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Abstract

In previous work, we have seen how to learn a TAN classifier from incomplete dataset
using the Expectation Maximisation algorithm (François and Leray, 2006). In this paper,
we study differences for Bayesian network structure learning between estimating prob-
abilities using the EM algorithm or using Pairwise Deletion. We have implemented these
two estimation techniques with greedy search learning methods in several spaces: Trees,
Directed Acyclic Graphs, Completed Partially Directed Acyclic Graphs or Tree Augmented
Naive Bayes structures. An experimental study shows strengths and weaknesses of using
the EM algorithm or Pairwise Deletion on classification tasks.

1 Introduction

Bayesian networks introduced by (Kim and
Pearl, 1987) are a formalism of probabilistic
reasoning used increasingly in decision aid, di-
agnosis and complex systems control (Jensen,
1996; Pearl, 1998; Naïm et al., 2004).

Let X = {X1, . . . , Xn} be a set of discrete
random variables. A Discrete Bayesian network
B =< G , Θ > is defined by a directed acyclic
graph (DAG) G =< N, U > where N repre-
sents the set of nodes (one node for each vari-
able) and U the set of edges,AND parameters
Θ =

{
θi jk
}

16i6n,16 j6qi ,16k6ri
the set of condi-

tional probability tables of each node Xi know-
ing its parents’ state Pa(Xi) (with ri and qi as
respective cardinalities of Xi and Pa(Xi)).

Determination of Θ (when G is given) is
often based on expert knowledge, but sev-
eral learning methods based on data have ap-
peared. However, most of these methods only
deal with complete data cases.

We will therefore first recall the issues re-
lating to structural learning and review the var-
ious ways of dealing with incomplete data for
structure determination.

Because of the super-exponential size of
the search space (Gillispie and Lemieux, 2001),

exhaustive search for the best Bayesian net-
work structure is impossible. Many heuristic
methods have been proposed to determine the
structure of a Bayesian network. Some of them
rely on human expert knowledge, others use
real data which are -most of the time- com-
pletely observed.

We are here more specifically interested
in score-based methods, primarily MWST pro-
posed by (Chow and Liu, 1968) and applied to
Bayesian networks in (Heckerman et al., 1995),
then GS algorithm (Chickering et al., 1995), and
finally GES algorithm proposed by (Chickering
and Meek, 2002). GS is a greedy search carried
out in DAG spaces where the interest of each
structure located near the current structure is
assessed by means of a Bayesian score like
BDe (Heckerman et al., 1994) or a BIC/MDL
type measurement (equation 1). As (Friedman,
1997), we consider that the BIC/MDL score is
a function of the graph G and the parameters
Θ, generalising the classical definition of the
BIC score which is defined with our notation
by BIC(G , Θ∗) where Θ∗ is obtained by max-
imising the likelihood or BIC(G , Θ) score for a
given G which is given by

BIC(G , Θ) = log P(D|G , Θ)− log N
2

Dim(G)
(1)
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where Dim(G) is the number of parameters
used for the Bayesian network representation
and N is the size of the dataset D.

The BIC score is decomposable. It can be
written as the sum of local score computed for
each node of the graph:

BIC(G , Θ) = ∑
i

bic(Xi, Pi, ΘXi|Pi
) (2)

where bic(Xi, Pi, ΘXi|Pi
) =

∑
Xi=xk

∑
Pi=pa j

Ni jk logθi jk −
log N

2
Dim(ΘXi|Pi

)

with Ni jk the occurrence number of {Xi = xk
and Pi = pa j} in D.

An improvement of the greedy search in
DAG space over CPDAG space have also been
proposed by (Chickering, 2002b). The MWST
principle is rather different. This algorithm de-
termines the best tree that links all the vari-
ables, using a mutual information measure-
ment (Chow and Liu, 1968) or the BIC score
variation when two variables become linked
(Heckerman et al., 1994).

