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Abstract

In a Bayesian network, for any node its conditional probabilities given all possible com-
binations of values for its parent nodes are specified. In this paper a new notion, the
parental synergy, is introduced which can be computed from these probabilities. This
paper also conjectures a general expression for the error which is found in the marginal
prior probabilities computed for a node when the parents of this node are assumed to be
independent. The parental synergy is an important factor of this expression; it determines
to what extend the actual dependency between the parent nodes can affect the computed
probabilities. This role in the expression of the prior convergence error indicates that the
parental synergy is a fundamental feature of a Bayesian network.

1 Introduction

A Bayesian network is a concise representation
of a joint probability distribution over a set
of stochastic variables, consisting of a directed
acyclic graph and a set of conditional probabil-
ity distributions (Pearl, 1988). The nodes of
the graph represent the variables of the distri-
bution. From a Bayesian network, in theory,
any probability of the represented distribution
can be inferred. Inference, however, is NP-hard
in general (Cooper, 1990) and may be infeasi-
ble for large, densely connected networks. For
those networks, approximate algorithms have
been designed. A widely used algorithm for ap-
proximate inference with a Bayesian network is
the loopy-propagation algorithm (Pearl, 1988).

In Bolt and van der Gaag (2004), we stud-
ied the performance of the loopy-propagation
algorithm from a theoretical point of view. We
observed that in a network in its prior state,
a prior convergence error may arise in the
marginal probabilities computed for a node with
two or more incoming arcs and noted that such
an error may arise because the algorithm as-
sumes the parents of a node to be independent,
while, in fact, they may be dependent. There-
after, for binary networks, we derived an ex-
pression for the prior convergence error found

in a node with two incoming arcs. This expres-
sion is composed of some factors that capture
the degree of dependency between the parents
of this node, and of a weighting factor w that
determines to what extent this degree of depen-
dency can contribute to the prior convergence
error. The factor w is composed of the condi-
tional probabilities specified for the node.

In this paper, the notion of parental synergy
is introduced. This notion is a generalisation
of the factor w and can be computed for each
node, irrespective its number of parents and
irrespective of the cardinality of the involved
nodes. Thereafter, the expression for the prior
convergence error is generalised to nodes with
an arbitrary number of parents and to network
with nodes of arbitrary cardinality. In this gen-
eralised expression, the parental synergy ful-
fils the role of weighting factor. The role of
the parental synergy in the expression of the
prior convergence error indicates that it cap-
tures a fundamental feature of the probability
landscape in a Bayesian network.

More details about the research described in
this paper can be found in Bolt (2008).

2 General Preliminaries

A Bayesian network is a model of a joint prob-
ability distribution Pr over a set of stochas-



tic variables V, consisting of a directed acyclic
graph and a set of conditional probability dis-
tributions1. Each variable A is represented by
a node A in the network’s digraph2. (Condi-
tional) independency between the variables is
captured by the digraph’s set of arcs accord-
ing to the d-separation criterion (Pearl 1988).
The strength of the probabilistic relationships
between the variables is captured by the con-
ditional probability distributions Pr(A | p(A)),
where p(A) denotes the instantiations of the
parents of A. The joint probability distribution
is presented by:

Pr(V) =
∏

A∈V

Pr(A | p(A))

Figure 1 depicts the graph of an example
Bayesian network. The network includes a node
C with n parents A1, . . . , An, n ≥ 0. The nodes
A1, . . . , An in turn have a common parent D.
For n = 0 and n = 1, no loop is included in
the network. For n = 2, the graph consists of a
simple loop. For n > 2, the graph consists of a
compound loop; for n = 3, this compound loop
will be termed a double loop.

For a Bayesian network with a graph as de-
picted in Figure 1, the marginal probability
Pr(ci) equals:

Pr(ci) =
∑

A

Pr(ci | A) · Pr(A)

Wrongfully assuming independence of the par-

ents A1, . . . , An would give the approximation
P̃r(ci):

P̃r(ci) =
∑

A

Pr(ci | A) · Pr(A1) · . . . · Pr(An)

In the loopy-propagation algorithm (Pearl,

1Variables will be denoted by upper-case letters (A,
A

i), and their values by indexed lower-case letters (ai);
sets of variables by bold-face upper-case letters (A) and
their instantiations by bold-face lower-case letters (a).
The upper-case letter is also used to indicate the whole
range of values of a variable or a set of variables. Given
binary variables, A = a1 is often written as a and A = a2

is often written as ā.
2The terms node and variable will be used inter-

changeably.
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Figure 1: An example graph of a Bayesian net-
work with a node C with the dependent parents
A1, . . . , An.

