
Computing the Multinomial Stochastic Complexity in Sub-Linear Time

Tommi Mononen and Petri Myllymäki

Helsinki Institute for Information Technology (HIIT), Finland

{firstname}.{lastname}@hiit.fi

Abstract

Stochastic complexity is an objective, information-theoretic criterion for model selection. In this

paper we study the stochastic complexity of multinomial variables, which forms an important

building block for learning probabilistic graphical models in the discrete data setting. The fastest

existing algorithms for computing the multinomial stochastic complexity have the time complex-

ity of O(n), where n is the number of data points, but in this paper we derive sub-linear time

algorithms for this task using a finite precision approach. The main idea here is that in practice

we do not need exact numbers, but finite floating-point precision is sufficient for typical statistical

applications of stochastic complexity. We prove that if we use only finite precision (e.g. double

precision) and precomputed sufficient statistics, we can in fact do the computations in sub-linear

time with respect to data size and have the overall time complexity of O(
√

dn + L), where d is

precision in digits and L is the number of values of the multinomial variable. We present two

fast algorithms based on our results and discuss how these results can be exploited in the task of

learning the structure of a probabilistic graphical model.

1 Introduction

Stochastic complexity (SC) is an information-

theoretic model selection criterion, which can be

seen as a theoretical instantiation of the mini-

mum description length (MDL) principle (Rissa-

nen, 2007; Grünwald, 2007). Intuitively speaking,

the basic idea is that the best model for the data

is the one which results in the shortest description

for the data together with the model. This princi-

ple gives us a non-informative, objective criterion

for model selection, but there are many ways to de-

fine the stochastic complexity formally; one theoret-

ically solid way is to use the normalized maximum

likelihood (NML) distribution. Recent results sug-

gest that this criterion performs very well in the task

of learning Bayesian network structures (Roos et al.,

2008).

In the following, letM denote a parametric prob-

abilistic model, and θ̂(xn) the maximum likelihood
parameters of the model given a matrix of observa-

tions xn. The NML distribution is defined as

PNML(xn | M) =
P (xn | θ̂(xn),M)

∑

yn P (yn | θ̂(yn),M)
, (1)

where in the numerator we have the maximum like-

lihood of our observed data and in the denominator

we have the sum of maximum likelihoods (denoted

in the sequel by C(M, n)) over all the discrete data
sets of size n (Shtarkov, 1987).

Let us define the stochastic complexity as the

negative logarithm of (1):

SC(xn | M) = − log
P (xn | θ̂(xn),M)

C(M, n)
. (2)

The basic model selection task is to compute the

value of this model selection criterion for paramet-

ric models of different complexity and choose the

one for which this value is minimized, given the ob-

served data.

The single multinomial variable model is an im-

portant building block for building more complex

probabilistic graphical models for discrete data. For

this reason we want to able to compute the NML

for multinomial variables as efficiently as possible.

In the following, we simplify our notation and leave

outM: the model is implicitly defined by the num-
ber of values of the multinomial variable, denoted

by L. The numerator is now

P (xn | θ̂(xn), L) =
L
∏

k=1

(

hk

n

)hk

, (3)

where hk is a number of data points assigned to the

kth value. We expect in this paper that sufficient

statistics is known and computing (3) takes there-

fore only time O(L). The denominator is

C(L, n) =
∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hk

n

)hk

,

which is a sum of maximum likelihoods so that the

summation goes over every possible data of length

n.

Although using the definition directly for com-

puting the multinomial normalizing sum in the de-

nominator is not computationally feasible, several

algorithms for doing this inO(n) time have been re-
cently developed (Kontkanen and Myllymäki, 2007;

Mononen and Myllymäki, 2008b). In this paper we

show that our earlier theoretical results presented

in (Mononen and Myllymäki, 2008b) can be used

for constructing algorithms that compute C(L, n) in
sub-linear time with any desired (finite) precision.

We start by briefly reviewing the relevant earlier re-

sults and then show how they can be exploited in

deriving new ultra-fast algorithms.

2 Known Properties of the Normalizing

Sums

In Mononen and Myllymäki (2008b) we proved that

the multinomial normalizing sum can be described

as a confluent hypergeometric function evaluated at

a certain point. We showed that we can write the

hypergeometric presentation also in another simple

form using falling and rising factorial polynomials.