The aim is to compare improvement of
learning algorithms in these different spaces
when the dataset is incomplete and when using
two different methods for estimating probabil-
ity: pairwise deletion (ACA, for available cases
analysis) and the Expectation-Maximisation al-
gorithm.

2 Dealing with incomplete data

2.1 Nature of missing data.

Let D = {Xl
i}16i6n,16l6N our dataset, with Do

the observed part of D, Dm the missing part
and Dco the set of completely observed cases
in Do. Let alsoM = {Mil} with Mil = 1 if Xl

i
is missing, 0 if it is not.

Dm = {Xl
i /Mil = 1} 16i6n,16l6N

Do = {Xl
i /Mil = 0} 16i6n,16l6N

Dco = {[Xl
1 . . . Xl

n]/[M1l . . . Mnl ] = [0 . . . 0]} 16l6N

Dealing with missing data depends on
their nature. (Rubin, 1976) identified several
types of missing data:

• MCAR (Missing Completely At Random):
P(M|D) = P(M), the probability for
data to be missing does not depend on D,
• MAR (Missing At Random):

P(M|D) = P(M|Do), the probability to
be missing depends on observed data,
• NMAR (Not Missing At Random): the

probability for data to be missing depends
on both observed and missing data.

MCAR and MAR cases are the easiest to solve
as observed data include all necessary informa-
tion to estimate missing data distribution. The
case of NMAR is trickier as outside informa-
tion has to be used to model missing data dis-
tribution. Many methods try to rely more on all
the observed data. Among them are sequential
updating (Spiegelhalter and Lauritzen, 1990),
Gibbs sampling (Geman and Geman, 1984), and
the EM algorithm. More recently, bound and
collapse (Ramoni and Sebastiani, 1998) and ro-
bust Bayesian estimator (Ramoni and Sebastiani,
2000) try to resolve this task whatever the na-
ture of missing data.

EM has been first proposed by (Demp-
ster et al., 1977) and adapted by (Lauritzen,
1995) to the learning of the parameters of a
Bayesian network whose structure is known.
Let log P(D|Θ) = log P(Do,Dm|Θ) be the data
log-likelihood. Dm being an unmeasured ran-
dom variable, this log-likelihood is also a ran-
dom variable function of Dm. By establish-
ing a reference model Θ∗, it is possible to es-
timate the probability density of the missing
data P(Dm|Θ∗) and therefore to calculate Q(Θ :
Θ∗) expectation of the previous log-likelihood:

Q(Θ : Θ∗) = EΘ∗ [log P(Do,Dm|Θ)] (3)
So Q(Θ : Θ∗) is the likelihood expectation of
any set of parameters Θ calculated using a dis-
tribution of the missing data P(Dm|Θ∗). Equa-
tion 3 can be re-written as follows:

Q(Θ : Θ∗) =
n

∑
i=1

∑
Xi=xk

∑
Pi=pa j

N∗i jk logθi jk (4)

where N∗i jk =EΘ∗
[
Ni jk
]
= N×P(Xi=xk,Pi=pa j|Θ∗)

is obtained by inference in the network
< G , Θ∗ > if the {Xi,Pi} are not completely mea-
sured, or else only by mere counting.



We are also interested in pairwise deletion
which is a method that uses all available data.
Cases are removed when they have missing
data on the variables involved in that particu-
lar computation. This method is very efficient
computationally but it assumes that the data
are missing completely at random (MCAR). If
not, it introduces a bias.

We are interested in studying the results
quality that could be expected using these two
methods named EM and ACA.

2.2 Determining structure Θ when data are
incomplete.

The main methods for structural learning with
incomplete data use the EM principle : Al-
ternative Model Selection EM (AMS-EM) (Fried-
man, 1997) and Bayesian Structural EM (BS-EM)
(Friedman, 1998). We can also cite the Hy-
brid Independence Test proposed in (Dash and
Druzdzel, 2003) that can use EM to estimate the
essential sufficient statistics that are then used
for an independence test in a constraint-based
method. (Myers et al., 1999) proposes a struc-
tural learning method based on genetic algo-
rithm and MCMC.

