI statement I(a,bd|c) by
the inference rule intersection which is sound for
separation in undirected graphs (Pearl, 1988).
Thus, the class of all CI structures induced by
the class of Markov networks is a strict subclass
of the class of stable CI structures.

Figure 2 depicts some relationships between
different representations of conditional indepen-
dence.

Proposition 3. Let S be a finite set and let
T = (lf‘) (;) The number of distinct stable CI
structures over S is at least

S|

ds =qey Y (2" —1).
=2

Proof. We sketch the proof. Let S be a finite
set, let V. C S with |V| = |S]| — 2, and let
U C V. For every lattice [U,V] there exists
a stable CI structure C such that £(C) = [U, V].

Let ¢ = |S| —i for 2 < i < |S|. Now, we
have 2(7)(2) — 1 distinct combinations of lat-
tices of the form [U, V] with |U| = ¢ and each of

these combinations represents a distinct stable
CI structure by Theorem 1. O

Example 4. For |S| = 3 there are 8 UG, 22 dis-
crete (Studeny, 2005), and 14 stable discrete CI
structures. For |S| = 4 there are 64 UG (Stu-
deny, 2005), 18478 discrete (Simecek, 2006),
and at least 4221 distinct stable CI structures.
For |S| = 5 there are at least 2147485692 dis-
tinct stable CI structures, which is also a lower
bound for the number of discrete CI structures.

As a consequence of Proposition 3 the num-
ber of stable CI structures grows double expo-
nentially with the size of S.

5 Complexity of the Stable CI
Implication Problem

In this section we will investigate the computa-
tional complexity of an important decision prob-
lems related to stable CI. Given a set of stable
CI statements C and a CI statement c¢. Decide
whether ¢ is implied by C. We will prove this
decision problem to be coNP-complete. How-
ever, we will later show that a simple reduction
to UNSAT exists. This allows one to make use
of the many available SAT solvers and we will
show experimentally that the problem can be
decided very efficiently, even for instances in-
volving hundreds of variables. We start with
the formal definition of the decision problem.

Definition 9. Let C be a set of stable CI
statements and let ¢ be a CI statement.
STABLE-IMPLICATION is the problem of decid-
ing whether ¢ is implied by C, or, equivalently,
whether the statement C |= ¢ holds.

Lemma 1. STABLE-IMPLICATION is ¢n coNP.

Proof. We show that the complement is in NP.
Since C ¥ ¢ if and only if £(C) 2 L(c) it is suf-
ficient to find a U € L(c) with U ¢ L(C). This
set can be guessed and then verified in polyno-
mial time by checking for all I(A, B|C) € C if
(U2C)v(UDA) V(U 2B). O



We will now establish the correspondence be-
tween sets of stable CI statements and propo-
sitional formulae in conjunctive normal form,
where a set of stable CI statement corresponds
to a clause in the CNF formula and vice versa.

Definition 10. 3-CNFV is the set of all proposi-
tional formulae in conjunctive normal form with
clauses of the form xVy, ~xVyVz, ~zV-yVz,
and -~z V -y V -z,

Proposition 4. Let T be a set of propositional
variables and let ® € 3-CNFV(T'). Deciding
whether ® is satisfiable is NP-complete.

Proof. This can be verified by a reduction from
standard 3-CNF-SAT: the set of clauses we use
in our construction are the clauses that occur
in standard 3-CNF formulae except that every
clause zVyV z will be replaced by (zVyV-w)A
(z Vw), where w is a new variable. This reduc-
tion is possible in polynomial time and preserves
satisfiability. O

Corollary 2. Let T be a set of propositional
variables and let ® € 3-CNFV(T'). Deciding
whether ® is a contradiction is coNP-complete.

Definition 11. Let T be a set of propositional
variables and let X be a subset of 1. The
minterm associated with X, denoted X, is the
formula A,cx aA /\,cx —b. Let @ be a proposi-
tional formula over T'. The minset of ®, denoted
minset(®), is the set {X | X E=prop @} where
Fprop is the logical implication relation for
propositional logic. The negative minset of ®,
denoted negminset(®), is the set minset(—P).

Definition 12. Let T' = {t1,...,t,} be a set of
propositional variables, let ® € 3-CNFV(T), let
C(®) be the set of clauses in @, let S = TU{r, s}
with r ¢ T and s ¢ T, and let 7(S) be the set
of all non-trivial CI statements over S. Then
f 2 3-CNFV(T) — 27(9) is defined as follows:

F(®@) = Ucec(s) f(¢); with
o fti) ={I(ti,|0) |z €S —{t:}}
(=ti) = {I(z,ylt:) | x,y € S={ti}, x # y}
(
(

o f
o f(tivi;) ={I(tit;|0)}
° f —t; \/t)—{[(tj,.%"ti)‘xES—{ti,tj}}

o f(_'ti \4 _'tj) = {I('IayHti,tj}) | T,y € S —
{ti7tj}7x #y}

o f(—tiVi; Vi) = {I(t; telt:)}

o f(=tiV —t; Vi) = {I(ty,x|{ts,t;}) | = €

o f(—t; Vv =ty Vv —ty) = {I(z,yl{ti,tj, tx}) |
z,y €S —{titj,tp},x # y}

Notice that the mapping f can be computed
in polynomial time in the size of ® and the num-
ber of variables involved. Furthermore, note
that for any clause ¢ € C(®) and for any U C T
we have U € L(f(c)) if and only if U [=ppqp —c.