The falling factorial polynomials are of the form

xk = x(x − 1) · · · (x − k + 1), (4)

and the rising factorial polynomials are

xk = x(x + 1) · · · (x + k − 1). (5)

The binomial normalizing sum is then

C(2, n) =

n
∑

k=0

bk =

n
∑

k=0

nk

nk
, (6)

and the general multinomial normalizing sum can

be written as

C(L, n) =

n
∑

k=0

mk =

n
∑

k=0

nk (L − 1)k

nkk!
. (7)

As these forms spin off from hypergeometric forms,

and a hypergeometric series has the property that

there exist a simple ratio of consecutive terms, we

know that also (6) and (7) have this property. We

will introduce these ratios later in sections 3.1 and

4.1 and use them in the computations.

It is known that the binomial normalizing sum

equals to the expectation of the birthday problem

with the mapping: data size is equal to the number

of days (Mononen and Myllymäki, 2008b). We will

use an approximation derived for this expectation

later in our proof.

There is a recurrence formula for computing the

multinomial normalizing sum as the value of the

corresponding binomial normalizing sum is known

(Kontkanen and Myllymäki, 2007):

C(L, n) =C(L − 1, n) +
n · C(L − 2, n)

L − 2
, (8)

and C(1, n) is defined to be 1 for every n. This for-

mula can be effectively used for linear time compu-

tation of multinomial normalizing sums.

3 The Binomial Normalizing Sum

3.1 Properties of the Sum Terms

Let us start by plotting the terms of (6). We can

immediately observe that the first terms of the sum

give the greatest impact and most of the terms are

very small (see Figure 1). All the terms are positive

and getting closer to the zero, because the ratio of

successive terms of (6) is

bk

bk−1
=

n − k + 1

n
. (9)

Now the natural question is, how many terms do we

need, if we want to compute the normalizing sum

and use for example double precision. We study this

question more closely in section 3.2, but in loose

terms the number of needed terms is proportional

to the square root on n, which promises sub-linear

time performance.

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

0,2

0,4

0,6

0,8

1,0

Figure 1: Magnitude of the first 8000 terms of the
binomial normalizing sum when the data size (n) is

one million.

However, first we have to quantify how to mea-

sure the precision. We measure in the standard way

the error we make when pruning the sum: we com-

pute the tail sum and compare it to the whole sum.

Thus we compute a relative error. However, be-

cause setting the desired relative error directly is

quite cumbersome, we rather compute it in digits:

it much easier just to say that we need e.g. 7 digit

precision. More precisely, we define that for posi-

tive real numbers p and q, where p ≤ q and p, q ≥ 1,
the precision in digits is

⌊

− log10

(

q − p

q

)⌋

. (10)

So if the target q is for example 1.100000 and
the approximation p is 1.099999, the precision is
⌊6.04139⌋. So although only the first digit is the
same, the precision in digits according to the defini-

tion above is 6. But if we round p after the sixth

digit, we get 1.10000. This means that although
the precision in digits does not tell all the time how

many correct digits we have, it is still very close to

what we want. Next we do an upper bound approxi-

mation of the last required term of the binomial nor-

malizing sum for achieving some fixed precision.

3.2 Proof of the Right Bound

There is no known closed form solution for (6). To

compute the precision, we have to compute the sum

starting from some br to all the way to the the term

bn. As said before, we are interested in this tail sum,

because it tells us how big an error we make, if we

stop computing the sum after the term br−1. Al-

though the terms of the sum look simple, they are a

bit tricky to handle, and therefore we perform sev-

eral upper bound approximations for the terms. Up-

per bound approximations are of course required,

because we want to be sure that whatever bound we

get, it must give the promised result. We also move

from the discrete sum to an integral presentation,

because it makes things simpler in this case.

Next we give in a row four propositions needed

for proving the index bound of the binomial sum.

After the propositions we prove the mentioned

bound, which we call the right index bound (in the

multinomial case also the left bound exists).

Proposition 1. We have the following upper bound

approximation for the term bk:

nk

nk
≤
(

1 − k − 1

2n

)k−1

,where 1 ≤ k ≤ n.

Proof. We prove that the ratio of both sides is bigger

than one. Let us look at the ratio:

(

1 − k−1
2n

)k−1

nk

nk

=
n · nk−1

(

n− 1
2
(k−1)

n

)k−1

nk
(11)

=
(n − 1

2 (k − 1))k−1

(n − 1) · · · (n − k + 1)
(12)

=
k
∏

r=2

n − 1
2(k − 1)

n − r + 1
=

k
∏

r=2

ar. (13)

Now we just look at the product of pairwise terms

defined by

arak−r+2 =
(n − 1

2(k − 1))2

(n − r + 1)(n − k + r − 1)
=

Nr

Dr

.