1988), a widely used algorithm for approxi-
mate inference, indeed the parents of a node
are always considered to be independent. With
this algorithm, in the network from Figure 1
for node C the probabilities P̃r(ci) would be
yielded.

In Bolt and van der Gaag (2004), we termed
the error which arises in the marginal prior
probabilities computed for a child node under
assumption of independence of its parent nodes,
a prior convergence error. Moreover, we anal-
ysed the prior convergence error found in a bi-
nary network with a graph consisting of a node
C with just the parents A and B with the com-
mon parent D, as the network depicted in Fig-
ure 2.

A B

C

D

Pr(d) = 0.5

Pr(a | d) = 0.5
Pr(a | d̄) = 0.9

Pr(b | d) = 0.1
Pr(b | d̄) = 0.9

Pr(c | ab) = 1
Pr(c | ab̄) = 0

Pr(c | āb) = 0
Pr(c | āb̄) = 1

Figure 2: An example Bayesian network with a
node C with the dependent parents A and B.

For the prior convergence error vi = Pr(ci)−

P̃r(ci) in such a network the following expres-
sion was found:

vi = l · m · n · w



where

l = Pr(d) − Pr(d)2

m = Pr(a | d) − Pr(a | d̄)

n = Pr(b | d) − Pr(b | d̄)

w = Pr(ci | ab) − Pr(ci | ab̄)

−Pr(ci | āb) + Pr(ci | āb̄)

The factors were illustrated graphically with
Figure 3. The line segment in this figure cap-
tures the exact probability Pr(c) as a function
of Pr(d), given the conditional probabilities for
the nodes A, B and C from Figure 2. Pr(d)
itself is not indicated in the figure, note how-
ever, that each particular Pr(d) has a corre-
sponding Pr(a) and Pr(b). The end points of
the line segment, for example, are found at
Pr(d) = 1 with the corresponding Pr(a) = 0.5
and Pr(b) = 0.1 and at Pr(d) = 0 with the cor-
responding Pr(a) = 0.9 and Pr(b) = 0.9. The

surface captures P̃r(c) as a function of Pr(a)
and Pr(b), given the conditional probabilities
for node C. The convergence error equals the
distance between the point on the line segment
that matches the probability Pr(d) from the net-
work and its orthogonal projection on the sur-
face. For Pr(d) = 0.5 the difference between

Pr(c) and P̃r(c) is indicated by the vertical dot-
ted line segment and equals 0.66 − 0.5 = 0.16.
The factor l now reflects the location of the
point with the exact probability on the line seg-
ment and the factors m and n reflect the loca-
tion of the line segment. The factor w, to con-
clude, reflects the curvature of the surface with
the approximate probabilities. This curvature
is determined by the change of the influence of
one of the parent nodes on C occasioned by the
change of the value of the other parent node.
We argued that the factors l, m and n capture
the degree of dependency between the parent
nodes A and B and that the factor w acts as
a weighting factor, determining to what extent
the dependence between A and B can affect the
computed probabilities.

The factor w, as used in the expression for
the convergence error above, only applies to
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Figure 3: The line segment capturing Pr(c) and

the surface capturing P̃r(c), for the example net-
work from Figure 2.

nodes with two binary parents. In the next Sec-
tion, this factor is extended to a general notion
which will be called the parental synergy. Sub-
sequently, in Sections 4 and 5, the expression of
the prior convergence error is generalised to a
node C with an arbitrary number of dependent
parents and with parents of arbitrary cardinal-
ity. The parental synergy is an important factor
of these expressions and, analogous to the factor
w, has the function of weighting factor.