2.3 General principle and scoring metric

In practice, to perform a maximisation in the
joint space {G , Θ}, we must distinguish these
two steps1 :

G i = argmax
G

Q(G , • : G i−1, Θi−1) (5)

Θi = argmax
Θ

Q(G i, Θ : G i−1, Θi−1) (6)

where Q(G , Θ : G∗, Θ∗) is the expectation of the
likelihood of any Bayesian network < G , Θ >
calculated using a distribution of the missing
data P(Dm|G∗, Θ∗).

Note that the first search (equation 5) in the
space of possible graphs takes us back to the
initial problem, i.e. the search for the best struc-
ture in a super-exponential space. However,
with Generalised EM it is possible to look for a
better solution to function Q, rather than the

1the notation Q(G , • : . . . ) used in equation 5 stands
for EΘ[Q(G , Θ : . . . )] for Bayesian scores or Q(G , Θo :
. . . ) where Θo is obtained by likelihood maximisation

best possible one, without affecting the algo-
rithm convergence properties. This search for
a better solution can then be done in a limited
space, like for example VG , the set of the neigh-
bours of graph G that have been generated by
removal, addition or inversion of an arc inter-
preted either in the DAG space or in the CPDAG

space.
We now have to choose the function Q that

will be used for structural learning. The likeli-
hood used for parameter learning is not a good
indicator to determine the best graph since it
gives more importance to strongly connected
structures. Moreover, it is impossible to calcu-
late marginal likelihood when data are incom-
plete, so that it is necessary to rely on an ef-
ficient approximation like those reviewed by
(Chickering and Heckerman, 1996). In com-
plete data cases, the most frequently used mea-
surements are the BIC/MDL score and the
Bayesian BDe score. These two scoring metrics
are locally consistent but the BIC/MDL score
includes a penalty term and we have chosen it
for this study.
QBIC(G , Θ : G∗ , Θ∗) = EG∗ ,Θ∗ [log P(Do ,Dm|G , Θ)]

− 1
2 Dim(G) log N (7)

As the BIC score is decomposable, so is QBIC:

QBIC(G , Θ : G∗ , Θ∗)=∑
i

Qbic(Xi , Pi , ΘXi|Pi
: G∗ , Θ∗) (8)

where Qbic(Xi , Pi , ΘXi|Pi
: G∗ , Θ∗) =

∑
Xi=xk

∑
Pi=pa j

N∗i jk logθi jk −
log N

2
Dim(ΘXi|Pi

) (9)

3 Tested structural learning algorithms

3.1 Greedy Search

3.1.1 SEM
Friedman has proposed two versions of

his Bayesian network greedy search algorithm
based on suggestions of (Heckerman et al.,
1995) but adapted for incomplete datasets :
AMS-EM (Friedman, 1997) and BS-EM (Fried-
man, 1998). We have chosen to use the method
AMS-EM that we simply recall SEM as many
people do as it could be used with the BIC cri-
terion as explain above.



3.1.2 GS-ACA

A new implementation a the greedy search
inspired by (Cooper and Hersovits, 1992;
Heckerman et al., 1994) using pairwise deletion
to deal with incomplete dataset is also tested.

3.2 Greedy Equivalent Search

3.2.1 GES-EM

Recent work by (Chickering, 2002a;
Castelo and Kocka, 2002; Auvray and We-
henkel, 2002) show that we could take
advantage of using the CPDAGs space. Such
a space has less equal scoring models than
the DAGs space, as many DAGs have the same
representation in a unique CPDAG.