We want to prove that each of these pairwise terms

is bigger than 1. However, we can equivalently sub-
tract the denominator from the numerator and re-

quire the result to be bigger than 0, because both are
always positive in our range. The result is

Nr − Dr =n +
1

4
k2 − rk +

1

2
k + r2

− 2r +
5

4
. (14)

We take the derivate of this difference with respect

to k and get the minimum point k = 2r − 1. Sub-
stituting this in (14), we notice that the result is

n−r+1, which is always bigger than 0 in our range.
This means that also the pairwise terms must be al-

ways bigger than 1, which implies that the proposi-
tion must be true for even number of terms ar.

If we have an odd number of terms ar, then we

have to still prove that the median term is also bigger

than 1. The median term is

a k

2
+1 =

2n − k + 1

2n − k
. (15)

This cannot be smaller than 1, because n≥k≥0.

Proposition 2. The following inequality is true for
k
2n

< 1:

(

1 − k

2n

)k

≤ e−
k
2

2n .

Proof. Take the natural logarithm of both sides of

the inequality and use the known logarithm inequal-

ity ln(1+x) ≤ x, which is valid for all x > −1.

Proposition 3. Because bk is a continuous mono-

tonically decreasing function inside the interval

[0, n], the discrete volume (the sum) corresponds to
the upper Riemann sum with intervals of length one.

Hence we can give the following inequality:

n
∑

k=0

bk ≤ 1 +

∫ n

k=1
bk−1dk.

Proof. Our integral is always bigger than the given

upper sum, because on the right hand side we

shifted our function in such way that every discrete

column is always entirely below the curve. The size

of the first column is 1, which is the first term on the
right hand side.

Proposition 4. The following inequality holds:

erf (x) ≥
√

1 − e−x2
,

when x ≥ 0 and

erf (x) =
2√
π

∫ x

t=0
e−t2dt.

Proof. First suppose x ≥ 0. Let us now modify the
inequality:

erf (x) ≥
√

1 − e−x2
(16)

(erf (x))2 + e−x2 − 1 ≥ 0 (17)

Denote the left hand side by h(x) and take the
derivative of it:

h′(x) =
2e−x2

(2erf (x) − x
√

π)√
π

. (18)

We can see that all the roots in our range are solu-

tions for the equation

2erf (x) − x
√

π = 0, (19)

erf (x) =

√
π

2
x. (20)

As the error function is a convex function between 0
and infinity and the right hand side of (20) is a linear

function, there can be only two solutions. The first

one is x = 0, where h(0) = 0, and the other one
is x ≈ 0.8982. The second solution is a positive
maximum point. As we have

lim
x→∞

h(x) = (1)2 + 0 − 1 = 0, (21)

this means that h(x) must be always positive in the
range, which completes our proof.

Finally we are now ready to introduce our main

theorem giving the right bound approximation:

Theorem 1. Given precision in digits (d)

and data size n, the right index bound

t for the binomial normalizing sums is
⌈

2 +
√

−2n ln(2 · 10−d − 100−d)
⌉

.

Proof. First we approximate the upper bound of the

partial binomial normalizing sum from 0 to r:

r
∑

k=0

nk

nk
≤ 1 +

r
∑

k=1

(

1 − k − 1

2n

)k−1

(22)

≤ 1 +
r
∑

k=1

e−
(k−1)2

2n (23)

≤ 2 +

∫ r

k=2
e−

(k−2)2

2n (24)

= 2 +

√

nπ

2
erf

(

r − 2√
2n

)

= F (r) (25)

Previous inequality steps follow easily from propo-

sitions 1, 2 and 3. Now we can express the precision

in digits (d) with the equation

− log10

(

F (n) − F (r)
√

nπ
2

)

= d, (26)

where the denominator inside the logarithm is a

lower bound approximation for the binomial nor-

malizing sum. For example Laplace’s method gives

for (6) the approximation (Flajolet and Sedgewick,

2005):

C(2, n) =

√

nπ

2
+

2

3
+ O

(

1√
n

)

. (27)