3 The Parental Synergy

Before formally defining the parental synergy,
the indicator function δ on the joint value
assignments a1

i1, . . . , a
n
in to a set of variables

A1, . . . , An, n ≥ 0, given a specific assignment
a1

s1, . . . , a
n
sn to these variables is introduced:

δ(a1

i1, . . . , a
n
in | a1

s1, . . . , a
n
sn) =

{
1 if

∑
k=1,...,n ak

ik 6= ak
sk is even

−1 if
∑

k=1,...,n ak
ik 6= ak

sk is odd

where true ≡ 1 and false ≡ 0. The in-
dicator function compares the joint value as-
signment a1

i1, . . . , a
n
in with the joint assignment

a1

s1, . . . , a
n
sn, and counts the number of differ-

ences: the assignment a1

i1, . . . , a
n
in is mapped to

the value 1 if the number of differences is even
and is mapped to −1 if the number of differ-
ences is odd. For the binary variables A and B,



for example, δ(ab | ab) = 1, δ(ab̄ | ab) = −1,
δ(āb | ab) = −1 and δ(āb̄ | ab) = 1.

Building upon the indicator function δ, the
notion of parental synergy is defined as follows:

Definition 3.1. Let B be a Bayesian net-
work, representing a joint probability distribu-
tion Pr over a set of variables V. Let A =
{A1, . . . , An} ⊆ V, n ≥ 0, and let C ∈ V such
that C is a child of all variables in the set A,
that is, Aj → C, j = 1, . . . , n. Let a be a joint
value assignment to A and let ci be a value of
C. Furthermore, let X ⊆ ρ(C)\A, where ρ(C)
denotes the parents of C, and let x be a value as-
signment to X. The parental synergy of a with
respect to ci given X = x, denoted as Y

⋆

x (a, ci),
is

Y
⋆

x (a, ci) =
∑

A

δ(A | a) · Pr(ci | Ax)

2

Given an an empty value assignment to the
nodes X, the parental synergy is denoted by
Y

⋆

(a, ci).

Example 3.2. Consider an arbitrary-valued
node C with the two ternary parents A and
B; the conditional probabilities for the value
ci of C given A and B, are listed in Table 1.
The parental synergy Y

⋆

(a2b2, ci) of a2 and b2

with respect to ci, for example, is computed
from Pr(ci | a1b1) − Pr(ci | a1b2) + Pr(ci |
a1b3) − Pr(ci | a2b1) + Pr(ci | a2b2) − Pr(ci |
a2b3) + Pr(ci | a3b1) − Pr(ci | a3b2) + Pr(ci |
a3b3) = 2.0. Table 2 lists all parental synergies
Y

⋆

(ajbk, ci), j, k = 1, 2, 3. 2

Table 1: The conditional probabilities Pr(ci |
AB) for a variable C with the ternary parents
A and B.

Pr(ci | AB) a1 a2 a3

b1 0.7 0.2 0.3
b2 0.2 1.0 0.8
b3 0.4 0.1 0.9

Table 2: The parental synergies matching the
conditional probabilities Pr(ci | AB) from Ta-
ble 1.

Y
⋆

(AB, ci) a1 a2 a3

b1 2.4 0.4 −0.6
b2 −1.2 2.0 −0.2
b3 0.8 −0.4 1.4

From the definition of parental synergy, it is
readily seen that for a binary parent Ak of C,
we have that Y

⋆

x (aak, ci) = −Y
⋆

x (aāk, ci) for
any value assignments a and x. For a node C
with binary parents only, therefore, for a given
x the parental synergies with respect to some
value ci can only differ in sign. From the defini-
tion it further follows that given a binary par-
ent Ak of C, with the values ak

m and ak
n, that

Y
⋆

x (aak
m, ci) = Y

⋆

xak
m

(a, ci) − Y
⋆

xak
n

(a, ci).

Example 3.3. Consider an arbitrary-valued
node C with the ternary parent A and the bi-
nary parent B; the conditional probabilities for
the value ci of C given A and B, are listed in Ta-
ble 3; the matching parental synergies are listed
in Table 4. It is easily verified that Y

⋆

(Ab, ci)
equals −Y

⋆

(Ab̄, ci) for all possible values of A.
Furthermore from, for example, Y

⋆

(a1b, ci) =
(0.8 − 0.3 − 0.5) − (0 − 0.4 − 0.9) = 1.3,
Y

⋆

b (a1, ci) = 0.8−0.3−0.5 = 0 and Y
⋆

b̄
(a1, ci) =

0 − 0.4 − 0.9 = −1.3, it is readily verified that
Y

⋆

(a1b, ci) = Y
⋆

b (a1, ci) − Y
⋆

b̄
(a1, ci). 2

Table 3: The conditional probabilities Pr(ci |
AB) for a node C with the ternary parent A
and the binary parent B.