A search algorithm in the Markov equiv-
alent space named GES for Greedy Equivalent
Search has been proposed by (Meek, 1997). It
consists in two iterative steps. First one builds
iteratively a graph by adding dependence links
to the current essential graph (i.e. CPDAG)
while the second step consists in removing it-
eratively arcs that are no more needed in the
model. The optimality of this method (conjec-
ture of Meek) has been proved by (Koc̆ka et al.,
2001; Chickering, 2002b).

The GES-EM algorithm keep the principles
of the SEM method using the Markov equiva-
lent space to build neighbourhood of the cur-
rent graph at each steps.

3.2.2 GES-ACA

A version of this method using the avail-
able cases analysis (i.e. pairwise deletion) is
also implemented using the BIC criterion.

3.3 Maximum Weight Spanning Tree

3.3.1 General principle of MWST-EM

(François and Leray, 2004) have shown
that, in complete data cases, the MWST algo-
rithm was able to find a simple structure very
rapidly (the best tree connecting all the nodes
in the space), which could be used as judicious
initialisation by the GS algorithm. (Hecker-
man et al., 1995) suggests using the variation
of any decomposable score instead of the mu-
tual information originally used in MWST. Us-

ing this remark, we could therefore implement
the MWST algorithm using the EM algorithm
to manage incomplete datasets.

MWST-EM deals with the choice of the ini-
tial structure. The choice of an oriented chain
graph linking all the variables proposed by
(Friedman, 1997) seems judicious here, since
this chain graph also belongs to the tree space.
The MWST algorithm used a similarity func-
tion between two nodes which is based on the
BIC score variation whether X j is linked to Xi
or not. This function can be summed up in the
following symmetrical matrix :[

MQ
i j

]
=
[

Qbic(Xi, Pi = X j, ΘXi|X j
: T ∗, Θ∗)

−Qbic(Xi, Pi = ∅, ΘXi : T ∗, Θ∗)
]

(10)

Running maximum (weight) spanning algo-
rithms like Kruskal’s or Prim’s on matrix M en-
ables us to obtain the best tree that maximises
the sum of the local scores on all the nodes, i.e.
function QBIC of equation 8.

This method looks for the best tree-DAG

among the neighbours of the current graph.
With MWST-EM, we can directly get the best
tree that maximises function Q at each step and
then this method converge in few steps.

3.3.2 Trees as an initialisation of DAGs
greedy search : SEM+T and GS+T-ACA

MWST-EM will serve as initialisation of
the SEM algorithms proposed by Friedman.
This variant of the structural EM algorithm will
be called SEM+T (François, 2006). MWST-ACA
will serve as initialisation of the GS-ACA, the
resulting method is called GS+T-ACA.

3.3.3 MWST-ACA
We could adapt this algorithm using pair-

wise deletion. For evaluating the probability
pi jk = P(Xi = xi,k and Pa(Xi) = pai, j), we no
longer need an iterative method as the EM al-
gorithm. To deduce Ni jk = pi jk × N, we need
to evaluate pi jk on a new sub-dataset that con-
tain only the complete cases of the variables
Xi ∪ Pa(Xi).

This method is the only direct method
to learn a Bayesian network from incomplete
dataset in our knowledge.



3.3.4 Extension to classification problems :
TAN-EM and TAN-ACA

For classification tasks (where data are in-
complete), many studies like those of (Keogh
and Pazzani, 1999; Leray and François, 2004b)
use a structure based on an augmented naive
Bayesian network, where observations (i.e. all
the variables except class) are linked to the very
best tree (TAN, Tree Augmented Naive Bayes).
(Geiger, 1992) showed it was the tree obtained
by running MWST on the observations. It
is therefore possible to extend this specific
structure to classification problems when data
are incomplete by running a specific version
MWST-EM where the class node is considered
as a parent of each other nodes. This algorithm
will be called TAN-EM.

A version of this method using pairwise
deletion named TAN-ACA is also tested.

3.4 Experimental tests

3.4.1 Datasets and evaluation techniques
The experiment stage aims at evaluating

all these structure learning methods on incom-
plete datasets: Hepatitis, Horse, House, Mush-
rooms and Thyroid (Blake and Merz, 1998).