By omitting the constant term, we get our lower

bound approximation for the denominator, which is

valid for all data sizes (exact proof omitted). Thus

we have

− log10





√

nπ
2 −

√

nπ
2 erf

(

r−2√
2n

)

√

nπ
2



 = d (28)

− log10

(

1 − erf
(

r − 2√
2n

))

= d. (29)

We replaced the first error function in (26) with its

supremum value 1 and got (28). If we solve r, we

have

r = 2 +
√

2n · R, (30)

where

R = erf−1(1 − 10−d). (31)

The final task is now to approximate the inverse of

the error function (Winitzky, 2008). We need this

for approximating R to get a nice, clean and com-

putable bound. First we compute the Taylor approx-

imation:

g(x) = ln(1 − erf(x)2) ≈ − 4

π
x2 + O(x4). (32)

We need only the first non-zero term for our pur-

pose. The approximation is then

erf(x) =
√

1 − eg(x) ≈
√

1 − e−
4x2

π , (33)

and it is good enough as our tests later show. This is

not a lower bound approximation, but we need one,

because we invert the approximating function. A

little dirty trick solves our problem. We just change

the multiplier 4 to π (Proposition 4). This new func-

tion can be easily inverted and the result therefore is

erf−1(u) =
√

− ln(1 − u2). (34)

The final step is to set u = 1 − 10−d and we have

the result

R ≈
√

− ln(1 − (1 − 10−d)2) (35)

=
√

− ln(2 · 10−d − 100−d). (36)

We continue approximating R, because for the

time complexity reasons, we need a simplified form

to see the magnitude of this term. We easily see that

√

− ln(2 · 10−d − 100−d) ≤
√

− ln(10−d) (37)

=
√

d ln(10), (38)

and therefore the required number of terms is

O(
√

dn).

The index bound seems to be quite good. In Fig-

ure 2 we have plotted optimal indexes and indexes

given our bound with respect to data size n. We

chose precisions so that they correspond approxi-

mately to single and double precision floating-point

numbers. If n is one million, the index error is about

+250 in both cases. The single precision error is a
bit larger than the double precision error, because

the index bound is getting tighter as precision in-

creases.

4 The Multinomial Normalizing Sum

4.1 Properties of the Sum Terms

As we already saw, the ratio of the terms of the bino-

mial normalizing sum is a simple rational function.

In the multinomial case the ratio is the function

mk

mk−1
=

(n − k + 1)(k + L − 2)

nk
. (39)

Let us look at the terms of the multinomial normal-

izing sum. Figure 3 suggest that there is the biggest

term and if we look at the term function, we see that

it is unimodal. The next theorem and its proof give

formal justifications for these claims.

Theorem 2. The index of the biggest term

of the multinomial normalizing sum is
⌊

1
2

(

3 − L +
√

L2 + (4n − 2)L − 8n + 1
)⌋

.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200000 400000 600000 800000 1e+06

ri
g

h
t

b
o

u
n

d

data size

Figure 2: Terms needed for 16 (above) and 7 digit

precisions with given data size. Actual approxima-

tions are shown as thick solid line. Thin dotted lines

represent optimal index values.

Proof. We have to solve the equation

mk

mk−1
= 1 (40)

with respect to k. In other words, we are interested

in values of real-valued k, where two consecutive

sum terms have the same value. This requires solv-

ing roots of second order polynomial with respect to

k. The other root is always negative and therefore

is not in our range; let us denote the positive root

by r. We are allowed to take the floor, because we

know that the peak is between continuous index val-

ues r − 1 and r. Outside this range all the sum term

values are smaller than inside the range. Inside this

range there are one or two integer points. If only

one, then it is ⌊r⌋. If there are two integer indexes,
then r−1 and r must be these and they both give the

same maximum value and thus ⌊r⌋ gives the other
of the two maximum values.

This proved at the same time that the sum terms

are getting bigger until they reach the peak, after

which they start getting smaller. This unimodality

gives us a great opportunity to construct simple and

efficient algorithms.

4.2 About the Index Bounds

We can guess from the 15-nomial in Figure 3 that

if we want to compute the sum in a fixed precision,

we actually have to compute the sum terms from

some s ≥ 0 to some t ≤ n. This means that the

index of the first required term can be bigger than 0.

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

100

200

300

400

500

600

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

1#1033

2#1033

3#1033

4#1033

Figure 3: Magnitude of the first 8000 terms of the
trinomial (left) and the 15-nomial (right) normaliz-

ing sums when data size (n) is one million.