Pr(ci | AB) a1 a2 a3

b 0.8 0.3 0.5
b̄ 0.0 0.4 0.9

For a node with only binary parents, the
parental synergies can be thought of as a mea-
sure of the feasible changes in its probability
landscape, given a change in the value of one of
its parents. This is explained in more detail be-
low. When no parents are involved, the parental



Table 4: The parental synergies matching the
conditional probabilities Pr(ci | AB) from Ta-
ble 3.

Y
⋆

(AB, ci) a1 a2 a3

b 1.3 −0.5 −1.1
b̄ −1.3 0.5 1.1

synergy with respect to a value ci of a node C
equals zero, reflecting that no change is possible.
For a node C with a parent A, the parental syn-
ergy of, for example, a with respect to ci equals
Pr(ci | a)−Pr(ci | ā) and thus gives the feasible
change in the probability of ci, given a change of
the value of A from ā to a. For a node C with
parents A and B, the parental synergy of, for
example, ab with respect to ci equals

(
Pr(ci |

ab)−Pr(ci | āb)
)
−
(
Pr(ci | ab̄)−Pr(ci) | āb̄)

)
3.

It thus gives the difference between the feasible
change of the probability of ci given a change of
the value of A from ā to a when the value of B
is b and when the value of B is b̄4. And so on.
Note that the number of parent nodes involved
in the computation of the parental synergy can
be considered to determine a kind of ‘dimen-
sionality’ of the synergy. Note furthermore that
for multiple-valued variables, the interpretation
of the parental synergy as a measure of feasible
change does not hold straightforwardly. Con-
sider, for example, a three valued parent A with
a child C. Given, for example, the conditional
probabilities Pr(c | a1) = 0.7, Pr(c | a2) = 0.7
and Pr(c | a3) = 0.7, the parental synergy of ai

with respect to c equals 0.7 − 0.7 − 0.7 = −0.7,
whereas no change in the probability of c can
be occasioned by a change in the value of A.
Note, to conclude, that the parental synergy
is related to the concepts of qualitative influ-
ence and additive synergy as defined for qualita-
tive probabilistic networks by Wellman (1990).
Most obviously, in a binary network, given a
node C with a single parent A, the sign of the

3Or equally
`

Pr(ci | ab) − Pr(ci | ab̄)
´

−
`

Pr(ci |

āb) − Pr(ci | āb̄)
´

.
4Or equally: it gives the difference between the feasi-

ble change of the probability of ci given a change of the
value of B from b̄ to b when the value of A is a and when
the value of A is ā

qualitative influence between A and C is com-
puted from Pr(c | a) − Pr(c | ā), which equals
Y

⋆

x (a, c); given a node C with just the parents
A and B the sign of the additive synergy of
A and B with respect to C is computed from
Pr(c | ab) − Pr(c | ab̄) − Pr(c | āb) + Pr(c | āb̄),
which equals Y

⋆

x (ab, c).

4 The Convergence Error given

Binary Nodes

In section 2 an expression for the prior conver-
gence error found in the marginal prior proba-
bilities of a node C with the two binary parent
nodes A and B with a common binary parent
D was given. In Section 4.1 an alternative for
this expression is stated. This alternative ex-
pression is more apt for generalisation. It will
be extended to apply to convergence nodes with
more than two binary parents in Section 4.2 and
it will be extended to multiple valued nodes in
Section 5.

4.1 Two Parent Nodes; an Alternative

Expression

The expression for the prior convergence error
from Section 2 can also be written as

vi = (s − t) · w

where w is as before and

s =
∑

D

Pr(a | D) · Pr(b | D) · Pr(D)

t =

(
∑

D

Pr(a | D) · Pr(D)

)
·

(
∑

D

Pr(b | D) · Pr(D)

)

The degree of dependency between the nodes A
and B now is captured by s − t instead of by
l · m · n. Note that the term s equals Pr(ab)
and that the term t equals Pr(a) · Pr(b). Note
furthermore that w = Pr(ci | ab)−Pr(ci | ab̄)−
Pr(ci | āb) + Pr(ci | āb̄) equals Y

⋆

(ab, ci).
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Figure 4: A node C with the dependent parents
A1, A2 and A3.