We indicate classification rates obtained by
the best run on three of the different methods
as well as the likelihood and the learning time
of the best model on these 3 runs. We also give
an 95%-confidence interval based on equation
11 for each classification rate based on (Ben-
nani and Bossaert, 1996).

I(α, N) =
T + Z2

α

2N ± Zα

√
T(1−T)

N + Z2
α

4N2

1 + Z2
α

N

(11)

where N is the sample size, T is the classifier
good classification percentage and Zα = 1.96
for α = 95%.

All implementation were done with the
Structure Learning Package (Leray and François,
2004a) for the Bayes Net Toolbox (Murphy, 2001).

3.4.2 Results and interpretations
The results are summed up in table 1. First,

we could see that even if the Naive Bayes clas-
sifier often gives good results, the other tested

methods allow to obtain better classification
rates. Whilst all runs of Naive Bayes classi-
fier and ACA methods give same results, EM
methods do not always give same results be-
cause of the first parameters estimation ran-
dom initialisation. We have also noticed (not
reported here) that TAN methods seem the sta-
bler methods concerning the evaluated classi-
fication rate while MWST methods seem to be
the less ones.

The method GS-EM could obtain very
good structures. Then, initialising it with the
results of MWST-EM gives stabler results (see
(Leray and François, 2005) for a more specific
study of this point).

In our tests, except for Hepatitis dataset
that have only 90 learning samples, TAN meth-
ods always obtain structures that lead to bet-
ter classification rates in comparison with the
other structure learning methods.

Remark that MWST methods could occa-
sionally give good classification rates even if
the class node is connected to a maximum of
two other attributes. In that case, it could be
a good hint of most relevant attributes to the
class node.

Regarding the log-likelihood reported in
table 1, we see that GS-ACA give best results
while TAN methods finds structures that can
also lead to a good approximation of the under-
lying probability distribution of the data, even
with a strong constraint on the graph structure.

In these experiments, we could confirm
that ACA methods could outperform EM
methods on classification for GS and GES
learning methods but not systematically. Re-
sults are similar for MWST and TAN methods
for classification but ACA leads to better log-
likelihoods. Classification rates are different
but ACA methods could beat EM methods as
often as EM methods could beat ACA methods
for these two algorithms.

Finally, the table 1 illustrates that TAN and
MWST methods have about the same complex-
ity (regarding the computational time) and are
a good compromise between Naive Bayes clas-
sifiers and Greedy Searches either in DAGs or
CPDAG spaces.



Method HEPATITIS HORSE HOUSE MUSHROOMS THYROID

sizes 20; 90;65; 8% 28; 300;300; 88% 17; 290;145; 46% 23; 5416;2708; 31% 22; 2800;972; 30%

NB 73.8% [62.0;83.0] 73.5% [62.0;82.6] 89.7% [83.6;93.6] 94.4% [93.5;95.2] 96.0% [94.6;97.1]

-1122 (0s) -1540 (0s) -1404 (0s) -41147 (0s) -15728 (0s)

MWST-ACA 58.5% [46.3;69.6] 82.4% [71.6;89.6] 90.3% [84.4;94.2] 75.0% [73.3;76.6] 77.4% [74.6;79.9]

-847 (2s) -1240 (16s) -1282 (5s) -31447 (178s) -15359 (96s)

MWST-EM 75.4% [63.7;84.2] 82.4% [71.6;89.6] 82.1% [75.0;87.5] 60.3% [58.5;62.2] 93.8% [92.1;95.2]

-1114 (45s) -1306 (299s) -1462 (67s) -39773 (1389s) -16912 (2254s)

TAN-ACA 64.6% [52.5;75.1] 73.5% [62.0;82.6] 93.1% [87.8;96.2] 98.4% [97.8;98.8] 95.9% [94.4;97.0]

