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Abstract

Recently, much research has been devoted to the study of loopy belief propagation algo-
rithm. However, little attention has been paid to the change of its behavior in relation
with the problem graph topology. In this paper we empirically study the behavior of
loopy belief propagation on different network topologies which include grids, small-world
networks and random graphs. In our experiments, several descriptors of the algorithm are
collected in order to analyze its behavior. We show that the performance of the algorithm
is highly sensitive to changes in the topologies. Furthermore, evidence is given showing
that the addition of shortcuts to grids can determine important changes in the dynamics
of the algorithm.

1 Introduction

Loopy belief propagation (LBP) (Pearl, 1988) is
a very efficient message-passing algorithm that
has been applied to a variety of inference and
optimization problems. One of the factors that
influences the accuracy and efficiency of LBP
and other message-passing algorithms is the un-
derlying graphical structure (or topology) of the
graphical model where the inference algorithm
is applied. Although it is known that the exis-
tence of cycles in the graph has an impact on
the behavior of LBP, little attention has been
given to the study of the relationship between
other characteristics of the graph topology and
the LBP behavior. Moreover, few papers con-
sider possible ways of using the graph topology
to adapt the LBP implementation.

A paper that can be considered an exception
to this trend is (Ohkubo et al., 2005). It de-
scribes a modification of LBP that takes into
account the information about the topological
heterogeneity of the complex networks where it
is applied. It turns out that by modifying the
asynchronous message-passing schedule accord-

ing to the degree of the network vertices it is
possible to increase the efficiency of LBP. The
use of topological information in the scheduling
of the messages could also be seen as another
way of conceiving informed scheduling schemes
of which residual belief propagation (Elidan et
al., 2006) is perhaps the best known example.

Natural candidates for analyzing the influ-
ence of the graph topology on LBP are com-
plex networks, whose topological characteristics
are midway between those of regular lattice or
grids and random graphs. The recent surge on
the study of complex networks (Watts and Stro-
gatz, 1998) is mainly due to their suitability as
a framework for the study of complex systems
(Dorogovtsev et al., 2007).

One example of complex networks are small-
world networks which simultaneously hold some
particular characteristics of regular lattices,
such as the existence of local clustering between
neighboring vertices, with other attributes char-
acteristic of random networks, such as the short
average distance between pairs of vertices. This
combination of attributes makes them more ap-



propriate than grids and random graphs to rep-
resent interaction networks of real phenomena
such as neuronal, social and genetic networks
(Watts and Strogatz, 1998), electronic circuits
(Ferrer i Cancho et al., 2001), etc.

In this paper, we analyze two kinds of prob-
lems related with the use of LBP on networks
of different topology:

1. We consider the change in the dynamics of
LBP when there is a variation in the graph-
ical structure. In particular, we investigate
whether there are significant differences in
the behavior of LBP for problems defined
in grids, small-world and random graphs.

2. We also investigate whether it is possible to
influence the performance and behavior of
LBP by modifying the graphical structure
without changing the function values.

The paper is organized as follows: In the fol-
lowing section the main concepts related to the
class of complex networks and factor graphs are
introduced. Section 3 briefly reviews the LBP
algorithm and in Section 4 the main character-
istics of our implementation, FlexLBP, are ex-
plained. In Section 5, the use of LBP across the
different classes of chosen topologies is analyzed.
Section 6 presents the experiments and analyzes
their results. The paper ends in Section 7 where
the conclusions and topics for future work are
presented.

2 Small-world networks and factor

graphs

2.1 Small-world networks

Let G = (V,E) be an undirected graph, where
V = {v1, . . . , vn} is the set of nodes and E =
{e1, . . . , em} is the set of edges between the
nodes. We use parameter ǫij to represent the
existence of an edge between vertices vi and vj.
ǫij = 1 if there exists such an edge, ǫij = 0
otherwise. Two nodes connected by an edge are
called adjacent and we denote ki to the degree of
a given vertex vi, which is the number of edges
connecting vi with other nodes. The shortest

path length between vertices vi and vj is de-
noted dij . We assume the graph G is connected
and, therefore, dij is finite and positive ∀i, j.