4.2 Multiple Parent Nodes

Consider the network from Figure 4. For three
parent nodes, the expression for the prior con-
vergence error vi is found by subtracting the
approximate probability

P̃r(ci) =
∑

A1,A2,A3

Pr(ci | A1A2A3)·

Pr(A1) · Pr(A2) · Pr(A3)

from the exact probability

Pr(ci) =
∑

A1,A2,A3,D

Pr(ci | A1A2A3)·

Pr(A1 | D) · Pr(A2 | D) · Pr(A3 | D) · Pr(D)

and manipulating the resulting terms. This re-
sults in the following expression

vi = (sa1a2a3 − ta1a2a3) · w +

(sa2a3 − ta2a3) · wā1(a2a3) +

(sa1a3 − ta1a3) · wā2(a1a3) +

(sa1a2 − ta1a2) · wā3(a1a2)

where

sa1a2a3 =
∑

D

∏

i=1,2,3

Pr(ai | D) · Pr(D)

ta1a2a3 =
∏

i=1,2,3

∑

D

Pr(ai | D) · Pr(D)

w = Y
⋆

(a1a2a3, ci)

saman =
∑

D

Pr(am | D) · Pr(an | D) · Pr(D)

taman =

(
∑

D

Pr(am | D) · Pr(D)

)
·

(
∑

D

Pr(an | D) · Pr(D)

)

wāl(aman) = Y
⋆

āl(a
man, ci)

The convergence error is composed of the term
(sa1a2a3 − ta1a2a3) · w which pertains to the en-
tire double loop, and the three terms (saman −
taman) · wāl(aman) which pertain to the three
simple loops that are included within the dou-
ble loop. Note that sa1a2a3 equals Pr(a1a2a3);
ta1a2a3 equals Pr(a1) · Pr(a2) · Pr(a3); saman

equals Pr(aman) and taman equals Pr(am) ·
Pr(am).

Now consider a convergence node C with the
binary parents A1, . . . , An and the common par-
ent D of A1, . . . , An. It is posed as a conjecture
that the following expression captures the prior
convergence error vi for the value ci of C:

vi =
∑

m

(sam − tam) · wā1...ān\am(am)

where

m ∈ P({1, . . . , n})

am = ax . . . ay for m = {x, . . . , y}

sam =
∑

D

∏

i∈m

Pr(ai | D) · Pr(D)

tam =
∏

i∈m

∑

D

Pr(ai | D) · Pr(D)

wā1...ān\am(am) = Y
⋆

ā1...ān\am(am, ci)

in which ā1 . . . ān\am denotes the value assign-
ment ‘False’ to the nodes included in the set
{A1, . . . , An}\{Ax, . . . , Ay}. This expression is
a straightforward generalising of the expression
for the prior convergence error given three par-
ent nodes. Note that, analogous to before, the
term sam equals Pr(ax . . . ay) and the term tam

equals Pr(ax) · . . . · Pr(ay). Further note that



the expression includes terms for all possible
loops included in the compound loop. The term
with m = 1, . . . , n, pertains to the entire com-
pound loop. With |m| = n − 1, the n com-
pound loops with a single incoming arc of C
deleted are considered, and so on. Note also
that, if the number of elements of m is smaller
than two, just one parent or no parents are
left; the term sam then equals the term tam and
(sam − tam) · wā1...ān\am(am) equals zero.

5 The Convergence Error given

Multiple-valued Nodes

In the generalisation of the expression of
the prior convergence error to multiple-valued
nodes, a preliminary observation is that the ex-
pressions for this error from Section 4 involve
just a single value ci of the convergence node
and therefore are valid for multiple-valued con-
vergence nodes as well. Furthermore is ob-
served that these expressions also provide for
a multiple-valued node D. In this section ex-
pressions for the convergence error given parent
nodes with an arbitrary number of values are
proposed.