-1123 (2s) -1319 (15s) -1284 (4s) -20453 (183s) -15894 (86s)

TAN-EM 64.6% [52.5;75.1] 77.9% [66.7;86.2] 91.7% [86.1;95.2] 98.4% [97.8;98.8] 97.0% [95.7;97.9]

-1186 (71s) -1546 (307s) -1339 (185s) -33885 (2345s) -16292 (1936s)

GS-ACA 67.7% [55.6;77.8] 80.9% [70.0;88.5] 91.7% [86.1;95.2] 76.7% [75.0;78.2] 77.4% [74.6;79.9]

-865 (55s) -1052 (774s) -1289 (71s) -25256 (9086s) -15394 (2537s)

SEM 64.6% [52.5;75.1] 51.5% [39.8;62.9] 67.6% [59.6;74.7] 74.9% [73.2;76.5] 93.8% [92.1;95.2]

-1091 (156s) -1442 (977s) -1483 (982s) -50969 (22562s) -16197 (963s)

GS+T-ACA 58.5% [46.3;69.6] 77.9% [66.7;86.2] 93.1% [87.8;96.2] 77.1% [75.5;78.6] 77.4% [74.6;79.9]

-826 (16s) -1052 (603s) -1233 (52s) -20469 (5050s) -15391 (856s)

SEM+T 64.6% [52.5;75.1] 51.5% [39.8;62.9] 93.1% [87.8;96.2] 74.9% [73.2;76.5] 93.8% [92.1;95.2]

-1112 (341s) -1447 (2190s) -1485 (1094s) -50969 (30417s) -15729 (5492s)

GES-ACA 64.6% [52.5;75.1] 82.4% [71.6;89.6] 93.8% [88.6;96.7] 77.1% [75.5;78.6] 96.1% [94.7;97.1]

-866 (76s) -1160 (536s) -1293 (123s) -23462 (6350s) -15535 (515s)

GES-EM 64.6% [52.5;75.1] 51.5% [39.8;62.9] 68.3% [60.3;75.3] 74.9% [73.2;76.5] 93.8% [92.1;95.2]

-1101 (240s) -1446 (1120s) -1522 (1062s) -38947 (54748s) -16197 (1545s)

Table 1: Two first lines : dataset names; number of attributes; dataset length; test dataset length; percentage
of incomplete entries. Following lines : method names; best good classification percentage on three runs; 95%-
confidence interval; selected model likelihood; learning time in seconds on a laptop 2.4GHz with Matlab R©R2006a.

4 Conclusions and prospects

Bayesian networks are a tool of choice for
reasoning in uncertainty. However, most of
the time, Bayesian network structural learning
only deal with complete data.

Usually EM principle is used for structure
learning as it has been proved to be optimal
when the dataset is MAR as ACA is known to
introduce a bias when the dataset is MAR and
not only MCAR. In those experiments, we have
supposed that learning datasets are NMAR as
they are real life issued datasets and as it is dif-
ficult to know the kind of the dataset if you
have not artificially built it. There is no more
reasons to use EM rather than ACA during the
learning process as both methods are biased.

In this study, ACA (available cases analy-
sis or pairwise deletion) has empirically been
compared to EM for Bayesian structure learn-

ing. First results show that this method is quite
efficient and not very complex. By using it, it is
possible to find structures which have a good
likelihood and lead to good classification rates,
and to do really less time than using the EM al-
gorithm. This first conclusive experiment stage
is not final. We are now planning to test and
evaluate these algorithms on a wider range of
problems.

Moreover, we know the limitation of the
BIC criterion and we need to try other crite-
rions: some specific to classification problems
as an adaptation of the classification likelihood
LCL/LLc or of ICL to structure learning or
more general ones as AIC, AICc, BDe, BDeu,
BDγ, MDL/IMDL to study which one perform
well with ACA or EM as we have noticed big
graphical differences in learnt structures de-
pending on the used method (not reported here
because of space limitation).
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