Example 5. Let T = {a,b,c}, let
S =TuU{d, e}, and let ® = (aVc)A(—aV-bVec).
Then f(®) = f(aVe)U f(maV —bVe) =

{I(a,cl0)} U {I(c,d|ab),I(c,e|ab)} =
{I(a,c|0),I(c,d|ab),I(c,elab)} with
L(f(®) = {0,b,d, e, bd, be, bde,ab,abd,abe}

and negminset(®) = {0,b, ab}.

Lemma 2. Let T be a set of propositional vari-
ables, let S = T U{r,s} withr ¢ T, s ¢ T,
let f be the function from Definition 12, and let
® € 3-CNFV(T). Then we have the following:

(1) negminset(®) C L(f(P)); and
if and only if

(2) ® is a contradiction

L(I(r,s(0)) € L(f(®)).

Proof. To show (1) let U € negminset(®).
Then there exists a clause ¢ in C(®) such that
U Eprop —c. But then for I(z,y|U’) € f(c) it
must be U D U', 2 ¢ U and y ¢ U since oth-
erwise U |=p0p ¢. It follows that U € L(f(c))
and therefore U € L(f(®)).

To show (2) let ® be a contradiction. No-
tice that ® is a contradiction if and only if
negminset(®) = 27. Now, L(I(r,s|0)) = 2T =
negminset(®) C L(f(P)), where the last inclu-
sion follows from (1).

To show the other direction of (2) let
L(I(r,s|0)) = 2T C L(f(®)). Assume that
is not a contradiction. Then there exists a set
U C T with U ¢ negminset(®). Now, since
27 C L(f(®)) there must be a clause ¢ € C(®)
such that U € L(f(c)). Hence, U =4, —c and



Property Stable CI
Complete finite Yes
axiomatization

Implication algorithm | coNP-complete
Perfect models [P] Yes

Perfect models [B] No

Figure 3: Summary of properties of stable CI.

thus U € negminset(®), a contradiction to our
assumption that U ¢ negminset(®). O

Theorem 3. STABLE-IMPLICATION 4s coNP-
complete.

Proof. Let T be a set of propositional variables,
let r ¢ T,s¢T,and let ® € 3-CNFV(T'). Then,
by Lemma 2 and Theorem 1, ® is a contra-
diction if and only if L(f(®)) 2 L(I(r,s|0))
if and only if f(®) F I(r,s|0) if and only if
f(®) = I(r, s|0), where f is computable in poly-
nomial time. Hence, STABLE-IMPLICATION is
coNP-hard. The statement now follows from
Lemma 1. U

The logical and algorithmic properties of sta-
ble CI are summarized in Figure 3.

6 Implication Testing and
Redundancy Elimination Using
SAT Solvers

In this section we will show that every set of
stable CI statements can be reduced to a propo-
sitional formula. This allows us to employ SAT
solvers to decide the implication problem and to
compute irredundant equivalent subsets of sta-
ble CI structures. Stable CI can considerably
reduce the size of representation of CI struc-
tures (de Waal and van der Gaag, 2004). First,
we will define the notion of irredundancy and re-
dundancy of representation for sets of stable CI
statements. We will use terminology that was
previously introduced in the context of propo-
sitional formulae in conjunctive normal form
(Liberatore, 2005).

Definition 13. A set of stable CI statements C
is irredundant if and only if C — {c} ¥ ¢ for all
¢ € C. Otherwise it is redundant.

A related definition is that of an irredundant
equivalent subset. Note that a set of stable CI
statements may have several different irredun-
dant equivalent subsets and that the cardinality
of these sets can differ.

Definition 14. Let C be a set of stable CI state-
ments. A set of stable CI statements C’ is an
irredundant equivalent subset of C if and only if:

1. ¢’ C¢;
2. C' Ecfor all ¢ € C; and
3. (' is irredundant.

Example 6. Let S = {a,b,c} and let C =
{I(a,b|0),1(a,blc)}. Then, C' = {I(a,b|0)} is

an irredundant equivalent subset of C.

By Theorem 1 a stable CI structure can be
derived from each of its irredundant equivalent
subsets using the inference rules of system A.

Definition 15. Let S be a finite set, let C be a
set of CI statements, and let I(A, B|C') be a CI
statement. The mapping g : 27(5) — CNF(S) is
defined as

* 9(C) = Aceclg(€)); with

e g(I(A,B|C)) = NseaaV Noep bV Veeo

The mapping g can be computed in linear
time in the size of C. Now, based on this map-
ping we can state the following theorem.