Let |Γi| be the number of connections be-
tween the nearest neighbors of a node vi ∈ V

and Ci = |Γi|
ki(ki−1) , the clustering coefficient C

is calculated as C = 1
n

∑
i Ci. The path length

is calculated as L = 1
n(n−1)

∑
i6=j dij .

Small-world networks are characterized by
a high clustering coefficient and a small path
length. They can be generated by randomly
replacing a fraction p of the links of a d-
dimensional lattice with new random links.
Since the new links decrease the shortest path
length between the connected nodes, they are
usually called shortcuts. The two limiting val-
ues of p = 0 and p = 1 respectively correspond
to a regular lattice and a random graph. p is
commonly called the rewiring probability.

Different patterns can be identified in the con-
nectivity of small-world networks resulting in a
classification (Amaral et al., 2000) of these net-
works in scale-free networks, broad-scale net-
works and single-scale networks. For more de-
tails on small-world and other complex net-
works, (Amaral et al., 2000; Barthélémy and
Amaral, 1999; Dorogovtsev et al., 2007) can be
consulted.

2.2 Factor graphs

Factor graphs (Kschischang et al., 2001) are bi-
partite graphs with two different types of nodes:
variable nodes and factor nodes. Each vari-
able node identifies a single variable Xi that
can take values from a (usually discrete) do-
main, while factor nodes fj represent different
functions whose arguments are subsets of vari-
ables. This is graphically represented by edges
that connect a particular function node with its
variable nodes (arguments).

Factor graphs are appropriate to represent
those cases in which the joint probability dis-
tribution can be expressed as a factorization of
several local functions:

p(x1, . . . , xn) =
1

Z

∏

jǫJ

fj(xj) (1)

where Z =
∑

x

∏
jǫJ fj(xj) is a normalization



constant, n is the number of variable nodes,
J is a discrete index set, Xj is a subset of
{X1, . . . ,Xn}, and fj(xj) is a function contain-
ing the variables of Xj as arguments.

The structure of a factor graph can be deter-
mined from a given undirected network by as-
sociating a factor node to each edge in the net-
work. We use factor graphs as the base graphi-
cal for the application of LBP.

3 Loopy belief propagation

LBP works by exchanging messages between
nodes. Each node sends and receives messages
until a stable situation is reached. Messages,
locally calculated by each node, comprise sta-
tistical information concerning neighbor nodes.

When applied on factor graphs, two kinds of
messages are identified (Yedidia et al., 2005):
messages ni→a(xi) sent from a variable node i

to a factor node a, and messages ma→i(xi) sent
from a factor node a to a variable node i.

Messages are updated according to the fol-
lowing rules:

ni→a(xi) :=
∏

cǫN(i)\a

mc→i(xi) (2)

ma→i(xi) :=
∑

xa\xi

fa(xa)
∏

jǫN(a)\i

nj→a(xj)

(3)

ma→i(xi) := arg max
xa\xi

{fa(xa)
∏

jǫN(a)\i

nj→a(xj)}

(4)
where N(i)\a represents all the neighboring
factor nodes of node i excluding node a, and∑

xa\xi
expresses that the sum is completed

taking into account all the possible values that
all variables except Xi in Xa can take –while
variable Xi takes its xi value.

Equations 2 and 3 are used when marginal
probabilities are looked for (sum-product). By
contrast, in order to obtain the most proba-
ble configurations (max-product), Equations 2
and 4 should be applied.

When the algorithm converges (i.e. mes-
sages do not change), marginal functions (sum-
product) or max-marginals (max-product),
gi(xi), are obtained as the normalized product
of all messages received by Xi:

gi(xi) ∝
∏

aǫN(i)

ma→i(xi) (5)

Regarding the max-product approach, when
the algorithm converges to the most probable
value, each variable in the optimal solution is as-
signed the value given by the configuration with
the highest probability at each max-marginal.

4 FlexLBP program

As described in the previous sections, LBP is a
widely studied and used algorithm and has been
rediscovered and adapted repeatedly to partic-
ular problems. Thus, different implementations
have been developed since the algorithm was
first proposed, although most of them focus on a
particular scheduling policy, stopping criterion,
etc.