However, we have to compute the factorials start-

ing from 0 (to avoid any approximation), so we still
have to start from index 0. Our empirical tests also
show that we have to compute a lot more terms than

in the binomial case. The effect is visible also by

comparing figures 1 and 3. However, we can use

(8) for computing the multinomial normalizing sum

when the value of the binomial normalizing sum is

known. This recurrence formula method seems to

be much more efficient and therefore it is unneces-

sary to prove bounds in the multinomial case.

5 Sub-Linear Algorithms

First we present a simple algorithm (Algorithm 1),

which is validated directly by unimodality. The ba-

sic idea is that the algorithm can sum the terms of

a multinomial sum until the sum does not change

anymore. Terms of the left slope always change the

sum because each term is bigger than the previous

one. After the peak, terms are monotonically getting

smaller, and we know that the terms are never get-

ting bigger anymore. Therefore the algorithm can

stop after the sum has converged. All terms in the

tail are so small and decaying so rapidly, that they

cannot have a significant effect on the finite sum

(we will return to this subject after the second al-

gorithm). A precision of the result is determined by

the precision of the used floating-point numbers.

Notice that the algorithm is using the recurrence

mk =
(n − k + 1)(k + L − 2)

nk
· mk−1 (41)

while computing the sum terms. This way we can

avoid huge factorial values and also floating-point

Compute_Multinomial(L,n){

double sum = 1, previous_sum = -1, m = 1;

int k = 1;

for k from 1 to n by 1{

m = (k+L-2) * (n-k+1) / (n*k) * m;

sum = sum + m;

if(sum is same as previous_sum){

return sum;

}

previous_sum = sum;

}

return sum;

}

Algorithm 1: A simple algorithm for computing

the multinomial normalizing sum.

errors seem to be much lower. However the time

complexity is not proved for this algorithm, as we

did not compute the index bounds in the multino-

mial case. In addition, we cannot set the digit pre-

cision freely. For these reasons we present a second

algorithm, which also seems to be twice as fast as

the first one.

The intuitive idea of Algorithm 2 is to first com-

pute the index bound, and then compute the bi-

nomial normalizing sum using the ratio of succes-

sive terms. After this, the algorithm uses the recur-

rence formula to compute the wanted multinomial

normalizing sum. Variable bound is not directly

computable as presented in the pseudocode, but we

can use some standard logarithmic manipulation to

avoid underflow. The time complexity of this sec-

ond algorithm is O(
√

dn + L).

Now we can revise the question about the tail

sum. Terms below the index bound do not affect

the sum, but the first algorithm actually stops in the

binomial case before the right bound is reached, be-

cause single terms do not change the sum. But if we

take a sum starting from the stopping point all the

way to the index bound, we can notice that this tail

sum can affect the original sum. In our empirical

tests we found out that the effect seems to be only

on the few last digits, which is of the same magni-

tude as the floating point errors of our algorithms.

In Figure 4 we can see the average decay of the

last digits with respect to data size. The variance

is small between different numbers of same magni-

tude, so the figure gives a realistic impression. In the

end we decided to keep the algorithms simple, be-

Compute_Multinomial_With_Recurrence(L,n){

double sum = 1, b = 1, old_sum, new_sum;

int k,j;

int bound = ceil(2 + sqrt(-2*n*ln(2*10ˆ(-d)

-100ˆ(-d))));

for k from 1 to bound by 1{

b = (n-k+1) / n * b;

sum = sum + b;

}

old_sum = 1;

for j from 3 to L by 1{

new_sum = sum + (n * old_sum) / (j-2);

old_sum = sum;

sum = new_sum;

}

return sum;

}

Algorithm 2: A faster algorithm for computing the

multinomial normalizing sum.

cause such small errors in the criterion hardly have

any effect on the actual model selection task.

There are two operations that in fact increase pre-

cision. First we found out that the recurrence for-

mula in Algorithm 2 tends to increase precision of

those terms with an odd number of outcomes. Sec-

ond we still have to take a logarithm of the normal-

izing sum, when computing actual stochastic com-

plexity. The effect of the latter operation seem to be

about one digit.

Precise values can be achieved using a simple

trick: use a floating-point precision that is higher

than the precision d, and crop the tail digits (e.g.

quad precision for triple precision).