Theorem 4. Let C be a set of stable CI state-
ments and let ¢ be a CI statement. Then the
following statements are equivalent:

o CE=c;and

* 9(C) Fprop 9(c)-

Proof. We will again use the concepts minset
and negminset introduced in Definition 11. Let
C be a set of CI statements and let ¢ be a
CI statement. Onme can verify that £(C) =
negminset(g(C)) and L(c) = negminset(g(c)).



irredundant-subset (C : set) C’ : set

c':=¢C
for each c € '
begin
if g(C' — {c}) A —g(c) not satisfiable
then C' :=C' — {c}
end
return C’

Figure 4: A function to compute an irredundant
equivalent subset.

By Theorem 1 we have that if C is a set of sta-
ble CI statements, then C | ¢ if and only if
L(C) D L(c). Now, L(C) DO L(c) if and only if
negminset(g(C)) D negminset(g(c)) if and only
if 9(C) Eprop 9(c). O

Example 7. Let S = {a,b,d,e}, let C =
{I(a,b|0),I(d,e|a),I(d,elb)}, and let ¢ =
I(d,e|@). We have g(C) = (aVb)A(dVeV
—a)A(dVeV—b) and g(c) = dVe. We also have
9(C) E=prop 9(c) if and only if g(C) A —g(c) is not
satisfiable. Now, g(C) A =g(c) = (aVb) A (dV
eV -a)A(dVeV—b)A-dA—e. This formula is
not satisfiable. Hence, C |= ¢ by Theorem 4.

Corollary 3. Let C be a set of stable CI state-
ments. Then C is irredundant if and only if for
all ¢ in C we have that g(C — {c}) A —g(c) is
satisfiable.

The algorithm in Figure 4 is based on Corol-
lary 3. It takes as input a set of stable CI state-
ments C and returns an irredundant equivalent
subset of C based on several satisfiability tests.
For each number of attributes from 5 to 25 we
randomly created sets of 500 CI statements and
determined the size of the irredundant equiva-
lent subsets using the algorithm. Figure 5 shows
the average size of 1000 different runs. As one
can expect, the fewer attributes there are the
smaller is the irredundant equivalent subset.

The performance of the SAT solvers applied
to instances of the implication problem was
quite remarkable. We used MiniSat! by Niklas

"http://minisat.se

irredundant subsets of 500 CI statements

number of ClI statements
N
o
o

5 1‘0 1‘5 2‘0 25
number of variables

Figure 5: Size of irredundant equivalent subset

of a set of initially 500 CI statements for differ-

ent numbers of attributes.

variables | 50 100 200 300 400
1523 3362 5627 7076

time [ms] | 740

Figure 6: Average time needed (in milliseconds)
to decide the implication problem for different
numbers of variables and 100,000 antecedents.

Eén and Niklas Sorensson on a Pentium4 dual-
core Linux system for the experiments. For the
500 satisfiability tests made to compute an irre-
dundant equivalent subset, the algorithm took
at most 1100 ms, where the majority of the time
was spent on unsatisfiable instances of the prob-
lem. This amounts on average to 2ms per sat-
isfiability test for sets of 500 CI statements.

In a second experiment we applied the SAT
solver to larger, randomly generated instances
of the stable CI implication problem with up
to 400 variables. Figure 6 shows the average
time (out of 10 tests) needed to decide the im-
plication problem C = ¢ for |C| = 100,000 and
different numbers of variables.

7 Discussion and Future Work

We used a finite complete axiomatization of sta-
ble conditional independence to show that sta-
ble CI has the same perfect model properties as
general conditional independence. In addition,
we proved that stable conditional independence
can be interpreted as a generalization or exten-
sion of undirected graphical models in that the



class of stable CI structures is a strict superset
of the class of CI structures induced by undi-
rected graphical models. Many procedures that
learn graphical models are based on the data
faithfulness assumption, see for example (Stu-
deny, 2005). The data faithfulness assumption
states that data are “generated” by a proba-
bility measure P which is perfectly Markovian
with respect to an instance of the class of graph-
ical model under consideration. Now, learn-
ing methods based on these procedures are only
safely applicable if the data faithfulness assump-
tion is guaranteed.

While the data faithfulness assumption is also
not guaranteed for the class of stable CI struc-
tures, we have as a consequence of Proposition 3
that the number of stable CI structures grows
double exponentially with the size of S and,
therefore, more probability measures are per-
fect with respect to a stable CI structure. On
one hand, this implies that a reasonable graphi-
cal representation of stable CI is unlikely, using
arguments similar to those made in (Studeny,
2005) on page 63. On the other hand, it shows
that the class of stable CI structures is the
broadest and only double exponentially growing
class of CI structures for which a complete finite
axiomatization using inference rules and an
implication algorithm are known. We also know
that this class of CI structures includes the
class of all CI structures induced by undirected
graphical models and that there exists an
interesting, direct connection to propositional
logic. Furthermore, we have demonstrated that
SAT solvers can be used to efficiently decide the
implication problem for stable conditional inde-
pendence, even for large numbers of variables.
Future research should be concerned with
the development of algorithms that can learn
stable CI models from data and for probabilistic
inference in the context of stable CI.

In addition to the aforementioned possible
applications, stable CI can also be used as
part of a probabilistic system to store informa-
tion about conditional independencies more ef-
ficiently, using irredundant equivalent subsets
computed by the algorithm in Figure 4.
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