In our LBP implementation (FlexLBP), we
have designed a flexible tool, so that researchers
can tune different parameters according to the
characteristics of the problem they are fac-
ing. The FlexLBP implementation has been
done following a distributed scheme. That is,
each node runs independently, triggered by the
message(s) it receives. Additionally, different
scheduling policies (asynchronous, synchronous,
and even particular rules for individual nodes)
can be selected. In addition, the set of nodes
that start sending messages can be customized,
the order in which messages are processed can
be changed, different values can be set for
the initial messages, and max-product or sum-
product algorithms can be selected. Finally,
and due to the distributed scheme, stopping
conditions are checked locally (in each node).
We have established four different stopping sit-
uations: (1) a given maximum number of iter-
ations is reached (that is, calculated messages
are different), (2) a node stops because all its
neighbors have stopped, (3) message values cal-
culated by a node have not changed in the last



i iterations, and (4) message values calculated
by a node follow a periodic (cyclic) sequence.

To investigate the behavior of LBP, we col-
lect a number of statistics that will be used in
the analysis of the algorithm behavior. These
statistics include information about the four dif-
ferent stopping criteria previously explained.

5 LBP on networks of different

topologies

Key to the evaluation of LBP is the determina-
tion of the network topologies from which the
factor graphs are constructed by associating a
factor node to each edge in the graph. We con-
sider two different scenarios to investigate the
effects of the network topology. These scenarios
are defined by the way the networks are gener-
ated.

5.1 From grids to random graphs

We start from a factor graph Gi constructed
from a 2-dimensional grid with periodic bound-
ary conditions. In Gi, there is a factor between
any pair of nodes that are neighbors in the grid.
The number of nodes is n = ×m where m is the
dimension of the grid. The number of factors is
2n. The function values for each of the factors
are independently generated.

¿From graph Gi, a collection of factor graphs
is generated by rewiring the original edges in
the grid of Gi with probability p. To generate a
rewired graph from Gi, each edge is visited and
a decision about rewiring is made with probabil-
ity p. If the edge if rewired, the variable nodes
in the corresponding factor node are modified
but the factor node’s function values are kept
intact.

5.2 Adding shortcuts

Similar to the previous section, we start from
a factor graph Gi constructed from a 2-
dimensional grid with periodic boundary condi-
tions. In this case, a collection of factor graphs
is generated from graph Gi by adding e edges
to the grid of Gi and associating a factor to
each edge. Three classes of graphs are created
according to the way shortcuts are added:

1. Randomly: Edges are added between two
randomly selected nodes.

2. Max. distance: At each step, an edge is
added between a pair of nodes at maxi-
mum distance in the current network. Ev-
ery time an edge is added, distances are
recalculated.

3. Min. distance: At each step, an edge is
added between a pair of nodes at distance
2 in the current network. Every time an
edge is added, distances are recalculated.

The different procedures used to add the
edges determine differences between the path
lengths of graphs belonging to the different
groups. Regarding the factor nodes, no matter
which method was used for adding the short-
cuts, the function values for all the configura-
tions of each of the added factors are set to 1.
This means that the contribution of all possi-
ble configurations of these factors to the global
function will be the same and therefore the max-
imum configuration of the original graph (re-
spectively the marginals) will not be modified
by the addition of the factors. However, the in-
troduction of the new factors (or shortcuts) may
have an effect on the LBP dynamics and this is
precisely what we would like to identify.

6 Experiments

6.1 Design of the experiments

The starting graph structures used in our ex-
periments are 2-dimensional grids (m = 7) with
periodic conditions. We use binary variables
(n = 49) and the maximum size of the factor
nodes is 2. Random functions are used. The
values corresponding to each factor node en-
try are generated as Jij = eβ, where β is a
value uniformly chosen from (0, 1). To deter-
mine whether differences between the behavior
of LBP on the different classes of networks are
statistically significant the Kruskal-Wallis test
(Hsu, 1996) has been employed.

In all the following experiments, the maxi-
mum number of messages calculated by each



node was set to 2500 and a node is said to con-
verge when the same message value is repeated
500 times.