5.1 Two Parent Nodes

Consider a Bayesian network with a graph as
the graph of network from Figure 2. It is posed
as a conjecture that the following expression
captures the prior convergence error for C.

vi =
∑

A,B

(sAB − tAB) · w(AB)/4

where

sAB =
∑

D

Pr(A | D) · Pr(B | D) · Pr(D)

tAB =

(
∑

D

Pr(A | D) · Pr(D)

)
·

(
∑

D

Pr(A | D) · Pr(D)

)

w(AB) = Y
⋆

(AB, ci)

This conjecture was supported by the fact that
for several example networks the expression in-
deed yielded the prior convergence error.

Note that, analogous to the binary case, the
term sAB equals Pr(AB) and the term tAB

equals Pr(A) · Pr(B). In contrast with the bi-
nary case, now all different value combinations
of the nodes A and B are considered. The im-
pact of the dependency between a specific com-
bination of values for the nodes A and B on the
convergence error is determined by the parental
synergy of this combination with respect to the
value ci of node C. Further note that the ex-
pression for the convergence error now includes
a division by a constant. This constant equals
2n, where n is the number of loop parents of the
convergence node.

5.2 Multiple Parent Nodes

In Section 4.2, the expression for the conver-
gence error was extended to convergence nodes
with an arbitrary number of binary parent
nodes and in Section 5.1 the expression was ex-
tended to convergence nodes with two multiple
valued parent nodes. Now, it is posed as a con-
jecture, that these expressions combine into the
following general expression for the prior con-
vergence error. Given a network with a graph,
consisting of a convergence node C with the par-
ents A1, . . . , An and the common parent D of
A1, . . . , An, as the graph depicted in Figure 1,
the convergence error equals

vi =
∑

m

[∑

Am

(
(sAm − tAm)·

∑

A1,...,An\Am

wA1,...,An\Am(Am)
)]

/2n

where

m ∈ P({1, . . . , n})

Am = Ax, . . . , Ay, m = {x, . . . , y}

sAm =
∑

D

∏

i∈m

Pr(Ai | D) · Pr(D)

tAm =
∏

i∈m

∑

D

Pr(Ai | D) · Pr(D)

wA1...An\Am(Am) = Y
⋆

A1...An\Am(Am, ci)



Again, this conjecture was supported by the fact
that for several example networks the expres-
sion indeed yielded the prior convergence error.

Note that, as before, the term sAm equals
Pr(Ax . . . Ay) and the term tAm equals Pr(Ax) ·
. . . · Pr(Ay). As in the binary case given mul-
tiple parent nodes, all combinations of parent
nodes are considered, now however, for each
combination of parent nodes also all combi-
nations of value assignments to these parent
nodes have to be taken into account. Again,
if the number of elements of m is smaller than
two, that is, if just one parent or zero parents
are considered, then the term sAm equals the

term and tAm and thus
∑

Am

(
(sAm − tAm) ·

∑
A1,...,An\Am wA1,...,An\Am(Am)

)
equals zero.

The general expression, shows that, also in the
general case, the parental synergy is the weight-
ing factor that determines the impact of the de-
gree of dependency between the parent nodes
for a given value assignment, as reflected by
sAm − tAm on the size of the convergence er-
ror.

6 Discussion

In this paper the notion of parental synergy was
introduced. This synergy is computed from the
conditional probabilities as specified for a node
in a Bayesian network. For a node with binary
parents, the parental synergies can be thought
of as a measure of the feasible changes in its
probability landscape, given a change in the
value of one of its parents. Moreover, a gen-
eral expression for the prior convergence error,
was proposed. A prior convergence error arises
in the prior marginal probabilities computed for
a node when its parents are considered to be in-
dependent. This type of error arises in the prob-
abilities computed by the loopy-propagation al-
gorithm; a widely used algorithm for approxi-
mate probabilistic inference. The expression of
the prior convergence error for a node is com-
posed of the parental synergies of this node and
of terms that capture the degree of dependence
between its parent nodes. The parental synergy
acts as weighting factor determining the impact
of the degree of dependency between the parent

nodes on the size of the convergence error.
In this paper, the parental synergy just fea-

tures in the expression of the prior convergence
error. Its role as weighting factor in this ex-
pression, however, indicates that the parental
synergy captures a fundamental characteristic
of the probability landscape of a Bayesian net-
work. It is conceivable, therefore, that the
parental synergy has a wider range of applica-
tion.
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