6 Conclusions

Stochastic complexity is an elegant, information-

theoretic criterion for learning probabilistic graph-

ical model structures. Although probabilistic in na-

ture, it is fully objective and does not involve any

hyperparameters which may be introduce problems

in learning (Silander et al., 2007).

The fastest previously known algorithms for

computing the multinomial stochastic complexity

are O(n)-algorithms. In this paper we showed
that our previous hypergeometric representation of

multinomial normalizing sums can be used for de-

riving sub-linear algorithms.

As the multinomial variable is an important build-

ing block in many more complex model classes,

the results are directly applicable to model selec-

 16

 15

 14

 13

 12

 11

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 12 11 10 9 8 7 6 5 4 3 2 1

A
v
e
ra

g
e
 p

re
c
is

io
n
 i
n
 d

ig
it
s

10-logarithm of data size

Figure 4: Average precision in the binomial normal-

izing sum with respect to data size using double pre-

cision floating-point numbers and Algorithm 2.

tion tasks in these cases as well. However, it should

be noted that if the learning criterion is defined

via the standard normalized maximum likelihood,

the savings in the overall computational complex-

ity are not necessarily very significant: for exam-

ple, in the Naive Bayes case (classification or clus-

tering tasks if the root node is hidden), the learn-

ing criterion involves a product of multinomial nor-

malizing sums corresponding to the predictor vari-

ables, and these can be now computed in sub-linear

time using the results above. Nevertheless, the real

bottleneck of the computation process is a convolu-

tion operation, which still takes at leastO(n2 log L)
floating-point operations to compute (Mononen and

Myllymäki, 2007). Similarly, when learning tree-

structured Bayesian networks (Mononen and Myl-

lymäki, 2008a), we can speed-up some parts of the

computation, but not all.

On the other hand, there now exists a slightly

different way to define the stochastic complex-

ity, based on the factorized NML (fNML) crite-

rion (Roos et al., 2008). The fNML criterion can be

used in the Naive Bayes or in the Bayesian tree case,

or even for learning Bayesian networks (DAGs) in

general. In this case, the learning criterion factor-

izes into a product of multinomials, which means

that the speed-up offered by our sub-linear algo-

rithm is more apparent.

Acknowledgments

This work was supported in part by the Academy

of Finland under the project Civi and by the Finnish

Funding Agency for Technology and Innovation un-

der the projects Kukot and PMMA. In addition, this

work was supported in part by the IST Programme

of the European Community, under the PASCAL

Network of Excellence.

References

P. Flajolet and R. Sedgewick. 2005. Analytic Combina-
torics. Unpublished.

P. Grünwald. 2007. The Minimum Description Length
Principle. MIT Press.

P. Kontkanen and P. Myllymäki. 2007. A linear-time
algorithm for computing the multinomial stochas-
tic complexity. Information Processing Letters,
103(6):227–233.

T. Mononen and P. Myllymäki. 2007. Fast NML com-
putation for Naive Bayes models. In V. Corruble,
M. Takeda, and E. Suzuki, editors, Proceedings of the
10th International Conference on Discovery Science,
October.

T. Mononen and P. Myllymäki. 2008a. Computing the
NML for Bayesian forests via matrices and generating
polynomials. In Proceedings of the IEEE Information
Theory Workshop, Porto, Portugal, May.

T. Mononen and P. Myllymäki. 2008b. On the multi-
nomial stochastic complexity and its connection to
the birthday problem. In Proceedings of the Interna-
tional Conference on Information Theory and Statisti-
cal Learning, Las Vegas, NV, July.

J. Rissanen. 2007. Information and Complexity in Sta-
tistical Modeling. Springer.

T. Roos, T. Silander, P. Kontkanen, and Myllymäki P.
2008. Bayesian network structure learning using fac-
torized NML universal models. In Proceedings of the
Information Theory and Applications Workshop, San
Diego, CA, January.

Yu.M. Shtarkov. 1987. Universal sequential coding of
single messages. Problems of Information Transmis-
sion, 23:3–17.

T. Silander, P. Kontkanen, and P. Myllymäki. 2007. On
sensitivity of the MAP Bayesian network structure to
the equivalent sample size parameter. In R. Parr and
L. van der Gaag, editors, Proceedings of the 23rd Con-
ference on Uncertainty in Artificial Intelligence, pages
360–367. AUAI Press.

S. Winitzky. 2008. A handy approximation for the error
function and its inverse. Unpublished.