6.2 Investigating LBP when the

rewiring probability is increased

In these experiments we investigate how LBP is
affected by the changes in the rewiring prob-
ability p. Since the transition to the small-
network topology is known to occur for small
p values, we generate networks for values of
p ∈ {0.01, 0.02, . . . , 0.1}. In addition, and in
order to observe the behavior of LBP when p is
further increased, we also generate networks for
p ∈ {0.2, 0.3, . . . , 1.0}.

We identify each member of the
graph collection generated from Gi

with a unique assignment to parame-
ters p ∈ {0.01, 0.02, . . . , 0.1, 0.2, . . . , 1.0},
inst ∈ {1, . . . , 100}. Thus, for each value of p,
100 different graphs are generated by rewiring
the edges from Gi with probability p. The total
number of factor graphs generated starting
from Gi is 1900. Since in our experiments we
conducted experiments with 10 initial graphs,
i.e. i ∈ {1, . . . , 10}, and the max and sum
versions of LBP were used, the total number of
LBP runs was 38, 000.

Figures 1, 2 and 3 show the results of max-
LBP for different values of the rewiring proba-
bility. For each of the descriptors employed, the
results were computed as the average among all
the runs for the 10 different instances. The used
descriptors were: the function value of the best
solution found by LPB, the number of nodes
that converged and the number of iterations for
nodes that converged.

An analysis of Figure 1 reveals the decrease
in the average value of the best solution found
by max-LBP when the rewiring probability is
increased. This may indicate that the type of
constraints introduced by higher values of p de-
termine smaller values of the optimum and/or
that it is more difficult for max-LBP to find the
actual optimum of the functions. Evidence of
the difficulties of max-LBP for converging when
p is increased emerges from the analysis of Fig-
ures 2 and 3. It can be seen that the number of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
62.5

63

63.5

64

64.5

65

F
un

ct
io

n 
va

lu
e 

of
 th

e 
LB

P
 s

ol
ut

io
n

p

Figure 1: Value of the best solution found by
max-LBP for different values of the rewiring
probabilities.
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Figure 2: Number of nodes that converged
when using max-LBP with different values of
the rewiring probabilities.

nodes that converged decreases with p. On the
other hand, the number of iterations needed by
the nodes that converged is higher. Although
the curve describing the number of nodes that
converged is clearly monotonically decreasing,
it seems to be more pronounced as p goes from
0.1 to 0.5 than for p > 0.5. This fact indicates
that the behavior of max-LBP is more sensitive
to changes around certain values or p.

We conducted similar experiments using sum-
LBP for the same set of graphs. As it has been
previously reported (Mooij et al., 2007), LBP
convergence is easier to achieve for the sum case
than for the max case. Figures 4 and 5 re-
spectively show the number of nodes that con-
verge and the average number of iterations for
different values of the rewiring probability. Al-
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Figure 3: Number of iterations for nodes that
converged when using max-LBP with different
values of the rewiring probabilities.

though the number of nodes that converge is
higher, the curve is also monotonically decreas-
ing. Conversely, the number of iterations until
convergence is increased. Therefore, the influ-
ence of the rewiring probability seems to be the
same for max-LBP and sum-LBP.

Results shown in the previous figures corre-
spond to the average for 10 different network
topologies.

For each descriptor we have carried out the
Kruskal-Wallis statistical test to compare the
LBP results for each possible pair of values of
p. For some pairs of values and descriptors, the
test did not find statistically significant differ-
ences.

6.3 Investigating the influence of factor

additions

The purpose of the following experiments is
twofold: First, we investigate the way in which
the addition of shortcuts can modify the be-
havior of LBP. Second, we analyze the influ-
ence that the way in which shortcuts are added
has in the LBP behavior. We are particularly
interested in knowing whether the addition of
shortcuts leads to improvements in the results
achieved by LBP, i.e. better solutions are ob-
tained or the algorithm converges faster.

The number of added edges was fixed to e =
10 and the number of initial graphs to 50. An
instance corresponds to a random assignment of
the function values to the factor nodes defined
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Figure 4: Number of nodes that converged
when using sum-LBP with different values of
the rewiring probabilities.
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Figure 5: Number of iterations for nodes that
converged when using sum-LBP for different
values of the rewiring probabilities.

on the 2-dimensional grid.

For each of the three methods used to add
the edges described in Section 5.2, 50 different
graph structures are created by considering 50
possible ways of adding 10 edges to the original
grid. The total combination of the initial in-
stances, the methods used to add the edges, and
the graph structures generated for each method
was 50×3×50 = 7500. max-LBP and sum-LBP
were run on each of these instances.

For each of the instances, we compute the av-
erage value of the best solutions found by max-
LBP among the 50 graph structures for each of
the three methods employed to add the short-
cuts. Average values are then compared with
the value found by max-LBP in the original
graph (without added shortcuts). Of the 50



graphs, the Random, Max. distance and Min.
distance methods respectively improve (on aver-
age) the values of the function for 9, 9, and 10
of the instances. They respectively converged
to the same optimal solution for 22, 22, and
24 instances. These results show that adding
shortcuts may have an effect on the quality of
the solution obtained, at least in some cases.

To find statistical differences between the be-
havior of the three methods, the Kruskal-Wallis
test was applied using the values of the best so-
lution found. It found statistical significant dif-
ferences between at least two of the three meth-
ods in 13 of the instances. The average gain in
the value of the function is shown in Figure 6a.
Negative values indicate that the solution found
by LBP in the graphs with shortcuts was worse
than in the original graph. Of the 13 instances,
the method that reduces the path length the
most (i.e. Min. distance) was the best in im-
proving the value with respect to the other two
methods in 9 of the instances.

On the 37 instances in which the statistical
test did not find significant differences between
any pair of the methods regarding the qual-
ity of the solution obtained, we conducted ad-
ditional tests to identify significant differences
in the number of (factor and vertices) nodes
that converged and the number of iterations to
convergence. In 21 of the instances, significant
differences were found in the number of nodes
that converged. The gain in the proportion of
nodes that converged with respect to the initial
graph is shown in Figure 6b. The Min. distance
method achieved a higher proportion of nodes
that converged in 18 of the 21 instances. Fi-
nally, regarding the number of iterations until
convergence, there were significant differences
in 20 of the 37 instances and, as shown in Fig-
ure 6c), in 12 of them Min. distance achieved a
higher number of iterations.

In general, it was observed that max-LBP
obtained better solutions and converged in a
higher proportion of the nodes of the graphs
generated by the Min. distance method than
the other two methods. However, the average
number of iterations also increased.

Concerning the behavior of sum-LBP, there

were not significant differences in the number
of nodes that converged. Nevertheless, a dif-
ferent trend to that shown for max-LBP was
manifested. As observed in Figure 7, the Min.
distance method needed fewer iterations than
the other two for all of the instances.

7 Conclusions and future work

In this paper we have analyzed the effect of the
network topology on the behavior of LBP. The
empirical analysis of the LBP results for the dif-
ferent graphs considered has shown that finding
optimal solutions is harder for LBP when the
rewiring probability is increased.

On the other hand, we have shown that
adding shortcuts to the initial lattice graphs
changes the dynamics of LBP in a less clear
way. These changes may determine that bet-
ter solutions are achieved and/or the number
of iterations to convergence can be diminished.
The results obtained seem to indicate that the
method which reduces the path length the most
can lead to more improvements in the LBP be-
havior than selecting the shortcuts randomly,
or choosing them in such a way that the path
length is minimally reduced.

Although we have not advanced a method or
heuristic for choosing the right shortcuts, i.e.
those that can help LBP to escape from cycles or
converge to better solutions, we speculate that
an influencing factor to this respect is the reduc-
tion in the local and global distances determined
by the addition of the shortcut. Furthermore,
we have just investigated the addition of edges
in a step previous to the algorithm start. It
might be the case that the adequacy of adding
a particular shortcut will change dynamically
according to the current step of the LBP algo-
rithm. An open question is then to devise ways
to add shortcuts on line taking into account the
current state of the process.
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